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Abstract: In this work, we model a 5G downlink channel using millimeter-wave (mmWave) and
massive Multiple-Input Multiple-Output (mMIMO) technologies, considering the following local-
ization parameters: Time of Arrival (TOA), Two-Dimensional Angle of Departure (2D-AoD), and
Two-Dimensional Angle of Arrival (2D-AoA), both encompassing azimuth and elevation. Our
research focuses on the precise estimation of these parameters within a three-dimensional (3D) envi-
ronment, which is crucial in Industry 4.0 applications such as smart warehousing. In such scenarios,
determining the device localization is paramount, as products must be handled with high precision.
To achieve these precise estimations, we employ an adaptive approach built upon the Distributed
Compressed Sensing—Subspace Orthogonal Matching Pursuit (DCS-SOMP) algorithm. We obtain
better estimations using an adaptive approach that dynamically adapts the sensing matrix during
each iteration, effectively constraining the search space. The results demonstrate that our approach
outperforms the traditional method in terms of accuracy, speed to convergence, and memory use.

Keywords: 5G; compressed sensing; DCS-SOMP; parameter estimation

1. Introduction

Millimeter-wave (mmWave) and massive Multiple-Input Multiple-Output (mMIMO)
technologies are some of the enablers for the future deployment of 5G and beyond 5G
networks, constituting essential assets for realizing the full potential of disruptive 5G ap-
plications, especially those involving device localization, such as Industry 4.0, Unmanned
Aerial Vehicles (UAVs), and Vehicle to Everything (V2X) communications. These technolo-
gies significantly enhance the accuracy of localization parameter estimation, such as the
Time of Arrival (ToA), Angle of Departure (AoD), and Angle of Arrival (AoA) of signals.

Localization algorithms use localization parameters that can be estimated from the
received signal using techniques such as Multiple Signal Classification (MUSIC) [1] and
Compressed Sensing (CS) [2]. MUSIC-based methods analyze the cross-correlations among
the received signals to identify the angles associated with their peaks in the power spec-
trum [3]. On the other hand, methods based on CS exploit the sparsity of signals, i.e., instead
of acquiring the complete signal, CS enables accurate signal reconstruction using a few
important components while the rest are negligible [2]. Among the CS-based methods, we
highlight Distributed Compressed Sensing—Subspace Orthogonal Matching Pursuit (DCS-
SOMP). DCS-SOMP combines the concept of CS with the Orthogonal Matching Pursuit
(OMP) algorithm to handle sparse signals in a distributed environment or in systems with
multiple antennas (e.g., mMIMO systems) [4].

In this work, we focus on the DCS-SOMP method, since it aligns more effectively
with the sparse nature of mmWave signals. In [5,6], the DCS-SOMP method is applied
to parameter estimation in a two-dimensional (2D) environment, providing only a coarse
estimation of parameters which is followed by a refinement step using the Space-alternating
Generalized Expectation-maximization (SAGE) method [7].
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Our proposal has two novelties: first, our approach entails the dynamic adaptation
of the sensing matrix, obtaining rapid and accurate parameter estimation through the
DCS-SOMP method and second, we perform all parameter estimation within a three-
dimensional (3D) environment. Our proposal relies on accurate channel modeling using
two-dimensional AoD and AoA parameters coupled with Antennas’s Uniform Circular
Arrays (UCA).

The remainder of this article is organized as follows: in Section 2, a literature review
is presented. Section 3 outlines the system model, focusing on the channel and received
signal modeling. Section 4 elaborates on constructing the sensing matrix and applying the
DCS-SOMP method, including the proposed modification for adaptive search in the sensing
matrix. In Section 5, simulation results are presented and discussed. Finally, Section 6
concludes the article.

2. Related Works

Localization algorithms typically consist of two fundamental steps. First, the esti-
mation of localization parameters extracted from the received signal. Second, using the
acquired parameters from the first step, a localization method is employed to determine
the position of the mobile station (MS) [5,8,9]. Regarding the first step, we highlight several
aspects of the literature.

