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Abstract: Monitoring marine fauna is essential for mitigating the effects of disturbances in the
marine environment, as well as reducing the risk of negative interactions between humans and
marine life. Drone-based aerial surveys have become popular for detecting and estimating the
abundance of large marine fauna. However, sightability errors, which affect detection reliability,
are still apparent. This study tested the utility of spectral filtering for improving the reliability of
marine fauna detections from drone-based monitoring. A series of drone-based survey flights were
conducted using three identical RGB (red-green-blue channel) cameras with treatments: (i) control
(RGB), (ii) spectrally filtered with a narrow ‘green’ bandpass filter (transmission between 525 and
550 nm), and, (iii) spectrally filtered with a polarising filter. Video data from nine flights comprising
dolphin groups were analysed using a machine learning approach, whereby ground-truth detections
were manually created and compared to AI-generated detections. The results showed that spectral
filtering decreased the reliability of detecting submerged fauna compared to standard unfiltered
RGB cameras. Although the majority of visible contrast between a submerged marine animal and
surrounding seawater (in our study, sites along coastal beaches in eastern Australia) is known to
occur between 515–554 nm, isolating the colour input to an RGB sensor does not improve detection
reliability due to a decrease in the signal to noise ratio, which affects the reliability of detections.

Keywords: drone-based monitoring; marine fauna detection; spectral filtering; machine learning
analysis; sightability error; shark-bite mitigation

1. Introduction

Due to increasing disturbances, such as effects of climate change, landscape modifica-
tion, overfishing, and human-wildlife conflict, the importance of monitoring vulnerable
marine fauna is intensifying. To this end, aerial survey methods have been a primary
means for detecting large marine fauna and estimating their abundance [1,2]. However,
while traditional methods of using human spotters to record their observations from a
crewed aircraft still occur [3], in many cases digital sampling is increasingly preferred [4].
This is particularly the case with the relatively recent appearance and development of
aerial drones, also referred to as ‘UAV’, ‘UAS’, ‘RPAS’ (see Chabot et al. [5]). Drones are
now a common tool in ecology [6–8]. Furthermore, with the continued advancement of
drone technology, as well as associated digital capture technology, it is anticipated that
the effective spatial scales that can be efficiently sampled using drone-based methods will
expand [9]. Therefore, drones are likely to increasingly replace traditional methods of
marine aerial survey for monitoring the population health of large marine fauna [10].

Drone-based aerial surveys in the marine environment are perceived as being a rela-
tively efficient and reliable method for detecting and identifying coastal fauna, and have
been used to assess animal behaviour [11], abundance [12–14], population health [15,16],
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as well minimising the potential for human–wildlife conflict, such as human–shark in-
teractions along coastal beaches [17,18]. Despite the utility, sightability errors that affect
reliability of the detections and identifications of marine life, can be apparent and similar
to that reported from aerial surveys using crewed aircraft [4,8,17]. This can be particularly
problematic in marine fauna surveys, where the detection reliability is governed by factors
including water clarity, depth, sea state, sun glare, and sea-surface reflection, as well as
animal size, behaviour, and its position in the water column [17,19].

Similar to crewed aircraft surveys, the sightability errors associated with detecting
marine fauna can be attributed to ‘availability errors’ or ‘perception errors’ [1,4]. Availability
errors occur due to an animal being unavailable for detection at the time of the survey
pass. In the marine environment, this occurs when an animal is positioned deeper in the
water column than the ‘available’ portion of surface water that can be seen from above,
in the given conditions of water clarity. Perception biases occur when an animal in the
water column should have been detected (i.e., it was positioned in the ‘available’ upper
section of the water column), but it was not detected due to an error in human spotting
or machine-learning, rather than external factors [1,4,17]. In many cases, sampling effort
can be constrained to favourable locations and conditions, and methods can be employed
(particularly in post-processing) to estimate the errors and biases to adjust the detection data
for inferring abundance [8,19,20]. Minimising the uncertainty in count data has been, and is,
a consistent objective across ecology. However, in situations where detections in real-time
are required, such as in drone-based surveys aimed at reducing human–shark interactions,
the need to investigate and refine methods to improve the reliability of detections are also
apparent.

