
Citation: Zhang, T.; Jin, X.; Bai, S.;

Peng, Y.; Li, Y.; Zhang, J. Smart Public

Transportation Sensing: Enhancing

Perception and Data Management

for Efficient and Safety Operations.

Sensors 2023, 23, 9228. https://

doi.org/10.3390/s23229228

Academic Editors: Xinlei Chen,

Shuai Wang and Yuezu Lv

Received: 9 October 2023

Revised: 9 November 2023

Accepted: 13 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Smart Public Transportation Sensing: Enhancing Perception
and Data Management for Efficient and Safety Operations
Tianyu Zhang 1, Xin Jin 1,*, Song Bai 2 , Yuxin Peng 3, Ye Li 4 and Jun Zhang 5

1 Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
tianyu-z22@mails.tsinghua.edu.cn

2 Hangzhou DTWave Technology Co., Ltd., Hangzhou 311100, China; song.bs@dtwave-inc.com
3 College of Mathematics and Informatics, College of Software Engineering, South China Agricultural

University, Guangzhou 510642, China; 2643090040@stu.scau.edu.cn
4 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;

liye@szbit.cn
5 Shenzhen Institute of Beidou Applied Technology, Shenzhen 518055, China; zhangjun@szbit.cn
* Correspondence: jin.xin@sz.tsinghua.edu.cn

Abstract: The use of cloud computing, big data, IoT, and mobile applications in the public trans-
portation industry has resulted in the generation of vast and complex data, of which the large data
volume and data variety have posed several obstacles to effective data sensing and processing with
high efficiency in a real-time data-driven public transportation management system. To overcome
the above-mentioned challenges and to guarantee optimal data availability for data sensing and
processing in public transportation perception, a public transportation sensing platform is proposed
to collect, integrate, and organize diverse data from different data sources. The proposed data percep-
tion platform connects multiple data systems and some edge intelligent perception devices to enable
the collection of various types of data, including traveling information of passengers and transaction
data of smart cards. To enable the efficient extraction of precise and detailed traveling behavior, an
efficient field-level data lineage exploration method is proposed during logical plan generation and
is integrated into the FlinkSQL system seamlessly. Furthermore, a row-level fine-grained permission
control mechanism is adopted to support flexible data management. With these two techniques, the
proposed data management system can support efficient data processing on large amounts of data
and conducts comprehensive analysis and application of business data from numerous different
sources to realize the value of the data with high data safety. Through operational testing in real
environments, the proposed platform has proven highly efficient and effective in managing organiza-
tional operations, data assets, data life cycle, offline development, and backend administration over a
large amount of various types of public transportation traffic data.

Keywords: intelligent transportation system; spatial database; edge computing

1. Introduction

The information technology landscape has witnessed unprecedented shifts, stimulated
by the emergence of advanced technologies like cloud computing, big data, IoT, and mobile
applications, among which the most impacted is public transportation [1–3]. The develop-
ment and deployment of real-time intelligent public transportation systems were gaining
traction in many urban areas worldwide. These systems leverage various technologies,
such as IoT, big data analytics, AI, cloud/edge computing, and generate real-time data
insight generated by data collection, integration and processing on smart traffic infrastruc-
ture, vehicular ad hoc networks, and passengers’ perception. Smart data management with
low latency has greatly improved the efficiency, safety, and overall experience of smart
public transportation [4].

Sensors 2023, 23, 9228. https://doi.org/10.3390/s23229228 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23229228
https://doi.org/10.3390/s23229228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0000-7667-6726
https://doi.org/10.3390/s23229228
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23229228?type=check_update&version=1


Sensors 2023, 23, 9228 2 of 22

To further harness the potential of these kinds of public transportation system, a
large-scale sensing system for public transportation is crucial for accurate and efficient data
collection, integration, and processing in a big data environment [5–7]. A key challenge
facing the public transportation sensing is how to build a unified sensing system for a large
variety of data sources as well as an efficient fusion mechanism for massive data. Meeting
this challenge demands the design and implementation of a big data platform capable
of integrating both structured and unstructured data from various departments, such as
technology, operations, and human resources.

This platform aims to dismantle information silos between organizational structures,
establishing a resource sharing mechanism that spans multiple levels and departments [8].
Additionally, it needs to manage, analyze, and derive actionable insights from a variety of
business data, such as vehicle information, route and station data, vehicle GPS information,
and operation scheduling data.

The creation of such a system, however, encounters several technical challenges, including

• Sensing various types of data: Real-time sensing of large-scale public transportation
data is a crucial footstone for a big data platform [9,10]. However, it faces a series of
challenges. One of the significant challenges is ensuring the accuracy and reliability of
traffic data. Sensors and devices used for data sensing must be carefully calibrated
and maintained to provide precise measurements. Factors such as weather conditions,
environmental interferences, and sensor malfunctions can impact the accuracy of the
collected data. Another challenging task is determining the optimal placement of
sensors to capture accurate traffic data. Sensors should be strategically located to cover
different traffic zones, including intersections, highways, and urban areas. Ensuring
sufficient coverage and capturing representative data across the entire road network
is a challenge, especially in large and diverse traffic environments. To overcome the
above challenges, we carefully design our system and algorithms on intelligent data
sensing for several downstream public transportation tasks.

• Integration of large-scale heterogeneous data: In the real-world environment, the
platform is expected to link 16 different systems, including but not limited to the
vehicle CAN bus platform, intelligent maintenance system, warehouse management
system [11,12], and energy efficiency management platform. These systems, currently
spread across disparate network environments, need to be consolidated into a singular
platform, which presents a daunting task. The challenge lies not just in storing
and processing such high variety of data, but also in sharing them effectively while
providing real-time services. Given the wide array of data sources and the massive
volume of data being processed, it is crucial for the platform to effectively track
the journey of each data element from its source to its final form. However, such
data tracking is typically computationally costly. Hence, an efficient data lineage
exploration is essential for providing clear insights, maintaining data integrity, and
supporting informed decision making.

• Data management and privacy control: Data accessing with fine-grained permission
control is necessary for providing not only better data management schemes but also
safer data privacy protection to prevent malicious data usage [13]. However, it requires
skilled expertise and complicated data management operations. Such challenges can
be overcome by establishing a row-level fine-grained permission system, ensuring that
access to data is controlled at the most granular level. This enables users to access only
the information they are authorized to view, promoting data security and compliance.

Existing public transportation systems have designed a series of platforms [1,14–16] that
can handle a few types of traffic data, including vehicular GPS devices, traffic sensors, etc.
However, our proposed public transportation perception system is dedicated to integrating
multiple data of multiple types from multiple sources. Especially, our proposed system is
designed for efficient data processing and traffic pattern discovery in edge/cloud devices;
i.e., we construct a single-round trip for a passenger based on a pair of real-time transaction
card records on edge devices. The efficiency and effectiveness of our data processing



Sensors 2023, 23, 9228 3 of 22

framework lie in our proposed efficient field-level data lineage module. Furthermore, we
design a row-level permission control mechanism which can provide both data security
and flexible data usage at the same time.

In summary, we construct a platform that enables unified storage, effective mining,
and unified sharing of data. To make this possible, we make the following contributions:

• We have designed and implemented a series of technologies that can perform intelli-
gent perception and processing of data at the edge and, at the same time, seamlessly
integrate structured and unstructured data from different sources on the platform
for unified storage and computing. Our system supports efficient data fusion of
multiple data sources, including city-scale passengers’ origin–destination trip infor-
mation and transactions of smart cards’ traveling information, among which a series
of downstream intelligent public transportation applications are built.

• Efficient data lineage exploration techniques are proposed to provide transparency of
data origin and transformation. In the scenario of large-scale multisourced data fusion
for a public transportation system, it can efficiently trace back the data computation flows
from downstream data insights by our proposed data lineage exploration algorithm.

• We provide a fine-grained row-level permission control mechanism for easy data
management and better data privacy protection.

• Successful application in real-world environments: We have successfully implemented
and applied these technologies in bus companies, proving their usefulness in provid-
ing daily operational support.

The rest of the paper is organized as follows: After a brief introduction of the related
work in Section 2, we give an overview of the system, including architecture and data
flow in Section 3. In Section 4, we focus on system construction introduction and difficult
problem solving. Finally, we evaluate the system performance in Section 5 (visualization
and human feedback) and Section 6 (quantitative experiments) and end the paper with a
conclusion in Section 7.