In [10], the authors estimate AoA and AoD using Sparse Bayes Tensor (SBT) from
channel modeling using MIMO and mmWave. However, due to the use of a linear array
of antennas, the proposed approach can only determine the azimuth of AoA and AoD
and does not enable ToA estimation. In [8], the authors conduct indoor localization using
channel modeling and ray tracing. They use two Uniform Linear Arrays (ULA), one
perpendicular to the other, to extract the elevation angle. However, the method does not
estimate AoD, thus preventing the use of algorithms dependent on this parameter.

In [5], the authors propose a comprehensive localization algorithm using MIMO,
mmWave, and ULA. They employ the DCS-SOMP method for parameter estimation.
Due to the linear antenna array, the method applies to a 2D environment. Additionally,
the DCS-SOMP method provides only a coarse parameter estimate, demanding further
fine-tuning using the SAGE method. In [11], the authors propose a 2D-AoA and 2D-AoD
estimation using the MUSIC algorithm. The method utilizes a channel model with a
rectangular Uniform Rectangular Array (URA). However, their proposal does not estimate
ToA and only allows coarse angle estimation. Similarly to [5], the proposal in [11] requires
fine-tuning techniques to provide accurate parameter estimations. In [12], the authors
propose a technique named spatial spectrum fusion estimation and localization (SSFEAL)
for performing 2D-A0A estimation using UCA in a MIMO mmWave channel.

In this work, we go beyond the related studies by proposing a joint estimation method
of ToA, 2D-AoD, and 2D-A0A, enabling the use of these parameters in 3D localization
algorithms in multipath environments. Furthermore, our proposed method accurately
estimates the parameters without additional fine-tuning techniques. We employ a MIMO
mmWave channel model with UCA to determine 2D-AoD and 2D-AoA, consistent with
the works in [12,13]. Table 1 compares our proposal with others discussed in this section.

Table 1 demonstrates aspects of some related works and our proposal. Column 2
indicates the method used for parameter estimation. Column 3 displays the antenna array;,
while columns 4 to 6 specify whether the method estimates ToA, 2D-AoD, and 2D-AoA
parameters, respectively. Our proposal presents the advantage of estimating all considered
localization parameters (ToA, 2D-AoD, and 2D-AoA), while other methods estimate only
some of them, or consider only two-dimensional (2D) environments. Additionally, our
proposal utilizes the DCS-SOMP itself to achieve high accuracy, while other methods rely
on extra algorithms for a refinement step. Although estimating five parameters increases
the number of elements in the sensing matrix, our adaptive approach reduces execution
time and yields more accurate results.
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Table 1. Related work overview.

Article Method Array ToA 2D-AoD 2D-AoA
[5] DCS-SOMP ULA v X X
[8] MUSIC ULA v X v
[10] SBT ULA X X X
[11] MUSIC URA X v v
[12] SSFEAL UCA X X v
Our Adaptive UCA v v v

Proposal DCS-SOMP

3. System Model

As outlined in the 3rd Generation Partnership Project (3GPP) guidelines released in
the TR 38.901 V17.0.0 [14], we analyze a MIMO system with N; transmitter antennas at
the base station (BS) and N; receiver antennas at the MS. This system operates at carrier
frequency f. and with bandwidth B. Similarly to [5], we consider the BS to send G signals
to the receiver, where the g-th signal is composed of M; symbols. Furthermore, we consider
an indoor environment where there are L paths for the signals being transmitted from a
single BS to the MS, such paths can be classified as Line of Sight (LoS) and single-bounce
Non-Line of Sight (NLoS) paths. Multiple-bounce paths are not taken into account due
to their limited reception strength at mmWave frequencies [15]. Additionally, we assume
perfect clock synchronization, as in [16], enabling accurate ToA estimation.

Figure 1 illustrates a typical Industry 4.0 scenario in a smart warehouse where a forklift
moves products from the conveyor belt to the shelves. In such a scenario, the localization
and tracking of the forklift can be achieved using geometry-based methods, which rely on
accurate estimation of localization parameters [5,17].