The efficacy of drone-based shark surveys for reducing human–shark interactions
currently relies on a drone pilot detecting (and identifying) sharks correctly in real-time
from a telemetry screen, and subsequently taking an appropriate course of action based
on whether the sighting is a potentially hazardous scenario or not. Despite overwhelming
public support for the method [21], a number of scientific research articles are reporting
significant error rates in field detections and fauna identifications, which has obvious
implications for the efficacy of drone-based shark surveillance for keeping beach-goers
safe [17,22,23]. As with a number of other types of drone-based animal surveys, machine
learning tools are currently being investigated to minimise human-induced errors in the real-
time detection of sharks and other marine life from drones [24–28]. However, although such
methods show initial promise, they are still bound to the same sightability constraints that
are imposed due to water clarity and the position of the animal in the water column [17,25].
Therefore, despite the utility of machine learning to improve the reliability of detecting and
identifying marine animals in real-time (and in post-analysis), potential methods that may
improve the contrast of the animal against the background and potentially increase the
‘availability’ of the animal, such as from using alternative sensor technology, may further
reduce error in detections [29–31].

The potential for alternative sensors, or wavelength selection, to improve the de-
tectability of submerged fauna has not been thoroughly researched. The overwhelming
majority of drone-based surveys in the marine environment use RGB sensors, with some
applying polarising filters to these cameras to reduce the effect of sun reflection on collected
imagery [32–34]. Research into applying distortion correction algorithms and augmenting
imagery in post-analysis has also demonstrated to have some improvements with regards
image clarity, but can involve resource intensive post-analysis [33,35,36]. Similarly, the
added cost and complexity throughout the survey and analysis, often preclude the use of
alternative sensors. However, various sensors such as infrared, are increasingly becoming
more compact and turnkey [10].

Unlike terrestrial environments and above-water applications where thermal imagery
has shown clear advantages for improving detection rates and abundance estimates of
fauna [26,37], infrared radiation is highly attenuated in water and has very limited utility
regarding submerged fauna [38]. However, research into the use of multi-band sensor
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technologies, such as multispectral and hyperspectral cameras, to improve the detectability
of fauna has indicated potential advantages over standard RGB cameras [29–31]. Generally,
the use of multispectral and hyperspectral cameras in the marine environment have typi-
cally used to aid the classification of sessile organisms through analysis of the additional
spectral information [39,40]. For detecting mobile marine animals from the air, optimising
the use of specific wavelength ranges of light being sampled by the sensor (such as from
multi- or hyperspectral cameras), is thought to have the potential to improve the depth
that fauna can reliably be detected (availability error), as well as improve the contrast of
fauna against the background. This would facilitate obtaining a greater confidence with
regards detection reliability (perception bias). However, such sensors are expensive, often
not intuitive to use, and offer low spatial resolution when compared to normal cameras.

Previous research has investigated the contrast of various submerged marine fauna
against the surrounding seawater [29] and demonstrated that along coastal beaches of
eastern Australia, the greatest spectral difference between fauna and seawater was found to
occur in the green colour band for submerged coastal marine fauna (515–554 nm). Therefore,
this research aimed to test whether low-cost methods of augmenting typical drone cameras
to restrict input to these frequencies can maximise the detection reliability of sharks and
improve beach safety. Specifically, we tested whether spectral filtering, and spectral filtering
with polarisation, could render improved clarity and reliability in fauna detections over
standard unfiltered RGB cameras. This would occur if restricting the passband of the input
signal improved the signal to noise ratio by essentially cutting out non-useful information.

2. Materials and Methods
2.1. Equipment

We used a DJI Phantom 4 Pro (1.4 kg drone) due to its portability and versatility
in conducting aerial surveys involving multiple flights in remote coastal locations. We
attached a small payload to the landing gear of the drone, which enabled comparisons of
three camera treatments of identical sensors, including a control, spectrally filtered, and
spectrally filtered with polarising filter. Three GoPro Hero8 cameras were used, which we
de-cased, minimised, and repackaged with battery-eliminating circuits to be lightweight
(~23 g each). They were mounted in a custom housing that attached to flexible vibration
dampeners and secured to the landing gear. The GoPro cameras were powered by the
drone aircraft battery by a custom auxiliary power plug (Figure 1). A microcontroller
with universal asynchronous receiver-transmitter (UART) was used to pair a 915 MHz
radio receiver with a transmitter to enable remote start/stop recording of all three GoPros
simultaneously. This allowed for a frame-by-frame comparison of video from each of the
sensor filter treatments.