2. Related Work
2.1. Data Platform Technologies

The implementation of big data architecture and platforms in the Internet of Vehicles
(IoVs) is crucial to ensure the efficient and secure management of operations in this complex
system, which integrates multiple technologies and systems. The big data architecture in
IoV consists of six layers, including data acquisition, data transformation and normalization,
data storage, real-time and batch data processing, data analysis, and decision making. The
data acquisition layer gathers data from various sensory and observer units, which are then
transformed and normalized to handle data transformation issues. Data storage manages
heterogeneous data, while real-time processing is used to preprocess live data and reduce
the processing load. Batch processing, employing artificial intelligence, is used for complex
processes. The analysis layer performs analysis on data gathered from the real world,
facilitating operational management through vehicular cloud computing techniques and
big data analytics. In general, data processing in IoV can be classified into two categories:
stream and batch data processing.

• Data integration: A traffic data integration platform is a system designed to integrate
data from various sources related to traffic, such as sensors, GPS devices, traffic
cameras, and other sources [14,15]. These platforms enable organizations to gather
and integrate data related to traffic patterns, vehicle movements, and congestion levels,
among other things. Traffic data integration platforms provide a range of capabilities,
such as real-time data streaming, data processing, and data transformation. They are
used to integrate data from various sources, such as traffic sensors, GPS devices, and
traffic cameras, and provide a comprehensive view of traffic patterns and congestion
levels. One of the key benefits of a traffic data integration platform is the ability to
provide real-time insights into traffic patterns, enabling organizations to make better



Sensors 2023, 23, 9228 4 of 22

decisions related to traffic management and control. By integrating data from various
sources, traffic data integration platforms can identify traffic patterns, congestion
levels, and other factors that impact traffic flow, which can be used to optimize traffic
management and control. There are various traffic data integration platforms available
in the market, both open source and commercial. Examples of traffic data integration
platforms include HERE Technologies, TomTom Traffic, and Google Maps. These
platforms provide a range of capabilities and can be used by transportation and
logistics companies, government agencies, and other organizations to enable real-time
traffic management and control [1,14–16].

• Data analysis: A traffic data analysis system is a system designed to analyze traffic-
related data, such as traffic patterns, congestion levels, and vehicle movements. These
systems typically use a range of technologies, including big data platforms, such as
Hadoop, Spark, and Flink, as well as sensory systems, such as CCD. Hadoop is a
big data platform that is commonly used in traffic data analysis systems for batch
processing of large volumes of data. It provides a range of tools for data storage,
processing, and analysis, including HDFS (Hadoop Distributed File System) and
MapReduce. Spark is another popular big data platform used in traffic data analysis
systems, providing real-time data processing capabilities [2,3]. It is commonly used for
streaming data processing and machine learning applications. Flink is a distributed
stream processing framework used in traffic data analysis systems for real-time data
processing [17,18]. It provides a range of tools for data streaming, processing, and
analysis, making it a popular choice for real-time traffic data analysis. Hive is a data
warehouse system built on top of Hadoop, providing SQL-like querying capabilities
for large volumes of data. It is commonly used in traffic data analysis systems for ad
hoc querying and analysis. Advanced Driver Assistance Systems (ADAS) [6,19] are
another technology used in traffic data analysis systems, providing a range of features,
such as lane departure warnings, automatic emergency braking, and adaptive cruise
control. These systems use various sensors, such as radar and cameras, to gather data
about the vehicle and its surroundings, which are then analyzed to provide insights
into traffic patterns and other factors. Charged coupled device (CCD) sensory systems
are also used in traffic data analysis systems, providing data about traffic flow, vehicle
movements, and congestion levels. These sensors can be used in conjunction with
big data platforms and other technologies to provide real-time insights into traffic
patterns and congestion levels, enabling better traffic management and control.

2.2. Data Processing and Analysis Technologies

In the context of big data sensing systems for public transportation, data lineage
techniques and row-level database permission controls play essential roles in managing
and safeguarding data assets. Data lineage provides transparency and accountability by
tracking the origin, transformations, and flow of data within the transportation system. This
enables transportation authorities to gain insights into data dependencies, make informed
decisions, and ensure data quality and compliance. Additionally, row-level database
permission controls offer a robust security mechanism, allowing authorized individuals or
entities to access and modify specific data records within the system. By leveraging these
techniques, public transportation systems can enhance data governance, maintain data
integrity, and strengthen overall data security in their operations.

• Data lineage techniques: Research on data lineage techniques has been the subject of
several noteworthy works. In [20], the authors focused on lineage-driven fault local-
ization, proposing techniques to identify and locate faults in data-intensive systems
based on lineage information. In [21], the authors surveyed graph-based data lineage,
highlighting the use of graph structures to represent and analyze lineage relationships.
In [22], the authors examined big data provenance, addressing the unique challenges
and opportunities associated with lineage in large-scale datasets. In [23], the authors
introduced a lineage-based recomputation approach for optimizing iterative graph



Sensors 2023, 23, 9228 5 of 22

processing. In [24], the authors focused on automatic lineage inference for big data
flows, developing techniques to automatically infer lineage relationships in large-scale
data processing environments. These research works contribute to advancing data
lineage techniques and their application in various domains.

• Row-level fine-grained permission control techniques: Row-level permission control
techniques have been extensively studied in the field of data security and privacy.
There are comprehensive surveys on fine-grained access control for both relational
databases [25] and NoSQL databases [26], covering various access control models and
mechanisms. A secure data access control frame that utilizes fine-grained encryption
in cloud storage systems was proposed in [27]. In [28,29], the authors investigated
privacy-preserving techniques for distributed data mining, enabling efficient and
secure analysis on horizontally partitioned data. Furthermore, in [30], the authors pre-
sented a privacy-preserving row-level access control mechanism for healthcare data.
These research works collectively contribute to the advancement of row-level permis-
sion control techniques by exploring different methodologies, such as access control
models, cryptographic techniques, privacy-preserving algorithms, and blockchain-
based solutions, enabling organizations to enforce fine-grained access control and
protect sensitive data at the row level.

2.3. Smart Public Transportation Systems

Smart public transportation systems also show great potential in low-cost city-scale
sensing during the process of carrying passengers [11,12]. For example, some researchers
proposed to install air pollution sensors [9,10] on ride-sharing vehicles for fine-grained data
collection and field reconstruction [13,31] when they move around the city. The collected
data can be used to understand detailed city status, such as dark areas [32,33] and air pol-
lution in the city corner [34,35], with the help of various reconstruction methods for better
city management [36,37]. Other researchers focused on designing incentive mechanisms for
such sensing and transportation dual tasks [38,39]. In addition, such ground transportation
systems can also collaborate with unmanned aerial vehicles, such as indoor searching
drones [40,41] and outdoor delivery drones [42,43], for a 3D sensing and transportation
dual task [44,45]. Ref. [46] investigated personal mobility on autonomous vehicles under
the scenario of metaverse, in which an efficient hybrid decision-making model based on
OPA and RAFSI methodology under q-ROFSs is developed to evaluate the personal mo-
bility alternative implementation options of autonomous vehicles in the metaverse. By
utilizing a teaching–learning-based marine predator algorithm on the selected features,
Ref. [47] proposed a novel deep-learning-based method to identify disseminating false
data, which can resolve position falsification assaults in a VANET scenario when some
vehicles have been hijacked and are producing false and harmful information.

3. System Overview

During the construction of the sensing platform, we successfully accomplished the
meticulous collection and meticulous aggregation of data from diverse sources. Furthermore,
we effectively utilized cutting-edge visualization and configuration tools to conduct robust
big data development and processing. These endeavors yielded remarkable results, enabling
us to proficiently complete the crucial tasks of data collection, aggregation, and processing.
We formed a data asset system around business levels, such as people, vehicles, roads,
stations, and fields. Through data applications, we provide business applications for public
transportation scenarios, continuously empowering the company’s operational business.

The functional architecture of the platform is shown in Figure 1.



Sensors 2023, 23, 9228 6 of 22

Figure 1. Platform functional architecture design, in which the database layer is responsible for
efficient data integration, such as passenger OD collections, and its efficiency and effectiveness
are supported by our proposed methods, including field-level data lineage retrieval and row-level
fine-grained permission control mechanism.