—> LoS path
= = ¥ NLoS path

R

[T

Figure 1. Indoor Localization Scenario with LoS and NLoS Paths: in a smart warehouse, a forklift is
connected to a mmWave 5G network for product transport.

As in [14], we assume the channel’s dependency on the response vector. Thus, for the
n-th subcarrier (where n = 0, ..., N — 1), the channel matrix H can be represented as follows:
L —j2n(n—1)7
Hin) =) pile  NTs o VNl (9%, ¢f')vNrar (677, 6), (1)
=1

where, for the [-th path, p; represents the pathloss, i; stands for the complex channel gain,
7; is the ToA, ¢;* is the azimuth AoD, 4),81 is the elevation AoD, 6/ is the azimuth AoA,
0¢ is the elevation AoA, and Ts = 1/B denotes the sampling period. In order to take into
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account 2D-AoD, i.e., (¢%, (pl"l) and 2D-Ao0A, i.e., (077, Gl"l), we employ a Uniform Circular
Array (UCA) as in [13], thus we define the response vectors a; and a,, as follows:

at((/)?z/ (P;zl) — {11 ejz%rsin(¢f’)cos(¢fz—sin(1))’ o ,ejo"rsin(qild)cos(MZ—sin(N,—l))} , )

ar( ;12’ 9;31) _ {11617”1’5171(91‘" )cos(@fz—sm(l)), .., e]T”rsm(Qf )cos(@fz—sm(N,‘—l))} , )

where A is the wavelength, and r is the radius of the UCA. When a massive antenna array
is used, as described in [13], the radius can be defined as r = (N; — 1) %Tz for at(¢;’2,¢l€l),
andasr = (N, — 1)%3 for a,(0}7, 01"1).
Finally, the received signal for subcarrier n and transmission g can be expressed as
follows:
y®[n] = H[n]x®)[n] + wln], )

where x(8) represents the signal with the transmitted data symbols, and w denotes a

Gaussian noise vector with a zero mean and variance o2.

4. Proposed Method

For ease of understanding, we divide our proposal into two stages: (1) sensing matrix
construction and (2) 3D parameter estimation using the DCS-SOMP algorithm.

4.1. Sensing Matrix Construction

According to [14], the azimuth angle belongs to the interval [0, 277] and the elevation an-
gle belongs to the interval [0, 7r]. Therefore, we have g,, candidates for azimuth angles uni-
formly spaced within the interval [0,27], and g,; candidates for elevation angles uniformly
spaced within the interval [0, 77]. We define ¢(0) = [4350), ey 43,582) ], 0 = [4550), e ,4),(7?1)]

as candidates for AoD azimuth and elevation, respectively, and 60 = [(;%O), .. .,9592) 1,

60) = [950), s, 953)] as candidates for AoA azimuth and elevation, respectively. We intro-

duce the matrix UEO) of dimensions N; X 4,4, containing the response vectors for each

possible combination of azimuth and elevation for AoD:

0 - .
U = [ (3, 4] ®)
Similarly, we create the matrix USO) of dimensions N; X 44,4, containing the response
vectors for each possible combination of azimuth and elevation for AoA:

U = [ar (8, 6)]. (6)
Finally, we obtain the sensing matrix w(©) as follows:
@) = (UK )" 0 0", %

where x(8) represents the transmitted data and ® denotes the Kronecker product. The sens-
ing matrix w has dimensions of (N;M;) x (gazqe1)?. As a result, the number of elements in
w is directly related and highly sensitive to the values of g4, and g,;.

In Section 5, we have demonstrated that increasing the number of candidates (4,2, §e;)
for DCS-SOMP is crucial to achieving accurate estimations of 2D-AoD and 2D-AoA. How-
ever, an increased number of candidates also leads to increased memory usage, as shown
in Figure 2. Our proposed modification to DCS-SOMP introduces an adaptive search
approach, dynamically adjusting the sensing matrix during each iteration, as detailed in
Section 4.3, to address this issue.
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Figure 2. Comparison between DCS-SOMP and Adaptive DCS-SOMP: (a) Variation in Sensing Matrix
Size (Number of Elements) and (b) Execution Time, both regarding the number of samples.