Specific narrow-green bandpass filters were fitted to aluminium housings that could
be applied to the outside of the two camera lenses. One of the filters had an extra layer
of neutral density circular polarising glass. The bandpass filtering glass allowed light
transmission specifically between 525 and 550 nm, with a peak transmission of >85%
(Figure 1), and minimal angular shifting for the focal length of the GoPro. Angular shifting
can occur when objects of interest are away from the centre of frame which can cause
wavelength transmission to significantly shift.
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Figure 1. (A) The light transmission (%) for the corresponding wavelength (nm) of the narrow green
bandpass filters used for filtering treatments. The near-infrared blocking filters (that come standard)
in the CMOS sensor of the GoPro negate transmission in the higher (>850 nm) wavelengths. (B) GoPro
sensor array in the custom mounting, attached to the landing gear of the Phantom 4 Pro drone.

2.2. Survey

Survey flights were made between July 2021 and August 2022. In these flights, we
employed ‘convenient sampling’, and found fauna classes: dolphins (Tursiops sp.), sharks
(Carcharhinus spp.), guitarfish (Rhinobatidae), other rays (Aetobatus narinari, Rhinoptera
neglecta), and whales (Megaptera novaeangliae), which have been found along the east
Australian coastline in drone-based coastal surveys [18,20,22]. However, dolphins were
found to be the most appropriate class for the analysis, due to their vertical movement
through the water column.

Survey flights were conducted in varied winds of up to around 15 knots (7.7 m s−1),
and in the absence of rain at Ballina, Evans Head, Tuncurry, Forster, Birubi, and Anna
Bay on the east coast of Australia (Figure 2). The maximum wind tolerance for sampling
was set intentionally lower than the recommended maximum for the aircraft, due to the
added payload, which effectively increases the working load on the motors and electronic
speed controllers, which require higher amounts of current from the batteries. Care was
also taken to fly the aircraft smoothly to avoid unnecessary ‘ramp-up’ of the motors and
associated current draw. If wind gusts frequently exceeded ~15 knots, the aircraft was flown
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back to the ground control station. Flights were made at ~60 m altitude and according to
procedures in Colefax et al. [17], using the real-time telemetry of the onboard RGB camera
to sight fauna. Flights were made in both directions, following the coastline, just behind
the surf break. Once fauna was detected, the drone was lowered to 15–20 m, the camera
treatments triggered to record (30 fps at 4k UHD resolution) and the animal/s tracked
until it disappeared into the water column, battery was effectively depleted, or weather
deteriorated (rainfall or wind >8 m s−1). Because the animal was tracked, the trajectory of
the drone varied and approximately matched that of the trajectory of the animal. The added
payload did impact flight time, with the drone not specifically designed or optimised for the
extra weight. Therefore, the maximum wind tolerance for sampling was set intentionally
lower than the recommended maximum for the aircraft, due to the added payload, which
effectively increases the working load on the motors and electronic speed controllers. This,
in turn, draws higher amounts of current from the batteries. Care was also taken to fly
the aircraft smoothly to avoid unnecessary ‘ramp-up’ of the motors and associated current
draw. If wind gusts frequently exceeded ~15 knots, the aircraft was flown back to the
ground control station.
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Figure 2. Survey locations on the east coast of Australia. Ballina and Tuncurry represented sites with
data that were used in the final analysis. Evans Head, Forster, Birubi and Anna Bay were surveyed
but not included in the analysis.
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2.3. Analysis

A flight was considered successful when we were able to capture marine fauna across
all three sensors, in correct exposure, and with sufficient clarity to reliably identify the
fauna as it shifted horizontally and vertically in the water column to encompass a range
of ‘sightability’ conditions [17,25]. Initial trials of the three-camera setup determined that
the cameras recorded within one frame of each other. This was further verified on each
video by carefully assessing frame numbers with short-lived events (e.g., the moment a
dolphin breaks the surface for air) that were seen by all sensors and could subsequently be
used to verify frame-matching across cameras, which enables direct comparisons of the
camera treatments.