The functional architecture of the system is divided into three layers from the bottom
to the top: data collection, database, and data service.

1. Data Collection
The system supports data collection in many different formats, including structured

data collection, unstructured data collection, semistructured data collection, and intel-
ligent sensing device data collection. At the same time, the system supports collection
management and collection scheduling.

2. Database
The database layer mainly includes data cleaning and data processing. Data cleaning

is mainly responsible for cleaning the data collected by ordinary sensors and smart sensors,
including consistency check, integrity check, correctness check, formatting, and other
operations. Data processing is mainly responsible for field-level data lineage retrieval
and row-level fine-grained permission control. It is also responsible for data-mining-
related work.

3. Data service layer
The data portal provides a unified access interface, data display, development, opera-

tion and maintenance, project management, and other function entrances.
Our architecture stands out for two main reasons. First, it incorporates data lin-

eage techniques within the data integration and data management modules, allowing for
seamless tracking of data sources even after complex integration processes. This ensures
transparency and accountability throughout the data life cycle.

Second, our architecture specifically supports row-level permission data management
in both the data management and project management modules. This feature empowers
database managers to efficiently handle data while upholding stringent data privacy
protections. By offering granular control over access permissions at the individual row
level, it enhances data security and guarantees the confidentiality of sensitive information.

4. System Introduction

Our proposed public transportation big data system can provide fine-grained, ac-
curate, and efficient traffic data management, which is supported by three insightful
technical contributions.



Sensors 2023, 23, 9228 7 of 22

• A holistic smart sensing system aiming at collections of multiple public transportation
traffic data from different sources. The scope of the collected data is covering but
not limited to spatiotemporal trajectories, traveling behaviors of passengers, driving
behaviors of drivers, etc. We pipeline multiple series of data preprocessing, data
analysis on top of such variety of traffic data, resulting in a large number of innovative
intelligent public transportation traffic data applications.

• To support an efficient and accurate public transportation traffic sensing system, we
design an insightful traffic data management system accounting for a massive amount
of traffic big data with a high variety of data sources. To fulfill the requirements of real-
time big traffic applications, the core technical challenges are tackled by our proposed
public transportation traffic data management system with two technical highlights.
Typically, the wide range of public transportation intelligent traffic application consists
of tedious data processing and analysis phrases, in which data lineage exploration is
an important operation in terms of data insight detection. We develop a data lineage
exploration method that can support efficient and accurate data lineage information
retrieval in FlinkSQL storage. The efficiency of our data lineage exploration method
can provide highly efficient lineage exploration, which only takes less than 45 s for
200+ tables with 1000+ rows and 50+ fields (columns). Another critical technical
contribution lies in the fine-grained row-level permission control in our proposed
system. The row-level permission control scheme we proposed is achieved by a
modifying SQL parser with additional user-oriented permission information in meta
storage. Our design provides a finer grain of permission control (from table level to
row level), which can help data administrators escape from splitting the same tables
into multiple copies, reducing the risks of data privacy leakage.

4.1. Smart Sensing

The smart sensing device is mainly responsible for the perception and acquisition of
data. We only illustrate the innovations of the system.

4.1.1. Passenger OD Collection Equipment

At present, most buses use a single card swiping billing method, and it is difficult to
obtain passenger OD from the ticket card data alone. Passenger OD holds great significance
in optimizing vehicle structure, route direction, dispatching methods, and transport capac-
ity allocation. The traditional OD calculation method has the problem of poor accuracy and
difficulty in real time. This system deploys a set of passenger OD intelligent perception
equipment on the premise of removing user privacy. The main steps are shown in Figure 2.

Figure 2. Processing flow of passenger OD collection equipment on multiple data sources.



Sensors 2023, 23, 9228 8 of 22

To optimize the utilization of passenger OD data, we have implemented a system
that deploys cameras on the front and rear doors of vehicles. These cameras capture
images of passengers boarding and alighting from the vehicle. However, to ensure the
privacy and security of passengers, we prioritize the protection of sensitive image data.
Therefore, at the edge of the network, we preprocess the images to remove any identifying
information, effectively desensitizing the data. Once the images have been desensitized,
we securely upload the data to the cloud for further analysis. In the cloud, we utilize ReID
(re-identification) matching techniques to extract model features from the desensitized
images. By comparing these features, we can accurately match and identify passengers
across different boarding and alighting instances. With the matched passenger data, we
then proceed to analyze and generate passenger OD results. This allows us to determine
the origin and destination patterns of passengers, which serve as valuable insights for
optimizing various aspects of the transportation system. By leveraging this technology, we
can optimize the vehicle structure by understanding the passenger demand at different
locations. This knowledge helps us determine the appropriate vehicle size and capacity
required for each route. Additionally, we can optimize route directions by identifying the
most efficient paths based on the passenger OD information. Moreover, these data aid
in optimizing dispatching methods, allowing for more effective scheduling and reducing
waiting times. Lastly, the passenger OD results assist in the optimal allocation of transport
capacity, ensuring an efficient and smooth transportation experience for passengers.

4.1.2. Abnormal Driving Sensing Equipment

In order to reduce public transportation safety accidents and ensure the safety of road
users, we have designed and developed an intelligent sensing equipment for abnormal
driving behavior. It is mainly used to detect and identify whether the vehicle is polite to
pedestrians and slows down on the zebra crossing. The system mainly uses camera video
data and vehicle CAN bus data as input, and judges whether the vehicle is safe to drive by
identifying zebra crossings, pedestrians, and vehicle speed, and reports the identification
results to the safety center platform.

In terms of courteous pedestrian detection, the intelligent perception device initially
recognizes the presence of a zebra crossing and pedestrians on the crossing using camera
data. Once it detects the presence of a zebra crossing ahead of the vehicle and pedestrians
on the crossing, with a minimum distance of 10 m, it retrieves CAN bus data to assess
whether the vehicle is decelerating. If, when the vehicle is 5 m away from the zebra crossing,
the vehicle speed fails to decrease to 0 within 2 s, it is determined that the vehicle is not
exhibiting courtesy towards pedestrians. The perception outcome is then transmitted to
the cloud security platform as an alarm. The recognition accuracy rate is more than 95%
during the day and more than 90% at night.

When it comes to speeding at the zebra crossing, the intelligent perception device
utilizes camera data to identify both the zebra crossing and pedestrians. If the zebra crossing
is recognized but no pedestrians are detected, the process of zebra crossing speeding
detection is activated. The system retrieves CAN bus data to estimate the vehicle’s speed.
If the vehicle remains above 20 km/h for more than 5 s and is within 10 m of the zebra
crossing, it is deemed to be speeding on the zebra crossing. The system promptly transmits
the detection result to the cloud security platform as an alert. The accuracy of recognition
is more than 95% during daylight and more than 90% at night.

4.1.3. Card Swiping Equipment

Traditional card swiping devices can only be charged according to the billing rules set
in advance. However, due to the secondment of vehicles, the charging rules of different
lines are different. At this time, it becomes very difficult to modify the billing rules
of card swiping devices. This system is transformed on the basis of the original card
swiping equipment, so that it can be interconnected with intelligent dispatching equipment;



Sensors 2023, 23, 9228 9 of 22

automatically synchronize lines, stations, and billing information; and automatically modify
billing policies. The overall process is as follows.

• Modify the vehicle-mounted card reader software, regularly receive the vehicle location
information synchronized by the intelligent dispatching device, and perform logical
processing before saving, such as filtering abnormal sites and abnormal directions.

• When the passenger swipes the card or scans the code, the fee will be deducted
according to the normal transaction process, and the current line number, vehicle
number, driving direction, station number, and other information of the current card
reader will be saved in the transaction record.

• In the IC card transaction process, it will be judged that the ’lock flag’ in the ’transit
segment application’ in the card is 01; then the fare replenishment process will be
carried out, and the fare will be deducted according to the ’maximum deduction
amount’, and then the normal operation will be performed again. The one-ticket
transaction process completes the deduction. Otherwise, complete the deduction
according to the normal one-ticket transaction process.

• Through the 4G wireless network of the on-board card reader, upload the card swip-
ing/code scanning transaction to the enterprise platform system.

Furthermore, we have introduced encryption techniques, an authorization verification
mechanism, real-time monitoring, and abnormality detection techniques to ensure the safe
card swiping transaction.

