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Abstract: The Internet of Medical Things (IoMT) is a growing trend within the rapidly expanding
Internet of Things, enhancing healthcare operations and remote patient monitoring. However, these
devices are vulnerable to cyber-attacks, posing risks to healthcare operations and patient safety.
To detect and counteract attacks on the IoMT, methods such as intrusion detection systems, log
monitoring, and threat intelligence are utilized. However, as attackers refine their methods, there
is an increasing shift toward using machine learning and deep learning for more accurate and
predictive attack detection. In this paper, we propose a fuzzy-based self-tuning Long Short-Term
Memory (LSTM) intrusion detection system (IDS) for the IoMT. Our approach dynamically adjusts the
number of epochs and utilizes early stopping to prevent overfitting and underfitting. We conducted
extensive experiments to evaluate the performance of our proposed model, comparing it with existing
IDS models for the IoMT. The results show that our model achieves high accuracy, low false positive
rates, and high detection rates, indicating its effectiveness in identifying intrusions. We also discuss
the challenges of using static epochs and batch sizes in deep learning models and highlight the
importance of dynamic adjustment. The findings of this study contribute to the development of more
efficient and accurate IDS models for IoMT scenarios.
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1. Introduction

The number of smart devices connected to the Internet, or the Internet of Things (IoT),
is growing rapidly [1,2]. A substantial fraction of these devices are in the medical field, a
trend known as the Internet of Medical Things (IoMT) [3,4]. The use of the IoMT has im-
proved healthcare operations, remote services, and patient monitoring [5]. However, there
are serious security and privacy issues as the IoT-enabled medical devices are vulnerable to
a wide range of cyber-attacks [6–9]. If these devices are accidentally exposed, they could be
exploited by adversaries using advanced persistent threats (APTs) and known weaknesses,
potentially disrupting healthcare operations and endangering human lives [7,10]. Therefore,
security should be a top priority when using the IoMT for remote health monitoring [2,9].

Detecting and mitigating attacks in the IoMT can be accomplished with various
techniques and methods [1,2,11]. These include log monitoring, vulnerability manage-
ment, threat intelligence, end device monitoring, and intrusion detection and prevention
systems [12–14]. Intrusion detection systems, which rely on traffic anomalies, signature-
based rules, or security policies, are frequently used to identify attacks in IoT-enabled
networks [13,15]. However, traditional detection techniques often fall short as attackers
continually refine their strategies and employ advanced hacking techniques [16–18]. For
example, security policies can be circumvented if an attacker conducts network reconnais-
sance or reverse engineers network devices like routers and firewalls [19]. To enhance
attack detection, researchers are exploring machine learning (ML) and deep learning (DL)
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solutions [16,20]. Thanks to advances in computing and processing capabilities, ML and
DL techniques can be used on a large scale to predict attack events with greater accuracy.

While intelligent intrusion detection systems (IDSs) that use ML and DL techniques
have been proposed [21–23], they may not be suitable for IoMT scenarios. These systems,
designed for conventional networks, are not ideal for assessing attack detection in the IoMT
because health IoT sensors connected to the Internet generate different types of data [24].
Additionally, in smart health applications, most existing methods only analyze network
traffic to identify IoMT attacks, ignoring patient biometric information [24]. However, such
information is crucial in the IoMT context as it offers insights into a patient’s condition
and can be linked to network disruptions caused by attacks that affect the confidentiality,
availability, and integrity of healthcare data [25,26]. Therefore, for more effective attack
prediction, both network traffic and patient biometrics data should be considered together.
Analyzing the relationship between these two disparate data types during an attack can
provide a more comprehensive understanding of the situation.

The existing literature presents a variety of deep learning-based intrusion detection
systems (IDSs) for the Internet of Medical Things (IoMT) [25,27–29]. A common approach
involves passing information of network flows and patient biometrics through several
hidden layers of deep learning [10,16]. This approach employs a global attention layer for
optimal feature extraction from the spatial and temporal characteristics of deep learning,
and incorporates a cost-sensitive learning approach to address data imbalance [24]. How-
ever, these studies do not discuss the challenges related to the static number of epochs and
batch sizes often used in deep learning models. Another study introduces a swarm-neural
network-based model to detect intruders in IoMT systems [30]. This model acknowledges
the security and privacy concerns that arise from transferring patient data to the cloud for
processing, due to the limited storage and computation capacity of IoMT devices. However,
the swarm-neural network model’s performance metrics are not clearly specified, and the
concern of statically setting the number of epochs and batch sizes remains unaddressed.