4.2. DCS-SOMP Approach for 3D Parameter Estimation

The DCS-SOMP method determines the index #; of the maximum correlation be-
tween (4) and (7). Therefore, for the [-th path, /; is defined as follows:

El = argmax ﬁ W
m=1,...,(qazqe)? n=1 me [1’1] HZ

/ ®)

where R; represents the received signal’s residue and m represents each column in w.
R, =ywhen! =1.

The index /; is converted into a combination of (¢, ¢¢') and (647,6¢'). The 2D-AoD
(¢7%, (,bld ) is determined as follows:

h Iy
=" == {‘PJ, £ = 1! mod q,, ©)
¢ Jazqel ! oz ! ¢ Bel
0 : (0
o=y o = (10)
Similarly, the 2D-AoA (6/7, Qlel ) is determined as follows:
Ih=n-1 sz | I ¢ = I mod (11)
0 1 (pqﬂz%li Y Gaz |’ 0d] g MOd e,
_ 50 1_ 30
o = 8L, ot =61, (12)

Finally, the DCS-SOMP method updates the residual for the n-th subcarrier as follows:

i [n]Ry[n]

i) = 3
Hwhl [n]1l3

Ry [n] = Ryfir] — Byl ] (1)

Similar to [5], the estimation of ToA provides a maximum distance of NTsc (m).
Therefore, TOA can be estimated as follows:

. 1| N c
distance = N L;l Bi [n]] NT; > (15)

Tl_

. g >
{Chstance/ ¢, if distance > 0 (16)

(distance + NTsc) /¢, if distance < 0,
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where c is the speed of light.

4.3. Adaptive Search in DCS-SOMP Approach for 3D Parameter Estimation

We introduce an adaptive approach to enhance the parameters estimated in the two
aforementioned stages: (1) sensing matrix construction and (2) application of the DCS-
SOMP approach for 3D parameter estimation. Our method dynamically adapts the search
space for each angle to be estimated, i.e., 2D-AoD and 2D-AoA. To illustrate how dynamic
adaptation is performed, Figure 3 demonstrates the improvements made in each iteration
using our adaptive approach for the azimuth AoD angle. In summary, in iteration &,
the search interval ((ﬁ(k)) is dynamically adapted using the index (/%) of the previous search
interval (¢*~1)). New parameters are estimated in each iteration. The process continues
until a predetermined number of iterations (K) is reached or a pre-established threshold (o)
is exceeded.

e

- index (%*
O A | | |
! VA A i i i

v
az az
start end

31 ™

Figure 3. Adaptive Procedure for Selecting Eligible Candidates for Azimuth AoD.

We adaptively calculate the candidates for AoD azimuth angle (¢*)) with g,, values

that are uniformly spaced within a new interval [¢%,,,, %], where

~(k—1) . ~(k—1) .
Pliort = P A>T i, = B I < gz, (17)
e 0,if " =1 e Gaz, i 1% = Ga

Similarly, we adaptively calculate the candidates for AoD elevation angle (¢*)) with
g1 values that are uniformly spaced within a new interval [¢¢_,, cf)gﬁl 41, where

i (k=1) .o ol L(k=1) .o o
pel  — Per_y e >1 d &, = ¢LEI+1 ARG < qa 1
tart ! and ¢, 1 . (18)
o 0,if ¢! =1 o if ¢ =
, L Gel, 1L 1 el

For the AoA azimuth angle, we adaptively calculate the candidates (§(K)) with g,,

values that are uniformly spaced within a new interval [6%, ,, 5% 4], where
Ak=1) ¢ az Ak=1) ¢ az
2y = v T2 gng e, = O 1091 < ez (19)
0,if9/* =1 Gaz, if v{* = qaz
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Similarly, we adaptively calculate the candidates for AoA elevation angle (6()) with

ger values that are uniformly spaced within a new interval [6%,,, 6% ||, where
. é(kil)l if el > 1 y e'(kfl), i el <
ot = { A1 I Tand g, = 4 oty 0 S (20)
0, if ’7? =1 Gels if 'Yle = fel