4.2. Efficient Data Lineage Exploration

Data lineage queries refer to the process of tracking and analyzing the history of data
sources, processing, and usage in data management systems. For a spatiotemporal traffic
database, data lineage queries can help understand the source of traffic data, how it was
collected, processed, and used, thereby improving the quality, reliability, and usability of
the data. In our data sensing system, these features can enable efficient data tracing back
to abnormality in original data sources or data processing when events are detected in
downstream applications, including passenger flow analysis, single-line origin–destination
analysis, etc.

4.2.1. Proposed Technique—Efficient FlinkSQL Field-Level Data Lineage Retrieval

Data lineage is a method of describing the source, destination, and transformation
processes of data throughout its life cycle. It can help organizations understand and
manage their data assets to better utilize them. In our system, we propose a technique to
explore field-level data lineage in FlinkSQL. In the current implementation, there are two
major methods to recover data lineage relationship: the first one is analyzing the physical
execution plan generated by a FlinkSQL engine to retrieve field-level data lineage, and
the other one is analyzing the whole set of SQL statements to retrieve the data lineage
of FlinkSQL. However, we have encountered challenges while utilizing these existing
techniques into our environment.

The main workflow of analyzing data lineage based on a physical execution plan is
to recover the data relationship from the StreamGraph generated alongside the physical
execution plan. This process faces two major obstacles. On one hand, the process of
generating the execution plan for data lineage analysis is costly in computation. On the
other hand, the result of the analysis based on the physical execution plan is inaccurate
due to the fact that the data lineage can be lost for many-to-one field mapping as well as
UDTF-supported fields in the physical execution plan.

Data lineage can also be identified by utilizing a customized SQL statement analyzer
on SQL statements, and it cannot achieve desirable performance due to similar reasons:
the first one is that the time complexity is extremely high for the SQL statement analyzer
module since it has to take all FlinkSQL-supported SQL functions into account in order
to generate a data lineage with no error; the second one is that it comes with very low



Sensors 2023, 23, 9228 10 of 22

extensibility in that the SQL statement analyzer module has to be updated whenever a new
type of SQL statement is additionally supported by FlinkSQL.

To overcome the above challenges and to provide a data lineage retrieval service with
both high efficiency and accuracy, we design a data lineage method based on the logical
plan generated at the early stage of SQL query processing in FlinkSQL. Our method can
take advantage of two aspects:

• We derive the data lineage relationship in the field level from the logical plan generated
at the early stage in query planning, escaping the costly generation of a physical
execution plan. This enables high efficiency of our retrieval on data lineage.

• The exact data lineage relationship can be extracted from relational metadata accessing
APIs provided by Calcite, which is the core SQL planning and optimizing part in
FlinkSQL, which can guarantee that the identified data lineage is correct, resulting our
overall processing with 100% accuracy. Furthermore, a self-defined SQL function is
supported, which can be easily extended to allow the latest features of FlinkSQL to be
implemented into our framework.

4.2.2. Algorithm

In a nutshell, our proposed algorithm of field-level data lineage retrieval for FlinkSQL
can be highlighted by the following three steps as demonstrated in Figure 3:

1. In the first step, a RelNode tree is generated by the SQL parser, validator, and analyzer
of a FlinkSQL engine, which represents the building blocks of the query execution
plan, including data sources, data operations, and their processing flows.

2. Afterwards, the optimization processing is conducted on the original RelNode tree
to generate an optimized logical execution plan for the SQL query. In our proposed
algorithm, an optimized RelNode tree is produced by the logical planning only, rather
than the physical execution planning.

3. In the last step, we utilize the inner function RelMetadataQuery.getColumnOrigins()
in Apache Calcite to retrieve the metadata of the optimized RelNode tree nodes effi-
ciently, based on which we establish the overall data lineage relationship information
data structure.

SQL Syntax
Parsing

Validation
Analysis

Logical Plan
Generation

Relational
Metadata
Accessing
(Calcite)

Figure 3. Overview of our data lineage retrieval algorithm.

The detailed workflow of our proposed algorithm is demonstrated in Algorithm 1.
The input of the overall algorithm is an SQL statement for data processing, and it generates
the field-level data lineage relationship information. In Line 1, a whole processing on the
input SQL statement is conducted by the SQL syntax processing engine inside FlinkSQL.
The original RelNode tree is produced after three main procedures: (a) Syntax parsing
(Parse) involves using JavaCC to convert input SQL into an abstract syntax tree (AST),
which is represented in Calcite by the SqlNode type. (b) Syntax validation (Validate)
involves validating the syntax based on metadata information, such as whether the queried
tables, fields, and functions exist. The validation is carried out for each clause, such as
FROM, WHERE, GROUP BY, HAVING, SELECT, and ORDER BY, and the validated result
is still an AST represented by the SqlNode type. (c) Semantic analysis (Convert) involves
constructing a relational expression (RelNode) tree based on the SqlNode type AST and
metadata information. This RelNode tree represents the original logical plan (original
RelNode tree).



Sensors 2023, 23, 9228 11 of 22

Algorithm 1: Overview of field-level data lineage retrieval algorithm
Data: SQLinput: An SQL statement of data processing
Result: LINEAGEin f o: Field-level data lineage relationship info data structure
RelNode_Treeorigin ← SQL_SYNTAX_PROCESSOR(SQLinput)
RelNode_Treeopt ← LOGICAL_PLAN_OPT(RelNode_Treeorigin)
LINEAGEin f o ← GET_COLUMN_ORIGINS(RelNode_Treeopt)

In the optimization phase, FlinkSQL originally had 12 steps, namely, subquery_rewrite,
temporal_join_rewrite, decorrelate, default_rewrite, predicate_pushdown, join_reorder,
project_rewrite, logical, logical_rewrite, time_indicator, physical, and physical_rewrite.

After going through this series of optimization steps, the optimized physical plan is
obtained. However, this plan cannot utilize the capabilities provided by Calcite to obtain
the lineage relationship between fields. Therefore, this invention removes the last two
optimization steps, physical and physical_rewrite, and only generates the optimized logical
plan. This plan is also a relational expression (RelNode) tree and is called the optimized
RelNode tree. The overall processing is shown in Figure 4.

SQL
statements

SQL Syntax
Parsing

SQL Syntax
Validation

SQL Syntax
Analysis

Metadata
Management

Logical plan
optimization

subquery_rewrite
temporal_join_rewrite
decorrelate
default_rewrite
predicate_pushdown
join_reorder
project_rewrite
logical
logical_rewrite
time_indicator
physical
physical_rewrite

Figure 4. Overview of logical execution plan optimization (steps in red are to be removed).

The final stage mainly involves using the relational metadata access interface provided
by Apache Calcite to obtain the lineage relationships, with the following steps: (a) Obtain
the output table and output field list based on the AST. (b) For each output field, call the
RelMetadataQuery.getColumnOrigins() method to obtain the source table and source field.
This method takes two parameters, the first being the optimized logical plan (optimized
RelNode tree type) generated in the previous step, and the second being the output field.
Therefore, this method essentially retrieves the mapping relationship between the input and
output fields from the optimized RelNode tree. Finally, the lineage mapping relationship is
constructed, and the final result is returned to the user for display, as shown in Table 1. This
lineage relationship represents the result of joining table A and table B and inserting it into
table C, where both field 2 of table A and field 3 of table B are mapped to field 6 of table C.

After going through the above steps, it is possible to accurately obtain the lineage
relationship between fields. If FlinkSQL introduces a new syntax in future versions, the
lineage relationship between fields can be accurately parsed by a custom plugin. The new
syntax introduced in FlinkSQL corresponds to a subtype of SqlNode, as shown in Table 2 in
which the first two columns of the following table for Lookup Join, UDTF, and Watermark
and the last column are the custom plugin.



Sensors 2023, 23, 9228 12 of 22

Table 1. Field mapping in data lineage example.

Source Table Source Field Output Table Output Field

Table A Field 1 Table C Field 5
Table A Field 2 Table C Field 6
Table B Field 3 Table C Field 6
Table B Field 4 Table C Field 7

Table 2. Examples of new FlinkSQL features.