To empirically contrast the camera treatments of RGB (control), spectral filtering
(green filter), and spectral filtering with polarisation, data were analysed using artificial
intelligence (AI) deep learning methods. This approach was chosen to eliminate the
potential biasing resulting from the subjectivity of using human observation methods to
assess the imagery and score for clarity with regards the detectability of submerged fauna.
The AI model used as a proxy was an existing RetinaNet single-shot detector (SSD) with
a Resnet-50 backbone classifier that was trained on a very large marine fauna dataset
(see Purcell et al. [25]). The procedures regarding this previous research for creating the
AI model involved carefully annotating (supervised learning) marine faunal datasets that
were captured from drone-based shark surveillance trials along coastal beaches of eastern
Australia. For each annotation, a set of bounding box coordinates (tightly marking the
spatial extent of the animal in the imagery) along with the animal’s classification was
recorded with reference to the image. The imagery underwent various augmentation
steps to normalise the colour profiles and reduce potential data biases with the animal’s
orientation and size through random rotations and image scaling. The training of the
model was conducted in a Tensorflow 1.0 environment (now superseded) for ~50 epochs.
Training was deemed finished when the mean average precision (mAP), and loss curves
(common observational tools to monitor training success of a machine learning model),
were observed to flatten out.

The approach for the analysis using this previously developed AI model involved first
drawing ground-truth boxes over the video footage from each of the camera treatments,
and then comparing the ground-truth to boxes generated by the AI model. To create the
ground-truth boxes, we manually annotated a select range of frames for each flight using a
custom graphical user-interface (GUI) that supported machine learning labelling operations
for video. Through the process of ‘boxing’, a coordinate system within each image was
generated, which defined the location and bounds of an animal. The box represented the
smallest rectangle that can be drawn that completely encapsulated the animal. This was
conducted across the range of matching frames for each camera treatment, for each video.
The frame range was chosen such that there was no ambiguity in the footage about how
many dolphins were present and their locations, which were kept to the middle area of
the frame to avoid effects of vignetting or phase shift from the spectral filters (Figure 3).
We achieved this by following individual dolphins through the footage from the surface,
where they are clearly identified, to being deep in the water column. Where there was more
than one dolphin in the frame, each individual was separately tracked and boxed. Animals
typically surfaced and dived more than once in a video. When an animal disappeared in
the water column (i.e., beyond the sightability threshold), we interpolated boxes for the
animal for a number of frames to ensure full extent of sightability was achieved for all three
camera treatments.
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Figure 3. An example of a single frame from each sensor treatment taken on Flight 7, 6 October 2021
at Ballina Headland, NSW, Australia. Top (A) shows the unfiltered RGB (red-green-blue channel)
sensor, middle (B) shows the sensor with green spectral filter, and bottom (C) shows the sensor with
the green and polarising filter. Each sensor frame is matched in time. Yellow boxes are drawn by the
AI model and used for direct comparison of sensor performance.

Once ground-truth boxes were established, we ran inferencing on the videos with the
AI model to create AI-generated boxes (Figure 3). Both the ground-truth boxes and the
AI-generated boxes were restricted to correspond with cases where animals in the image
were not noticeably impacted by phase shifting or vignetting, which was apparent in some
scenarios (Figure 3). The AI-generated boxes across the videos were temporally clipped
so that the inferencing only corresponded to the same frame sequences of the ground-
truth boxes. An important factor for defining whether an AI-generated box matches a
ground-truth box is Intersection over Union (IoU), which is a standard measure of the
fraction of the AI box that covers the ground-truth box. For a perfect match, the AI and
ground-truth box would be exactly aligned, where the IoU would be 100%. However, a
partial overlap can also indicate a correct result. We chose a 50% threshold for the analysis
based on the results of data inspection (see results). True positive (TP), false positive
(FP), and false negative (FN) detections were defined, based on the IoU threshold. The
precision (TP/(TP + FP)), and recall (TP/(TP + FN)) were then calculated for each flight
and sensor treatment. Precision represents the fraction of all AI-generated boxes that were
correct, whereas recall is the fraction of all ground-truth boxes that the AI-generated boxes
replicated. These scores were used to contrast the relative performance of each sensor
treatment for detecting submerged fauna. The data was analysed and visualised in python.