In the realm of explainable AI (XAI), a novel model, XSRU-IoMT [25], was proposed
to detect sophisticated attack vectors in IoMT networks. This model leverages bidirectional
simple recurrent units (SRUs) with skip connections to overcome the vanishing gradient
problem and expedite the training process. While it improves the trust level by providing
explanations for prediction decisions, the study does not offer insights on how the static
number of epochs and batch sizes might influence the model’s efficiency and accuracy.

Another research proposes a cyber-attack detection method employing ensemble
learning and a fog–cloud architecture [31]. This system uses a set of LSTM networks for
initial learning and a decision tree for classifying attacks and normal events. While this
paper offers an innovative framework for deploying IoMT-based approaches as cloud and
fog services, it does not delve into the implications of setting a fixed number of epochs
and batch sizes in the learning process. While various deep learning models have been
proposed for IoMT intrusion detection, few discuss the impact of static epochs and batch
sizes in training these models. Future studies might aim to dynamically adjust these
parameters based on the data characteristics and model performance to potentially enhance
the efficacy of the IDS in the IoMT.

The optimization of epoch numbers in deep learning models is contingent upon
unique data characteristics, model architecture, and the specific tasks required. A popular
technique for preventing model overfitting and enhancing the accuracy of new data is
the use of ‘early stopping’. This process ceases training when there is a noted decline in
model performance. Several research studies have applied early stopping methodologies
to improve the precision of DL models. However, implementing early stopping methods in
deep learning models poses challenges. A significant issue is the automated determination
of the optimal stopping point, which can vary greatly depending on the data, model
architecture, and task at hand. Striking a balance between mitigating overfitting and
ensuring the model’s ability to generalize to new data is crucial. Moreover, the definition
of performance degradation can vary depending on the dataset and task, complicating
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the application of early stopping methods across different contexts. Hence, there is an
ongoing need for a more comprehensive understanding and application of early stopping
in deep learning models. To this end, this paper is devoted to investigating the application
of fuzzy logic for estimating the optimal value of the patience parameter used to trigger
early stopping during the training phase of deep learning models.

The proposed fuzzy-based self-tuning approach for intrusion detection in the Internet
of Medical Things (IoMT) significantly advances the state of the art by introducing a
dynamic early stopping mechanism tailored to the unique characteristics of IoMT data
streams. This mechanism, underpinned by fuzzy logic, adaptively determines the optimal
stopping point during training, a feature not commonly present in existing models, which
often rely on static parameters. Furthermore, our self-tuning LSTM algorithm is specifically
designed to address the challenges inherent in IoMT data, such as high dimensionality
and the need for real-time processing, by autonomously adjusting the number of training
epochs. This self-tuning capability is a substantial improvement from traditional methods
that require manual epoch tuning. Additionally, our model’s integration of both network
traffic and patient biometric data for intrusion detection is particularly innovative, as it
leverages the correlation between these data types to provide a more nuanced detection
capability in the IoMT context. An extensive experimental evaluation underscores the
effectiveness of our approach, showcasing its competitive performance and improved
adaptability in real-time threat detection scenarios. We believe these elements collectively
underscore the novelty and improved efficacy of our proposed solution in the realm of
IoMT security.

In particular, this study focuses on incorporating a dynamic early stopping approach
into the Long Short-Term Memory (LSTM) classifier for the IDS in the IoMT. Recognizing
this critical challenge, our paper is driven by the following specific objectives:

1. To develop an intrusion detection system (IDS) tailored for the IoMT ecosystem:
We aim to design a system that not only detects common cyber-threats but is also
capable of identifying IoMT-specific attacks that could disrupt healthcare services and
compromise patient data.

2. To implement a fuzzy-based self-tuning mechanism within an LSTM network:
Our objective is to enhance the traditional LSTM approach by incorporating a fuzzy
logic component that dynamically adjusts the number of training epochs, thereby
optimizing the model’s performance and responsiveness to the evolving IoMT threat
landscape.

3. To evaluate the effectiveness of early stopping techniques in deep learning mod-
els for the IoMT: We seek to investigate how fuzzy logic can refine early stopping
methods to prevent overfitting, ensure timely model convergence, and maintain a
high detection accuracy.

4. To assess the impact of integrating patient biometric data with network traffic anal-
ysis for intrusion detection: Our research questions whether the inclusion of diverse
data types can improve the IDS’s ability to detect sophisticated attacks within the
IoMT framework.

By setting these objectives, we provide a clear roadmap for our research, guiding
readers through the development and validation of an IDS that is both effective and
specifically optimized for the IoMT context. The purpose of our work is to contribute to the
body of knowledge in IoMT security, offering a novel approach that addresses the unique
challenges posed by this emerging field.