FlinkSQL New
Features Subtype of RelNode Custom Plugin

Lookup Join Snapshot getColumnOrigins(Snapshot rel)
UDTF Correlate getColumnOrigins(Correlate rel)

Watermark WatermarkAssigner getColumnOrigins(WatermarkAssigner rel)

4.3. Row-Level Fine-Grained Permission Control

Row-level permission control in relational databases refers to the ability to restrict
access to individual rows of data in a database table based on the privileges granted to a
user or role. This means that users can be given permission to view or modify specific rows
of data while being denied access to others.

Row-level permission control is typically implemented using database security fea-
tures, such as access control lists (ACLs), role-based access control (RBAC), or a combination
of both. These features allow database administrators to define permissions at a granular
level, specifying which users or roles can access specific rows of data within a table.

4.3.1. Proposed Techniques—Fine-Grained Row-Level Permission Control in FlinkSQL

Row-level permissions are a method of horizontal data security protection that can
solve the problem of different users only being able to access different data rows. For
example, in an order table, User A can only view data in the Beijing region, while User
B can only view data in the Hangzhou region. Currently, with the rise of real-time data
warehouses (represented by Flink), there is an urgent need for a method and device to
control row-level permissions in Flink SQL.

The execution process for FlinkSQL is demonstrated in Figure 5. After a user inputs an
SQL statement, an abstract syntax tree (AST) is generated during the syntax analysis stage.
The present invention generates a new AST for row-level permission control by assembling
row-level filtering conditions during the parsing stage.

SQL
statements

SQL Syntax
Parsing

SQL Syntax
Validation

SQL Syntax
Analysis

Metadata
Management

Logical plan
optimization

Figure 5. Overview of our fine-grained row-level permission control.

During the parsing stage, if the input SQL statement includes a query operation on a
table, a Calcite SqlSelect object is created. To restrict row-level permissions on the table, it
is only necessary to intercept the where condition when constructing the Calcite SqlSelect
object, rather than parsing various SQL statements to search for tables with row-level
permission constraints.

When constructing the where condition of the SqlSelect object, the row-level con-
straints are looked up based on the username and tablename of the SQL execution. Calcite
is then used to parse the expression to generate a SqlBasicCall object. Next, the original
where condition and the configured row-level permission condition SqlBasicCall are re-



Sensors 2023, 23, 9228 13 of 22

assembled to generate a new where condition with row-level filtering, which is the new
AST. Finally, the new AST is used to perform syntax checking, semantic analysis, opti-
mization, and execution. The entire process is transparent and imperceptible to the user
executing the SQL statement, who can still use Flink’s built-in execution methods without
requiring additional configuration. The detailed steps for our proposed technique can be
referred to Figure 6.

SQL Syntax
Validation/Analysis

+ Plan Opt.

SQL
statements

SQL Syntax Parsing

AST
generation

Row-level
Permission
Condition

SqlBasicCall
Object

Generation

Preprocessing

Postprocessing

Calcite
SqlSelect

Object
Construction

Figure 6. Detailed steps for row-permission control.

We also demonstrate a running example in Table 3. For the row-level permission
condition defined, where User A can only view data for the Beijing region and User B can
only view data for the Hangzhou region in the orders table:

When both User A and User B execute the same query ’SELECT * FROM orders’, the
system will automatically assemble the row-level constraints onto the original SQL state-
ment. Below are the two SQL statements that User A and User B will execute, respectively:

• User A’s SQL statement: SELECT * FROM orders WHERE region = ’Beijing’;
• User B’s SQL statement: SELECT * FROM orders WHERE region = ’Hangzhou’.

Table 3. Running example on fine-grained row-level permission control.

ID User Name Table Name Row-Levewl Permission Condition

1 User A orders region = ‘Beijing’
2 User B orders region = ‘Hangzhou’

5. System Modules

The platform offers a comprehensive suite of modules designed to support big data
development and management. These modules include the organization management,
data asset, data service, offline development, and backend management modules. Together,
they provide a comprehensive solution for managing and analyzing big data, enabling
users to efficiently develop and manage data assets, build and deploy data services, and
manage platform resources and operations.

5.1. Organization Management

The organization management module is a key component of the platform. This
module provides organization administrators with a suite of tools to configure and man-
age various aspects of their projects before development begins. The module includes
user management, cluster management, resource management, data source management,
project management, instance management, alert notifications, and access keys. It provides
administrators with a comprehensive suite of tools for managing various aspects of their
projects. With this module, administrators can configure and manage projects, project



Sensors 2023, 23, 9228 14 of 22

environments, execution environments, data sources, resource groups, execution agent
services, metric monitoring, clusters, cluster services, cluster users, and cluster roles.

The main functionality system of the organization management module is demon-
strated in Table 4.

Table 4. List of submodules of the organization management module.

Submodule Functionality

Project Management Adding/configuring/deleting/banning projects
Data Source Management Adding/configuring/authoring data sources
Resources Management Adding/configuring/authoring/checking servers and their status
Clusters Management Adding/removing/configuring/authoring clusters
Instance Management Adding/configuring/authoring instances and database management

Alerting System Management on alters based on defined rules
Account/User Management Adding/configuring/authoring/deleting users and accounts

5.2. Data Asset

The data asset module is a comprehensive suite for managing the full life cycle of
data assets. It provides panoramic view, data mapping, data standards, data models, data
quality, and data security functions. Data management and users can use the panoramic
view and data mapping to inventory and organize data assets. They can also use the data
search service to quickly locate corresponding data. The module provides a data standard
definition tool with built-in national and industry standards. Developers can use these
standards for visual modeling and configure quality audits based on the standards to
improve data quality. We demonstrate the data asset module in our system in Figure 7,
where an overview of data usages by different components can be easily shown with
monitoring on data usage trending.

Figure 7. Overview of data asset module (usage monitoring and trending).

5.3. Data Service

The data service module is a comprehensive tool for managing the full life cycle of
APIs, providing fine-grained, high-availability APIs for data querying, label querying,
intelligent computing, and more. It supports API generation and registration in two
modes, as well as one-stop API publishing, security authentication, and call flow control
services, facilitating data openness and sharing. An overview of the data service module is
demonstrated in Figure 8.

API (application programming interface) is a capability encapsulating data querying
and processing, typically containing basic information, request paths, and protocol-related
request parameters. Services are the capabilities of APIs for user access through the
API gateway. Data sources are the connection information of databases, and data APIs
access data through data source connection information, which needs to be added in data
source management.



Sensors 2023, 23, 9228 15 of 22

Figure 8. Overview of data service module. API name, path and type are configurable in data API
development page.

Algorithm models are function-computing objects generated through machine learn-
ing or deep learning, enabling complex business computing or processing. They are
typically managed in algorithm development in the DataWorks platform.

A highlighted feature in the proposed system inside the algorithm model is that
the computation workflow of the data processing is fully demonstrated, where multiple
algorithm components are organized as a directed acyclic graph to represent their workflow.

Furthermore, a significant aspect of the proposed system is its support for efficient data
lineage (Figure 9). The system is designed to capture and track the origin, transformations,
and flow of data throughout the entire data processing life cycle. This comprehensive
data lineage capability allows users to easily trace the path of data from its source to its
destination, enabling transparency and accountability in data processing.

Figure 9. An example of data-lineage-supported module. The two tables on the right are derived
from the data processing based on the left table.



Sensors 2023, 23, 9228 16 of 22

In summary, the data service module provides a comprehensive tool for managing
APIs, including data querying, label querying, and intelligent computing, among others,
as well as capabilities such as submission, debugging, testing, deployment, undeploy-
ment, authentication, algorithm models, algorithm experiments, third-party authentication,
and functions.

5.4. Offline Development

The offline development module is a one-stop big data development environment pro-
vided by the platform, offering a full-chain solution for data synchronization, development,
publishing management, and operational monitoring. It can be used to build PB-level data
warehouses and achieve large-scale data integration, enabling the capitalization of data
through deep value mining.

The overall functional architecture is shown in Figure 10. The offline development
module provides a comprehensive solution for big data development and management,
enabling the construction of large-scale data warehouses and deep value mining of data
assets. It supports a range of job types and functions, facilitates job version tracking, and
provides operational monitoring and data reprocessing capabilities.