3. Results

We conducted around 86 flights over 18 separate days, totalling 17 h 18 min of total
flight time. Survey efficiency, including the locations and timing of surveys, were impacted
by weather constraints and COVID-related restrictions, which led to the general scarcity of
fauna across surveys. There was a lack of variation in many animals’ vertical position in
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the water column. This limited the ability to contrast the three camera treatments in many
flights. Due to this, we found dolphins to be ideal surrogates for the wider range of fauna
classes, as they frequently shift their position in the water column and, in this context, do
not spectrally differ from other fauna (see Colefax et al. [29]). Dolphins were also a trained
class in the AI model used for the analysis. Due to some technical issues (all three cameras
needed to work in sync with the correct exposure), being restricted to specific fauna classes
for the analysis, and eliminating cases where the animal in the image may be affected by
phase-shifting or vignetting, the dataset was narrowed down to nine successful flights, in a
variety of water clarity conditions, on five separate days (Table 1).

Table 1. Summary of successful flights where dolphins were captured in all three sensors. The
number of frames shown in the last column refers to the frames that were used in direct comparison
between the sensors.

Flight Number Date Location No. Dolphins No. Frames

1 31 August 2021 Ballina 2 400
2 31 August 2021 Ballina 2 980
3 31 August 2021 Ballina 2 650
4 1 September 2021 Ballina 1 450
5 6 October 2021 Ballina 1 450
6 6 October 2021 Ballina 1 150
7 6 October 2021 Ballina 6 379
8 4 October 2021 Tuncurry 1 1050
9 8 June 2022 Tuncurry 3 300

The assessments of IoU across frames for each flight showed a general normal distri-
bution that highlighted a 50% threshold would be appropriate to contrast the camera treat-
ments for determining the comparative levels of relative detection performance (Figure 4).
While the specific value of IoU can be arbitrary, it is not a definitive measure of detection
performance, nor does it bias the overall results when the same IoU threshold is used
across all treatments. The AI model was used here as a tool to reliably assess the relative
performance of each sensor by setting the threshold for the AI to detect fauna, and then
count the number of boxes that the AI model correctly predicts.

The distribution of IoUs across flights generally peaked at approximately 74% and
followed a normal distribution tailing at ~50% and ~90%. During flights where there was
more than one dolphin, a second peak in the distribution was generally found, usually
peaking around 35% IoU (Figure 4). This was due to dolphins swimming in close proximity
to each other, and subsequently creating overlapping boxes in post-analysis for both
ground-truth and AI-generated boxes. Therefore, a true positive (TP) was defined as an
AI-generated box that overlapped with a ground-truth box by at least 50%. A false positive
(FP) was defined as an AI-generated box that did not overlap with a ground-truth box.
A false negative (FN) was defined as a ground-truth box that had no corresponding AI-
generated box. The TP, FP, and FN rates were calculated for all flights and camera treatments
(Table 2). Because of the nature of the ground-truth boxes, including interpolations that
were made for animals beyond the sightability threshold, the precision, recall, and F1
scores relating to the camera treatments are not indicative of AI performance, and reflect
relative comparisons between the camera treatments (Figure 5). For more information and
an empirical assessment regarding the utility of the AI used in this study for detecting
submerged marine fauna along coastal beaches of eastern Australia, see Purcell et al. [25].
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70%, with a secondary peak of approximately 35%, which was due to a second dolphin in extremely
close proximity. From these plots, the arbitrary IoU of 50% was selected.

Table 2. Summary of the relative true positives (TP), false positives (FP), false negatives (FN),
along with precision (TP/(TP + FP)), recall (TP/(TP + FN)) and F1 score (TP/(TP + 0.5(FP + FN))),
corresponding to each flight number and sensor treatment.