The rest of the paper is organized as follows. In Section 2, related works are explored.
Section 3 describes the methodology and proposed techniques. Section 4 presents and
discusses the experimental results in comparison with related models. The paper ends
with a concluding section that revisits the work performed and provides suggestions for
future research.
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2. Related Works
2.1. Deep Learning Approaches in the IoMT

The recent advancements in technology and cybersecurity are highlighted through
innovative solutions proposed in five research papers, each addressing unique challenges
in their respective fields. The paper [32] introduces an improved evolutionary algorithm,
TA-MaEA, for optimizing hybrid microgrid systems, focusing on balancing cost, reliability,
emissions, and power supply. This approach significantly reduces system costs compared
to existing algorithms. In the realm of the IoT, study [33] enhances data service quality
by proposing a novel heterogeneous temporal anomaly reconstruction GAN (HTA-GAN),
which excels in anomaly detection and robustness using a BiGAN structure. Addressing
security in networked control systems, [34] presents a dynamic event-triggered proto-
col and an online predictive control algorithm to maintain stability and performance
under cyber-attacks and packet dropouts. The study [35] proposed a situation-aware
service coordination platform based on event-driven SOA, improving efficiency and
reliability in distributed IoT environments. Lastly, [36] tackles Smart Grid cybersecurity
by introducing a hybrid deep learning approach for detecting DDoS attacks, achieving
a high accuracy and enhancing grid reliability. Together, these studies demonstrate
significant strides toward optimizing and securing critical systems like microgrids, IoT
infrastructures, and Smart Grids.

The solution proposed in [24] introduces a novel deep learning-based approach to
handle network-based intrusion detection in the Internet of Medical Things (IoMT) envi-
ronment, aiming to address the issue of imbalanced data in the WUSTL EHMS 2020 dataset.
Unlike previous works, this approach forgoes data pre-processing and augmentation, opt-
ing instead for cost-sensitive learning. This strategy attributes more weight to classes with
fewer IoMT network traffic data samples and less weight to classes with a higher number
of samples during model training. The proposed model is assessed on various features
such as network features, patient biometrics, and a combination of both. It incorporates
both Convolutional Neural Network (CNNs) and Long Short-Term Memory (LSTM) lay-
ers to robustly extract the spatial and time series features of network flow and patient
biometrics. Additionally, a global attention mechanism is integrated to aid in extracting
crucial features from the CNNs and LSTM layers. Finally, this research offers a comparative
evaluation of the proposed model against existing intrusion detection studies within the
IoMT environment, highlighting its unique contributions.

The study [28] addresses the shortcomings of recurrent neural networks (RNNs),
including their difficulties in identifying complex features of minority classes, issues with
fading gradients, and the limited scalability of their LSTM and GRU variants due to their
sequential computation. The authors propose enhancements to the simple recurrent unit
(SRU) architecture, such as the use of bidirectional SRUs and skip connections to mitigate
these problems and improve accuracy. This threat detection model’s performance is then
compared to GRU and LSTM RNN variants using the ToN–IoT dataset. Furthermore, the
study proposes an explainable security model for threat detection in Internet of Medical
Things (IoMT) networks. This model, which the authors claim is the first of its kind, lever-
ages explainable AI (XAI) to enable human experts to interpret the underlying reasoning
and data evidence. The model’s key contributions include feature importance analysis for
improved threat detection and intrusion discovery, a novel bidirectional SRU-driven deep
learning model using skip connections for IoMT network security, and empirical validation
of the model’s efficiency and high accuracy in identifying various cyber-threats compared
to current leading methods.

The development of an intrusion detection system (IDS) model for the Internet of
Medical Things (IoMT) environment was tackled by [25]. Despite the existence of numerous
data mining techniques, there are still challenges in detecting online transactions and
intrusions in large data volumes. The study uses a deep neural network (DNN) to develop
an IDS that can effectively classify and predict unforeseen cyber-attacks. The IDS model
involves four main steps: one-hot encoding of categorical data, normalization of data using
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the standard scalar method, data optimization using the grey wolf optimization algorithm,
and application of a DNN to the pre-processed data for classification. The model’s efficacy
is compared to other state-of-the-art algorithms. This work’s contribution includes the use
of the grey wolf optimization technique to improve the IDS model’s performance, a faster
convergence rate in finding the global minima, a reduction in machine learning model
training time, and a secured data transfer in the IoMT architecture.

2.2. Anomaly Detection and Architecture-Based IDSs

An anomaly-based IDS for the IoMT [5] was developed to enhance security in the
Internet of Medical Things (IoMT) settings. The proposed model leverages a fog–cloud ar-
chitecture and combines deep learning (DL) and machine learning (ML), creating ensemble
learning, to identify abnormal communication patterns and prevent cyber-attacks. This
model employs a series of Long Short-Term Memory (LSTM) networks as the first-level
learner, and their outputs are used as inputs for a decision tree (DT) to distinguish between
normal and attack events. Furthermore, the paper proposes a framework for deploying the
IDS as Infrastructure as a Service (IaaS) in the cloud and Software as a Service (SaaS) in the
fog. This system is evaluated using the ToN–IoT dataset. Key contributions of this work
include a real-time IoMT traffic analysis solution and the proposed deployment of security
protocols as IaaS and SaaS, addressing challenges inherent in the IoMT environment.