Storage 
Computing

Data 
Engine

IT 
Support Ali Cloud

Kafka

Tencent 
Cloud

Huawei 
Cloud inspur AWS Local

Hadoop Flink Cloudera Spark

Scheduling 
Engine

Unified 
Metadata

Execution 
Environment

Resource 
Management

Task 
Management

Task 
Monitoring

 
 
 
 

Data Exchange

Data 
Synchronization

Database 
synchronization

Unstructured Data
 Synchronization

Data 
Metering Scheduling

 
 
 
 
 

Data Development

Online batch 
processing

Visual IDE

Ad Hoc 
Query

Process 
Orchestration

Version 
Management

Task 
Scheduling

Function 
Development

Task
Operation 

Resource

Monitoring 
Alarm

Offline 
development

User 
Management

Cluster 
Management

Resource 
Management

Data Source 
Management

Project 
Management

Figure 10. Overview of the offline development module.

5.5. Backend Management

The backend management module is a critical component of the platform, providing a
range of capabilities for managing tenants, accounts, and features, as well as configuring
data source types, job types, vendors, and vendor services. Through this module, users can
view license information, ensuring compliance with software usage rights and obligations.
It provides a centralized platform for managing tenants, accounts, and features on the
platform, as well as configuring data source types, job types, vendors, and vendor services.
Through this module, users can view license information and ensure compliance with
software usage rights and obligations.

6. Evaluation

To further evaluate the efficiency and effectiveness of our proposed system qualita-
tively and quantitatively, we conducted a series of data processing and management tasks
on an experimental environment with six computing nodes. Each of them consists of CPU
of four cores and a memory of 16 GB and 100 GB storage with a running JVM of up to 2 GB



Sensors 2023, 23, 9228 17 of 22

memory. We evaluated our platform from six different dimensions to ensure that it met the
performance requirements. The following are the results of our testing in each dimension.

6.1. Efficiency

• Metadata collection: We tested the metadata collection process on two nodes using
version 5.5 of our platform. The metadata relationship can be revealed by our system
as in Figure 11. Through extensive experiments, our system has been demonstrated
to successfully retrieve in total 20,002 records of metadata as well as the relationship
with only 13.1 min, in which the average collection time is found to be satisfactory and
well within the expected range. We also investigated the scalability of the metadata
collection process in our system. With varying scales of tables with the same size
of data fields (columns), we found that the running time of the metadata collection
process is linear to the size of data collection as shown in Figure 12a.

Figure 11. Experiment demonstration of metadata collection. Metadata relationship is revealed on
the right.

• Data lineage collection: In this test scenario, we collected lineage data for a sin-
gle table with 50+ fields, 1000+ rows, and 200 tables using SparkSQL as shown in
Figure 13. The average lineage delay was found to be 45 s, which is within the accept-
able range. In comparison, we conducted baseline techniques that process data lineage
over StreamGraph (which is generated after the physical execution planning). We
observed that the baseline technique generates an inaccurate data lineage relationship
with at least two times of processing time, rendering the efficiency and effectiveness
of our proposed method. Similarly, we also investigated the scalability of our data
lineage collection process, and the result is demonstrated in Figure 12b. We tested
our proposed method on two cases with the same 200 tables but different numbers of
columns (100 and 200, respectively). For the case that only 100 columns were involved,
the running time of data lineage collection was 41.83 s, compared with 133.84 s for
the case with 200 columns. We observed that the computation time was increased
near-linearly to the increasing on data size, which showed that our proposed method
is efficient for large-scale data processing in real application.



Sensors 2023, 23, 9228 18 of 22

100 tab. and 100 col. 500 tab. and 100 col.
Cardinality of tables and columns (fields)

0

50

100

150

200

250

Ru
nn

in
g 

tim
e 

(s
)

(a) Metadata collection

200 tab. and 100 col. 200 tab. and 200 col.
Cardinality of tables and columns (fields)

0

50

100

150

Ru
nn

in
g 

tim
e 

(s
)

(b) Data lineage collection

2×104 4×104
Cardinality of columns (fields)

0

50

100

150

200

Ru
nn

in
g 

tim
e 

(s
)

(c) Large table collection

Figure 12. Scalability of metadata collection, data lineage collection, and large table collection.

Figure 13. Experiment demonstration of data lineage. The columns of the right tables are computed
based on the columns of the left tables.

• Row-level permission control: We conducted an evaluation of the row-level permission
control module to assess its performance and effectiveness in our system. Through
various tests and analysis, we found that the module successfully enforced row-level
permissions, ensuring secure and controlled access to sensitive data. The performance
impact was minimal, with no noticeable delays or latency issues observed compared
with the baseline technique in which tables are manually separated by a DB adminis-
trator based on user authorization. Hence, it showed scalability, efficiently handling
increasing data volumes and user demands.

• Large table collection: We tested the platform’s ability to collect metadata for a single
table with 20,000 fields. The average collection time was found to be 108.704 s, which
is within the expected range. The scalability of a large table collection was also
tested on another datasets with varying fields as shown in Figure 12c. It demonstrated
consistent results with our metadata collection module that our data collection module
has linear-time computation cost with data cardinality.



Sensors 2023, 23, 9228 19 of 22

• Scheduling delay restriction: We created 500+ workflows for offline development,
each with 100+ jobs, and ran jobs to record the time difference between scheduling
and job execution. The average delay time for scheduling among the 500 workflows
was found to be 2 s, which is well within the acceptable range.

• Execution concurrency: We created 500+ workflows for offline development, each with
100+ jobs, and ran jobs with 100 and 200 concurrencies. The throughput per second
(tps) and average response time for job execution were found to be a satisfactory level
with tps of 11 and 10, response time of 3.7 s and 9.8 s, respectively (Figure 14). It
meets the performance requirements of our clients. We have also demonstrated the
cumulative distribution of response times of concurrent jobs in Figure 15, in which we
can observe that most jobs can be finished within 10 s.

1×102 2×102

Cardinality of instances
0

5

10

15

tp
s

tps response time

0

5

10

Re
sp

on
se

 ti
m

e 
(s

)

Figure 14. Response time of concurrent data processing.

8 10 12 14 16
Response time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

Figure 15. CDF of response time of concurrent data processing.

6.2. Effectiveness

We also verified the effectiveness of our proposed system on the sensing flow of
passenger OD. We gathered on-field video data and prepared ground-truth data created
by a human. Specifically, we demonstrated the experimental study on two representative
applications of our system, which are listed as follows:

• Passenger counting: We collected multiple on-field video data recorded on a bus that
worked on schedule. Multiple videos were collected, capturing passengers who were
going on board or taking off the bus. The ground truth data were provided by a
human being identifying the real number of passengers on multiple scenarios. Out
of the average ground truth number of all 134 on-board passengers, our system can
automatically identify on average 131 of them, which indicates that our system can
have an accuracy of 97.76% in the mission of passenger counting.

• Passengers OD collection: Based on the same set of experimental video data, we also
prepared ground truth passenger ODs by identifying the on/off stations of the same
passenger. Out of the average 134 on-board passengers in multiple videos, our system
can retrieve on average 120 pairs of correct OD pairs, which indicates that our system
can on average have an accuracy of 90.30% in the mission of passenger OD collection.



Sensors 2023, 23, 9228 20 of 22

In conclusion, our platform’s performance was evaluated using various scenarios, and
the results met the expectations of our clients. The metadata and lineage collection, large
table collection, scheduling delay restriction, and execution concurrency were all tested
and found to be satisfactory in terms of efficiency. Additionally, the passenger counting
and OD collection method can correctly retrieve passenger information with an accuracy of
over 90%.

6.3. Data Availability Statement

The public transportation big traffic data serving in our proposed system is not
applicable to be shared to any other entity, which is a critical request from our data
provider for the reason that anonymous traveling data can still be sensitive due to privacy
problem. Thus, we are not allowed to provide data accessibility to others per our data
provider’s request.

7. Conclusions

This paper presents a novel public transportation sensing platform that effectively
integrates, organizes, and analyzes complex data generated from various sources in the
public transportation industry. The platform achieves the intelligent sensing of origin–
destination data, abnormal driving, and card swiping. To overcome the challenges in
data processing brought by data variety and data volume, the platform introduces an
efficient field-level data lineage exploration method to enable effective and efficient smart
data sensing, including passenger OD collection, abnormal driving sensing, etc., on a
large number of traffic data. Furthermore, a fine-grained row-level permission control
mechanism is introduced to ensure unified storage, effective access, and data sharing.
Real-world human usage experience investigation and quantitative experiments conducted
demonstrate the platform’s ease of usage in managing organizational operations, data
assets, data life cycle, offline development, and backend administration. Additionally,
experimental results from quantitative experiments show that our system provides effec-
tive data integration and processing (over 97% for passenger counting and over 90% for
passenger OD collection). Ultimately, our system can greatly improve the overall public
transportation experience with multiple intelligent applications over a large amount of
various types of public transportation traffic data. At this stage, our system solely focuses
on data sensing and data management submodules of a large ITS system. In the future, we
will continue to investigate the integration of a large traffic AI model and an efficient public
transportation perception system for better data insight discovery and a smarter intelligent
traffic management.