Flight No. Sensor TP FP FN Precision (%) Recall (%) F1 Score (%)

1 RGB 260 0 542 100 32.4 48.9
1 Green 142 0 660 100 17.7 30.1
1 Green/Pol 42 3 760 93.3 5.2 9.9
2 RGB 1240 6 722 99.5 63.2 77.3
2 Green 279 0 1683 100 14.2 24.9
2 Green/Pol 39 1 1923 97.5 2.0 3.9
3 RGB 871 8 431 99.1 66.9 79.9
3 Green 142 3 1160 97.9 10.9 19.6
3 Green/Pol 24 14 1278 63.2 1.8 3.6
4 RGB 434 0 17 100 96.2 98.1
4 Green 248 7 203 97.3 55.0 70.3
4 Green/Pol 127 1 324 99.2 28.2 43.9
5 RGB 247 392 305 38.7 44.7 41.5
5 Green 95 234 457 28.9 17.2 21.6
5 Green/Pol 33 95 519 25.8 6.0 9.7
6 RGB 468 3 1871 99.4 20.0 33.3
6 Green 469 8 1870 98.3 20.1 33.3
6 Green/Pol 447 9 1892 98.0 19.1 31.2
7 RGB 1228 1 841 99.9 59.4 74.5
7 Green 679 1 1390 99.9 32.8 49.4
7 Green/Pol 472 7 1597 98.5 22.8 37.0
8 RGB 853 0 198 100 81.2 89.6
8 Green 463 0 588 100 44.1 61.1
8 Green/Pol 673 0 378 100 64.0 78.0
9 RGB 320 6 580 98.2 35.6 52.2
9 Green 58 4 842 93.5 6.4 12.0
9 Green/Pol 235 2 665 99.2 26.1 41.3
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Figure 5. Precision and recall histograms for each flight and each sensor treatment, including RGB
(red-green-blue channel), GRN (green filtered sensor treatment) and GPL (green and polarising filter
treatment). The highest relative precision and recall (detection reliability) are obtained with unfiltered
RGB, while the lowest reliability occur from the GPL sensor treatment.

The comparisons of precision, recall and F1 score between the sensor treatments indi-
cated that the RGB sensor (average F1 score 66.1 ± 5.0%) consistently outperformed the
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green sensor (average F1 score 35.8 ± 3.6%), which in turn outperformed the green/polarising
filter treatment (Table 2, Figure 5 and average F1 score 28.8 ± 23%).

4. Discussion

This study demonstrated that, out of the camera treatments, the best detection reliabil-
ity results are obtained by using a RGB sensor that is not spectrally restricted, and worst
when applying a spectral and polarising filter (in the green band) to an RGB sensor. This is
contrary to our initial hypothesis where we expected to see the best performance with the
green/polarising filter treatment. The results indicate that the RGB treatment performed
better than the green filter treatments. This may suggest that there is useful information
captured in the red and blue bands that is lost with applying the green filter. In contrast,
while the green/polarising filter was outperformed by the green filter, there is no difference
in the wavelength range that the sensors are sensitive to. This may be explained by the
fact that only the light of one polarisation is able to pass through to the green/polarised
sensor, and the brightness is consequently attenuated by half. Therefore, the signal to noise
ratio is also degraded at the sensor, resulting in less information being used to identify a
marine animal. This is an unfortunate consequence of light filters, and our results suggest
that, whilst narrowing the wavelength range might allow a sensor to ‘focus in’ on the most
information-dense part of the spectrum, there is a much larger loss of light from the filter
that means the overall performance is degraded.

Detecting submerged marine fauna using drones can be challenging due to various
factors such as lighting conditions and the inherent variability of the environment in which
the animals reside [1,19,41]. This can cause significant sightability errors which affects the
reliability of detections and subsequent identification of target fauna [20,42,43]. To improve
this, hyperspectral research investigating the difference in reflectance between fauna and
surrounding seawater along coastal beaches of eastern Australia, across 400–1000 nm wave-
lengths, suggested the vast majority of contrast for detecting fauna was found consistently
within the 515–554 nm range [29]. However, the research presented here found that restrict-
ing light to these wavelengths entering an RGB sensor worsened the reliability of detections.
Furthermore, because the spectral difference of fauna against surrounding seawater in
coastal environments does not differ, the results of this study would also apply to other
fauna classes. Therefore, if operations are using RGB cameras to spot submerged marine
life, then there is no benefit from applying spectral filters. However, other research suggests
that polarizing filters can aid in detections by reducing sea-surface reflections [17,42,43].