Thus, using %), ¢(*), 8), and §) we determine the new sensing matrix as follows:

U = [ar($™), $1)], (21)
UM = [ay (80,60, (22)
w®[n] = (Ux )T @ UM (23)

Using R; and w®), we determine new values for (p7%, qblel ), (077, 9161 ), and Tfl from (10), (12),
and (16), respectively, which initiates a new iteration. Although the adaptive step enhances
the sensing matrix for 2D-AoD and 2D-AoA estimation, it also yields improvements in ToA
estimation. The continual improvement of the maximum correlation with each iteration in
the adaptive process positively impacts the ToA estimation accuracy.

Therefore, our adaptive approach involves using a smaller number for g4, and g, en-
abling us to achieve a high number of samples in the overall search space while consuming
less memory. This is due to the reduced size of the matrix w in terms of its total number
of elements. Additionally, our approach requires less time than the simple method while
maintaining greater accuracy.

Figure 2a,b clearly demonstrates that when using the DCS-SOMP method, a small
sample space is accommodated, should memory space or execution time be constrained.
The simulations reveal that when using over 18 samples in the sensing matrix, the DCS-
SOMP method becomes impractical in terms of execution time and memory. On the
other hand, the adaptive method consumes less memory, exhibits shorter execution times,
and is capable of accommodating larger sample spaces. Furthermore, the sample space
accommodated by the adaptive method consistently remains close to the actual value,
enhancing its precision. We calculate the number of elements (4.) in w using the formula:
Gw = ((NtM})(gazq01)?) K, where K = 1 for DCS-SOMP. To generate Figure 2a, we arbitrarily
set the number of antennas at the transmitter to N; = 32 and the number of transmitted
symbols to M; = 20, similar results were obtained with other values.

Algorithm 1 outlines our proposal. The adaptive search step is called at line 17.
Algorithm 2 provides a summary of the adaptive search step.
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Algorithm 1 Modified DCS-SOMP

Input: y, w©®

Output: ¢f%, ¢f', 0/7, Gf’ , T
1: Ry y
2: forl + 1toLdo

3: hl — -1

4: maXeyr ¢ —1

5. form ¢+ 1to (qazq,)* do

6: corr <— 0

7: forn <— 1to N do

8: corr < corr + Jeoh? (1] R ]

oty ]l

9: end for
10: if corr > maxco, then
11: hy—m
12: end if
13: end for
14: Determine /%, 171, 7% and 'yfl from (9) and (11)
15: Determine (¢7, 4771 ) from (10)
16: Determine (6%, Gfl) from (12)
17:

Algorithm 2

18: forn < 1to N do
19: Determine ;[n] from (13)
20: Determine R, 1[n] from (14)
21: end for
22: Determine 7; from (16)
23: end for

73(0), ¢, 89,600,442, g0, K, L, N

> Maximum Correlation

Using [R;, 4, til, Y, ’y;”, $©, $O 8O K, N, gaz, go] as input, fine-tune [gbf‘z,(p;’l,(?fz,@;“, 7] using

> Execute solely if the adaptive step is not called

Algorithm 2 Adaptive Search

Input: R[, L’llz, Lfl, ’)’?Z, ’)/;)l, &(0)’ ¢(O) ’ 5(0), K, N, azs Gel

Output: ¢77, 4);"’, 077, 9;’1, T
1: fork + 1to K do

26:
27:
28:
29:
30:

Determine [¢7Z,,, $%2,] from (17)

Determine [¢¢,,,, ¢¢ ;] from (18)

Determine [0%,,, ég;’; 4] from (19)
Determine [0¢_,, 5;; 4] from (20)