Author Contributions: Conceptualization, T.Z. and X.J.; methodology, T.Z. and S.B.; software, S.B.;
validation, Y.P. and J.Z.; formal analysis, Y.L. and J.Z.; investigation, Y.L.; resources, T.Z.; data curation,
Y.P.; writing—original draft preparation, Y.L. and J.Z.; writing—review and editing, T.Z. and X.J.;
visualization, S.B.; supervision, X.J.; project administration, T.Z. and X.J.; funding acquisition, T.Z.
and X.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Science and Technology Innovation Committee of Shenzhen
grant number KCXST20221021111201002.

Data Availability Statement: The data are not publicly available due to the privacy concerned of our
data provider.

Conflicts of Interest: Author Song Bai was employed by the company Hangzhou DTWave Technol-
ogy Co., Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Pandey, M.K.; Subbiah, K. Social networking and big data analytics assisted reliable recommendation system model for internet

of vehicles. In Proceedings of the Internet of Vehicles–Technologies and Services: Third International Conference, IOV 2016,
Nadi, Fiji, 7–10 December 2016; Proceedings 3; Springer: Berlin/Heidelberg, Germany, 2016; pp. 149–163.



Sensors 2023, 23, 9228 21 of 22

2. Shi, Q.; Abdel-Aty, M. Big data applications in real-time traffic operation and safety monitoring and improvement on urban
expressways. Transp. Res. Part C Emerg. Technol. 2015, 58, 380–394. [CrossRef]

3. Liu, Y.; Fang, X. Big wave of the intelligent connected vehicles. China Commun. 2016, 13, 27–41. [CrossRef]
4. Shalaby, A.; Farhan, A. Prediction model of bus arrival and departure times using AVL and APC data. J. Public Transp. 2004,

7, 41–61. [CrossRef]
5. Volk, M.; Bosse, S.; Turowski, K. Providing clarity on big data technologies: A structured literature review. In Proceedings of the

2017 IEEE 19th conference on business informatics (CBI), Thessaloniki, Greece, 24–27 July 2017; Volume 1, pp. 388–397.
6. Yin, L.; Cheng, Q.; Wang, Z.; Shao, Z. ‘Big data’for pedestrian volume: Exploring the use of Google Street View images for

pedestrian counts. Appl. Geogr. 2015, 63, 337–345. [CrossRef]
7. Daniel, A.; Subburathinam, K.; Paul, A.; Rajkumar, N.; Rho, S. Big autonomous vehicular data classifications: Towards procuring

intelligence in ITS. Veh. Commun. 2017, 9, 306–312. [CrossRef]
8. Costa, C.; Chatzimilioudis, G.; Zeinalipour-Yazti, D.; Mokbel, M.F. Towards real-time road traffic analytics using telco big data.

In Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics, Munich, Germany, 28 August
2017; pp. 1–5.

9. Chen, X.; Xu, S.; Liu, X.; Xu, X.; Noh, H.Y.; Zhang, L.; Zhang, P. Adaptive hybrid model-enabled sensing system (HMSS) for
mobile fine-grained air pollution estimation. IEEE Trans. Mob. Comput. 2020, 21, 1927–1944. [CrossRef]

10. Liu, Y.; Liu, X.; Man, F.; Wu, C.; Chen, X. Fine-Grained Air Pollution Data Enables Smart Living and Efficient Management. In
Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, Boston, MA, USA, 6–9 November 2022;
pp. 768–769.

11. Chen, X.; Xu, S.; Han, J.; Fu, H.; Pi, X.; Joe-Wong, C.; Li, Y.; Zhang, L.; Noh, H.Y.; Zhang, P. Pas: Prediction-based actuation system
for city-scale ridesharing vehicular mobile crowdsensing. IEEE Internet Things J. 2020, 7, 3719–3734. [CrossRef]

12. Xu, S.; Chen, X.; Pi, X.; Joe-Wong, C.; Zhang, P.; Noh, H.Y. Vehicle dispatching for sensing coverage optimization in mobile
crowdsensing systems. In Proceedings of the 18th International Conference on Information Processing in Sensor Networks,
Montreal, QC, Canada, 16–18 April 2019; pp. 311–312.

13. Li, Z.; Man, F.; Chen, X.; Zhao, B.; Wu, C.; Chen, X. TRACT: Towards Large-Scale Crowdsensing With High-Efficiency Swarm
Path Planning. In Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the
2022 ACM International Symposium on Wearable Computers, Cambridge, UK, 11–15 September 2022; pp. 409–414.

14. Xu, C.; Zhou, Z. Vehicular content delivery: A big data perspective. IEEE Wirel. Commun. 2018, 25, 90–97. [CrossRef]
15. Arooj, A.; Farooq, M.S.; Umer, T.; Shan, R.U. Cognitive internet of vehicles and disaster management: a proposed architecture

and future direction. Trans. Emerg. Telecommun. Technol. 2022, 33, e3625. [CrossRef]
16. Datta, S.K.; Da Costa, R.P.F.; Härri, J.; Bonnet, C. Integrating connected vehicles in Internet of Things ecosystems: Challenges

and solutions. In Proceedings of the 2016 IEEE 17th International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), Coimbra, Portugal, 21–24 June 2016; pp. 1–6.

17. Xu, W.; Zhou, H.; Cheng, N.; Lyu, F.; Shi, W.; Chen, J.; Shen, X. Internet of vehicles in big data era. IEEE/CAA J. Autom. Sin. 2017,
5, 19–35. [CrossRef]

18. Apache Flink®-Stateful Computations over Data. Available online: Phttps://flink.apache.org/ (accessed on 16 November 2023).
19. Zhang, W.; Zhang, Z.; Chao, H.C. Cooperative fog computing for dealing with big data in the internet of vehicles: Architecture

and hierarchical resource management. IEEE Commun. Mag. 2017, 55, 60–67. [CrossRef]
20. Alvaro, P.; Rosen, J.; Hellerstein, J.M. Lineage-driven fault injection. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, Melbourne, Australia, 31 May–4 June 2015; pp. 331–346.
21. Pokornỳ, J.; Sykora, J.; Valenta, M. Data Lineage Temporally Using a Graph Database. In Proceedings of the 11th International

Conference on Management of Digital EcoSystems, Limassol, Cyprus, 12–14 November 2019; pp. 285–291.
22. Wang, J.; Crawl, D.; Purawat, S.; Nguyen, M.; Altintas, I. Big data provenance: Challenges, state of the art and opportunities. In

Proceedings of the 2015 IEEE international conference on big data (Big Data), Santa Clara, CA, USA, 29 October–1 November
2015; pp. 2509–2516.

23. Elarabi, T.; Sharma, B.; Pahwa, K.; Deep, V. Big data analytics concepts and management techniques. In Proceedings of the 2016
International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–27 August 2016; Volume 2,
pp. 1–6.

24. Woodruff, A.; Stonebraker, M. Supporting fine-grained data lineage in a database visualization environment. In Proceedings of
the 13th International Conference on Data Engineering, Birmingham, UK, 7–11 April 1997; pp. 91–102.

25. Bertino, E.; Ghinita, G.; Kamra, A. Access control for databases: Concepts and systems. Found. Trends Databases 2011, 3, 1–148.
[CrossRef]

26. Colombo, P.; Ferrari, E. Fine-grained access control within nosql document-oriented datastores. Data Sci. Eng. 2016, 1, 127–138.
[CrossRef]

27. Li, J.; Zhao, G.; Chen, X.; Xie, D.; Rong, C.; Li, W.; Tang, L.; Tang, Y. Fine-grained data access control systems with user
accountability in cloud computing. In Proceedings of the 2010 IEEE Second International Conference on Cloud Computing
Technology and Science, Indianapolis, IN, USA, 30 November–3 December 2010; pp. 89–96.