This study used machine learning to empirically contrast the three camera treatments
with arguably less bias than alternative human observation comparison methods. However,
as image dimensions are defined as pixels (x, y) as well as layers (one layer for each
colour channel), it is evident that the imagery held useful information in the blue and
red colour channels. This aided the model in identifying fauna beyond just using the
green channel, where the useful information (signal) across all colour channels clearly
outweighed the noise [30]. Research on the utility of different spectral bands for detecting
submerged whales from satellite showed that, in deeper water, the coastal blue band was
superior for detecting southern right whales compared to panchromatic or red-edge bands,
and provided the greatest contrast of the animal against the surrounding seawater [30].
However, other studies have performed spectral processing of spatial information from
narrow bands (20 nm bandpass), from the blue (~480 nm), as well as green (~535 nm) and
red (~600 nm) and reported enhanced detection of submerged whales over standard RGB
imagery [31]. This highlights that, although the majority of contrast or ability to detect an
animal from surrounding seawater is mostly reliant on a fairly narrow band between the
blue and green wavelength range (which would depend on water characteristics of the
region of sampling), there is useful information in the broader spectrum (~400–600 nm)
beyond the spectral range of the majority of contrast. The greater spectral resolution gained
from targeting specific wavelengths of light across the visible spectrum from a multi- or
hyper-spectral sensor may offer superior spectral processing and an overall advantage
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for the detection reliability of submerged fauna than standard RGB sensors for a given
spatial resolution. However, research has been proof-of-concept and empirical comparisons
between RGB imagery and multispectral cameras are currently scarce [31,44].

It has been recognised that machine learning can reduce the bottleneck that is often
encountered during the post-analysis of imagery, and offer further benefits in reducing
some sample biases and improving the reliability and consistency of detections [4]. Machine
learning can also offer valuable real-time decision support, where detection and classifica-
tion reliability have direct and immediate implications, such as drone-based surveys for
reducing shark-bite mitigation [22,24,25,27,28]. For the analysis of multiband imagery, it
is possible that providing spectral processing to the imagery (i.e., enhancing, augment-
ing or weighting colour channels in a mixing model) can improve the overall detection
response [35]. This may also assist as a data pre-processing step for machine learning
applications [25]. However, if concerning RGB imagery, standard image augmentation pro-
cesses already adjust the input data and provide weightings in the colour channels through
model training. Although it is likely that adding channels from a multi-hyper-spectral
array would provide more information and result in a potentially more reliable model for
detecting fauna, the implementation of object-detection methods on sensors that provide
high numbers of colour bands can be extremely resource intensive. This presents significant
challenges, particularly for on edge or real-time applications [22,25,27]. This would either
result in poor inference time, a need for expensive computing hardware, or a compressed
model, which could undermine the benefits of having multiple input channels.

The RGB cameras used in this study (GoPro Hero 8 cameras) were not designed for
spectral filtering, as applied in the filter treatments. A side effect of this was an effective
reduction in the overall light hitting the sensor and an imbalance in the expected colour
channel inputs, potentially effecting the colour mixing model applied in the camera. A way
to help counteract this was to fix the white balance at 5600 K. However, due to the reduced
light, even within the green colour channel, passing through the filter to the sensor, meant
that the sensor required the exposure and sensitivity to be increased. This potentially
impacted the quality of the image due to exposure compensation of the camera and could
bias the results to some degree, particularly with regards to the green polarising filter
treatment. Therefore, there may be an improvement in the comparative performance
of spectral filtering, such as around 514 and 554 nm for coastal water [29] with sensors
more capable of handling wavelength restriction across the colour spectrum (such as
panchromatic sensors). However, based on the results of this study, filtering panchromatic
lenses (or similar) is unlikely to lead to improvements in detection reliability beyond what
can be achieved from standard RGB cameras.

This study demonstrated that, although the majority of visible contrast between a
submerged marine animal and surrounding seawater occurs in relatively narrow colour
bands, such as between 515–554 nm in beach environments in eastern Australia, isolating
the colour input to an RGB sensor does not improve detection reliability. Therefore, the
signal to noise outside of this range is still high enough to be of benefit to fauna detection.
Due to the rapid absorption and scattering of high frequency light, the utility of multi-
spectral cameras likely is restricted to the visible spectrum, and therefore may not provide
significant benefits over RGB cameras, unless many colour bands are leveraged, which has
implications regarding the utility and application. Further research into spectral processing
on imagery to enhance contrast in the image is required, but current technologies in most
circumstances are unlikely to increase the range of sightability into the water column
beyond what can be achieved by the current range of RGB cameras.
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