G [t Py
¢<k> A [(i)sgnrt' R4 (i)gid
é(k) — [égrzmt/ T égéd}
é<k) — [éﬁart' et égi,d]
forn «+ 1to Ndo
Determine w® [n] from (23)
end for
fll — -1
maXcr — —1
for m < 1to0 (qazq.)? do
corr <+ 0
forn < 1to Ndo

corr « corr + ¢

ooty )2
end for
if corr > maxco,, then
ill —m
end if
end for

Determine 47, L;’l, 7/* and 'y,fl from (9) and (11)

Determine (¢;%, (pfl) from (10)

Determine (6%, 91‘” ) from (12)

forn < 1to N do
Determine f;[n] from (13)

end for

Determine 7; from (16)

31: end for

(] TR ]

> (az values uniformly spaced
> g1 values uniformly spaced
> (az values uniformly spaced
> g1 values uniformly spaced

> Maximum Correlation
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5. Results

In this article, we conducted simulations using MATLAB® software version R2012b
(used under an academic license) installed in a computer running Windows 11 as the
operating system and with the following hardware configurations: 2.5 GHz Intel Core
i5-10300H processor, 16 GB RAM, and NVIDIA GTX 1650 as the dedicated video card.

We selected arbitrary actual values for two paths as described in Table 2. We set
gaz = 18 and q,; = 18 when not using the adaptive search, i.e., DCS-SOMDP, as this is the
maximum value our simulator could process. When using the adaptive search, we set
gaz = 6 and g,; = 6. Additionally, we defined the parameters as follows: f. = 28 GHz,
B =100 MHz, N; = 64, N, = 64, N = 10, and M; = 20. To establish a maximum number
of iterations, we determined the difference between the estimated value in iteration k and
the estimated value in iteration k — 1, and as long as this difference is greater than the
threshold (o0 = 10°), the next iteration will be performed.

Table 2. Actual Values Used in Simulations.

Path ¢ (rad) ¢° (rad) 6% (rad) 0° (rad) T (us)
1 1.33 0.45 3.50 0.90 0.0615
2 2.80 115 5.20 145 0.0767

Figures 4a—6 display the comparison between DCS-SOMP and adaptive DCS-SOMP
for 2D-AoD, 2D-A0A, and ToA. The results correspond to a random run for Path 1. It’s
evident that, for all cases, the adaptive DCS-SOMP significantly enhances the estimation
of the respective angle as early as the second iteration, gradually converging towards the
actual value with each subsequent iteration.

A&

24 = = :DCS-SOMP
Adaptive DCS-SOMP
== == Actual Angle

NG
[N}

N
T

AoD - Azimuth [rad]
= I
(=2 [

= == :DCS-SOMP ]
Adaptive DCS-SOMP
== == 1 Actual Angle

1.4r

| ‘ | | | | 033 ‘ ‘ ‘ ‘ : ‘
0 2 4 6 8 0 12 14 0 2 4 6 8 10 12 14
Iterations Iterations
(a) (b)
Figure 4. Comparison of (a) Azimuth AoD estimation and (b) Elevation AoD estimation results using
DCS-SOMP and adaptive DCS-SOMP. The outcomes pertain to Path 1. In the DCS-SOMP case, 4,
and g, are both set to 18, whereas in the adaptive DCS-SOMP scenario, 44, and g, are both set to 6.

We analyzed the complexity of the methods in terms of execution time and number
of mathematical operations. Following the analysis provided in [18,19], the complexity of
the SOMP algorithm is O(LN¢q.), where q. = qazq,; denotes all possible combinations for
the candidates for azimuth (g,,) and elevation angles (g,;). In the DCS-SOMP algorithm,
we perform the Kronecker product (tensor product for matrices) to estimate 2D-AoD and
2D-Ao0A parameters, resulting in O(LN;(g.)?). In our adaptive DCS-SOMP approach, we
fix the number of candidates and we update the values for the candidates at each iteration.
Thus, the complexity of the adaptive DCS-SOMP is O(LN¢q.q;;), where gj; is the number of
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iterations. The main mathematical operations are due to (7) and (8). We determine the total
number of mathematical operations, qop, as follows:

Gop = (a5 + ) (g2 L + 1), (24)

where qg’p is the number of mathematical operations to construct the sensing matrix, (7),
determined as follows:

qgvp = N(gcMiNt + gc(Mi Nt — 1) + MiNi(q¢)?), )

and qé’p is the number of mathematical operations to determine the max correlation, (8),
determined as follows:

h _ 2
qop = (2NiMi)N(qc)”. (26)

.7

875 = == :DCS-SOMP

370 Adaptive DCS-SOMP | {

’ = = :Actual Angle

—=3.65[ S}
B g
= c
£ 36 8
> =
£ g
S k9
< 3.55[ w
< <
e S
< 35 <

3450 0.7¢ == == 'DCS-SOMP

’ Adaptive DCS-SOMP

== == Actual Angle
34 065 L L L L L g L
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Iterations Iterations
(a) (b)

Figure 5. Comparison of (a) Azimuth AoA estimation and (b) Elevation AoA estimation results using
DCS-SOMP and adaptive DCS-SOMP. The outcomes pertain to Path 1. In the DCS-SOMP case, 4,
and g, are both set to 18, whereas in the adaptive DCS-SOMP scenario, 4,4, and g, are both set to 6.
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Figure 6. Comparison of ToA estimation results using DCS-SOMP and adaptive DCS-SOMP. The out-
comes pertain to Path 1. In the DCS-SOMP case, 44, and g,; are both set to 18, whereas in the adaptive
DCS-SOMP case, g4, and g, are both set to 6.

Table 3 presents the execution times and the number of mathematical operations for
each method. For the adaptive DCS-SOMP method, we utilized 14 iterations. These values
represent the total duration required by the method to estimate all five parameters for both
paths. Our observations indicate that the adaptive method is notably faster and involves
fewer mathematical operations compared to the traditional method.
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Table 3. Comparison between DCS-SOMP and Adaptive DCS-SOMP.
Method Time (s) Number of Mathematical Operations
DCS-SOMP 84.63 4.0393 x 10°
Adaptive DCS-SOMP 0.88 1.4697 x 10°

We used the Root Mean Square Error (RMSE) as the Key Performance Indicator (KPI)
for our estimates. The RMSE ¢ is calculated as follows:

LS i 2 27)
éi:1 Pz pl 7

where Q is the number of runs, p; is the actual value of the chosen parameter at the i-th
run, and p; is the estimated value of the chosen parameter at the i-th run.

Table 4 presents the RMSE for each parameter estimated, where €z, Epel, Eguz, Egel,
and &; represent the RMSE for azimuth AoD, elevation AoD, azimuth AoA, elevation
AoA, and ToA, respectively. The RMSE was determined from 100 runs of each method,
considering the average across all paths. The adaptive method exhibits higher precision
compared to the non-adaptive method for all analyzed parameters.

Table 4. Comparison of RMSE between DCS-SOMP and adaptive DCS-SOMP.

Method £pa: (rad) € pel (rad) £gaz (rad) ggat (rad) er (us)
DCS-SOMP 0.1334 0.0454 0.1087 0.2851 0.0109
Adaptive DCS-SOMP 0.0017 0.0005 0.0089 0.0256 0.0001

6. Conclusions

In this work, we addressed the problem of low performance presented by traditional
DCS-SOMP approaches, which present convergence and precision to estimate parameters
only at the cost of low performance. To achieve this, we proposed an adaptive DCS-SOMP
method that dynamically calculates the sensing matrix, presenting high performance in
precisely estimating localization parameters while keeping the algorithm simple and with
fast convergence.

This modification transformed the DCS-SOMP method from solely a coarse estimator
to a singular tool for precise parameter estimation. Even in a 3D environment with five
parameters to be estimated and multiple paths to be detected, the adaptive DCS-SOMP
method exhibited substantial improvements in both accuracy and speed compared to
the DCS-SOMP approach. Further enhancements to the adaptive DCS-SOMP could be
explored, such as refining the way the residue was updated, potentially enabling improved
separation of paths. Furthermore, we plan to explore alternative antenna arrays, including
2D configurations, to enhance beam-forming capabilities in mmWave scenarios within 5G
and B5G networks.
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