28. Kantarcioglu, M.; Clifton, C. Privacy-preserving distributed mining of association rules on horizontally partitioned data. IEEE
Trans. Knowl. Data Eng. 2004, 16, 1026–1037. [CrossRef]

http://doi.org/10.1016/j.trc.2015.02.022
http://dx.doi.org/10.1109/CC.2016.7405720
http://dx.doi.org/10.5038/2375-0901.7.1.3
http://dx.doi.org/10.1016/j.apgeog.2015.07.010
http://dx.doi.org/10.1016/j.vehcom.2017.03.002
http://dx.doi.org/10.1109/TMC.2020.3034270
http://dx.doi.org/10.1109/JIOT.2020.2968375
http://dx.doi.org/10.1109/MWC.2018.1700224
http://dx.doi.org/10.1002/ett.3625
http://dx.doi.org/10.1109/JAS.2017.7510736
Phttps://flink.apache.org/
http://dx.doi.org/10.1109/MCOM.2017.1700208
http://dx.doi.org/10.1561/1900000014
http://dx.doi.org/10.1007/s41019-016-0015-z
http://dx.doi.org/10.1109/TKDE.2004.45


Sensors 2023, 23, 9228 22 of 22

29. Aldeen, Y.A.A.S.; Salleh, M.; Razzaque, M.A. A comprehensive review on privacy preserving data mining. SpringerPlus 2015,
4, 1–36. [CrossRef] [PubMed]

30. Tong, S.J.; Yang, Y.; Sun, W.; Xia, E.; Li, S.C. Decentralized Privacy-Preserving Platform for Clinical Data Sharing and Analysis. In
MEDINFO 2019: Health and Wellbeing e-Networks for All; IOS Press: Amsterdam, The Netherlands, 2019; pp. 839–842.

31. Chen, X.; Xu, X.; Liu, X.; Pan, S.; He, J.; Noh, H.Y.; Zhang, L.; Zhang, P. Pga: Physics guided and adaptive approach for mobile
fine-grained air pollution estimation. In Proceedings of the 2018 ACM International Joint Conference and 2018 International
Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore, 8–12 October 2018; pp. 1321–1330.

32. Zhang, T.; Fu, Y.; Zhang, J. Guided hyperspectral image denoising with realistic data. Int. J. Comput. Vis. 2022, 130, 2885–2901.
[CrossRef]

33. Wei, K.; Fu, Y.; Zheng, Y.; Yang, J. Physics-based noise modeling for extreme low-light photography. IEEE Trans. Pattern Anal.
Mach. Intell. 2021, 44, 8520–8537. [CrossRef]

34. Chen, X.; Xu, X.; Liu, X.; Noh, H.Y.; Zhang, L.; Zhang, P. Hap: Fine-grained dynamic air pollution map reconstruction by
hybrid adaptive particle filter. In Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM,
Stanford, CA, USA, 14–16 November 2016; pp. 336–337.

35. Xu, X.; Chen, X.; Liu, X.; Noh, H.Y.; Zhang, P.; Zhang, L. Gotcha ii: Deployment of a vehicle-based environmental sensing
system. In Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, Stanford, CA, USA, 14–16
November 2016; pp. 376–377.

36. Wang, H.; Liu, Y.; Zhao, C.; He, J.; Ding, W.; Chen, X. CaliFormer: Leveraging Unlabeled Measurements to Calibrate Sensors
with Self-supervised Learning. In Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous
Computing & the 2023 ACM International Symposium on Wearable Computing, Cancun, Mexico, 8–12 October 2023; pp. 743–748.

37. Fu, Y.; Zhang, T.; Wang, L.; Huang, H. Coded hyperspectral image reconstruction using deep external and internal learning.
IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3404–3420. [CrossRef]

38. Xu, S.; Chen, X.; Pi, X.; Joe-Wong, C.; Zhang, P.; Noh, H.Y. ilocus: Incentivizing vehicle mobility to optimize sensing distribution
in crowd sensing. IEEE Trans. Mob. Comput. 2019, 19, 1831–1847. [CrossRef]

39. Xu, S.; Chen, X.; Pi, X.; Joe-Wong, C.; Zhang, P.; Noh, H.Y. Incentivizing vehicular crowdsensing system for large scale smart city
applications. In Proceedings of SPIE Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
2019, Denver, Colorado, 4–7 March 2019; pp. 402–408.

40. Chen, X.; Purohit, A.; Pan, S.; Ruiz, C.; Han, J.; Sun, Z.; Mokaya, F.; Tague, P.; Zhang, P. Design experiences in minimalistic flying
sensor node platform through sensorfly. ACM Trans. Sens. Netw. (TOSN) 2017, 13, 1–37. [CrossRef]

41. Chen, X.; Purohit, A.; Dominguez, C.R.; Carpin, S.; Zhang, P. Drunkwalk: Collaborative and adaptive planning for navigation
of micro-aerial sensor swarms. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems,
Seoul, South Korea, 1–4 November 2015; pp. 295–308.

42. Wang, H.; Chen, X.; Cheng, Y.; Wu, C.; Dang, F.; Chen, X. H-SwarmLoc: Efficient Scheduling for Localization of Heterogeneous
MAV Swarm with Deep Reinforcement Learning. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor
Systems, Boston, MA, USA, 6–9 November 2022; pp. 1148–1154.

43. Chen, X.; Wang, H.; Li, Z.; Ding, W.; Dang, F.; Wu, C.; Chen, X. DeliverSense: Efficient delivery drone scheduling for
crowdsensing with deep reinforcement learning. In Proceedings of the 2022 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and the 2022 ACM International Symposium on Wearable Computers, Cambridge, UK, 11–15
September 2022; pp. 403–408.

44. Chen, X.; Ruiz, C.; Zeng, S.; Gao, L.; Purohit, A.; Carpin, S.; Zhang, P. H-DrunkWalk: Collaborative and adaptive navigation for
heterogeneous MAV swarm. ACM Trans. Sens. Netw. (TOSN) 2020, 16, 1–27. [CrossRef]

45. Chen, X.; Xu, S.; Fu, H.; Joe-Wong, C.; Zhang, L.; Noh, H.Y.; Zhang, P. ASC: Actuation system for city-wide crowdsensing with
ride-sharing vehicular platform. In Proceedings of the Fourth Workshop on International Science of Smart City Operations and
Platforms Engineering, Montreal, QC, Canada, 15 April 2019; pp. 19–24.

46. Deveci, M.; Pamucar, D.; Gokasar, I.; Köppen, M.; Gupta, B.B. Personal mobility in metaverse with autonomous vehicles using
Q-rung orthopair fuzzy sets based OPA-RAFSI model. IEEE Trans. Intell. Transp. Syst. 2022. [CrossRef]

47. Saudagar, S.; Ranawat, R. An Amalgamated Novel IDS Model for Misbehaviour Detection using VeReMiNet. Comput. Stand.
Interfaces 2024, 88, 103783. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s40064-015-1481-x
http://www.ncbi.nlm.nih.gov/pubmed/26587362
http://dx.doi.org/10.1007/s11263-022-01660-2
http://dx.doi.org/10.1109/TPAMI.2021.3103114
http://dx.doi.org/10.1109/TPAMI.2021.3059911
http://dx.doi.org/10.1109/TMC.2019.2915838
http://dx.doi.org/10.1145/3131779
http://dx.doi.org/10.1145/3382094
http://dx.doi.org/10.1109/TITS.2022.3186294
http://dx.doi.org/10.1016/j.csi.2023.103783

	Introduction
	Related Work
	Data Platform Technologies
	Data Processing and Analysis Technologies
	Smart Public Transportation Systems

	System Overview
	System Introduction
	Smart Sensing
	Passenger OD Collection Equipment
	Abnormal Driving Sensing Equipment
	Card Swiping Equipment

	Efficient Data Lineage Exploration
	Proposed Technique—Efficient FlinkSQL Field-Level Data Lineage Retrieval
	Algorithm

	Row-Level Fine-Grained Permission Control
	Proposed Techniques—Fine-Grained Row-Level Permission Control in FlinkSQL


	System Modules
	Organization Management
	Data Asset
	Data Service
	Offline Development
	Backend Management

	Evaluation
	Efficiency
	Effectiveness
	Data Availability Statement

	Conclusions
	References