A multicriteria decision-making (MCDM) framework [20] for standardizing and bench-
marking ML-based IDSs used in federated learning (FL) architectures of IoMT applications
was proposed. This process begins by standardizing the evaluation criteria of ML-based
IDSs using the fuzzy Delphi method (FDM). Subsequently, an evaluation decision matrix
is formulated, based on the intersection of standardized evaluation criteria and a list of
ML-based IDSs, and MCDM methods are integrated to determine the importance weights
of the main and sub-standardized security and performance criteria, followed by bench-
marking, and selecting the optimal ML-based IDSs. The Borda voting method is applied to
combine different ranks and perform group benchmarking.

2.3. Early Stopping Techniques in Deep Learning Models

Early stopping is a crucial technique in deep learning to prevent overfitting and im-
prove model generalization. It involves monitoring the model’s performance on a separate
validation dataset and stopping the training process when the performance stops improving.
Several studies have highlighted the significance of early stopping in deep learning models.
El-Shafie and Noureldin [37] discuss the timing of early stopping, emphasizing the need
for a principled approach to determine the optimal stopping point. Dong and Zhang [38]
demonstrate the feasibility of obtaining accurate progress estimates more quickly through
judiciously inserting extra validation points between the original ones when early stopping
is allowed. Furthermore, Ada and Ugur [39] apply early stopping, a method previously
used in supervised learning, to deep reinforcement learning, showcasing its versatility
across different learning paradigms. Moreover, the importance of early stopping in ad-
dressing overfitting is emphasized in the literature. Forouzesh and Salehi [40] mention
early stopping as one of the regularization techniques applied to avoid overfitting in deep
learning architectures. Additionally, Choi and Lee [41] propose a learning strategy that
involves training all samples with good initialization parameters and stopping the model
using early stopping techniques to prevent overfitting. Tian and Ji [42] also mention the use
of early stopping and dropout regularization to combat overfitting in deep learning models.
Furthermore, the relevance of early stopping in various domains is evident. Additionally,
Robissout and Zaid [43] introduced an online evaluation metric for side-channel analysis
and used it to perform early stopping on existing Convolutional Neural Networks. These
examples demonstrate the wide applicability of early stopping beyond traditional deep
learning tasks.
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2.4. Early Stopping Techniques in the IoT

Effective and efficient training of deep learning-based Internet of Things (IoT) systems
depends on early stopping techniques. These techniques try to lessen the computational
load involved in training deep learning models for Internet of Things applications and
avoid overfitting. Reviewing early stopping techniques for training deep learning-based IoT
systems is highly relevant to the work of mitigating the computing burden and reducing the
overhead of online training, as suggested by [44]. Furthermore, [45] reviewed deep learning-
based intrusion detection systems, which is relevant because early stopping techniques are
essential to the training of intrusion detection systems for Internet of Things security.

The combination of deep learning’s observational powers and reinforcement learning’s
decision-making capabilities for effective cyber-attack detection in the industrial IoT was
also covered by [46], underscoring the importance of efficient training techniques for IoT
security applications. In their survey of machine learning and deep learning techniques
for IoT security, [47] emphasized the importance of training method optimization for IoT
security as well as the broad use of learning algorithms in practical applications. The
effectiveness of deep learning for botnet attack detection was shown by [48], highlighting
the importance of early stopping techniques in deep learning model training for IoT
network security. Popoola [49] emphasized the need for efficient training strategies in
IoT environments and the potential of deep learning for precisely extracting information
from unprocessed sensor data in complex contexts. All things considered, early stopping
techniques are crucial for training deep learning-based Internet of Things systems because
they support effective model training, avoid overfitting, and lighten the computational
load, all of which improve the functionality and scalability of IoT applications.

While some current DL models implement early stopping techniques, they depend on
predetermined ‘patience’ parameter values, based on the epoch count and batch size [50–53].
This rigid, static approach prevents the model from adapting effectively to the diverse traits
of IoMT data. A fixed ‘patience’ value may not be ideal—if it is too high, the model may
risk overfitting by continuing training past the point of optimal generalization and learning
noise from the training data. Conversely, a ‘patience’ value set too low could halt training
prematurely, resulting in an underfit model that fails to recognize the inherent patterns in
the data. Therefore, finding a balance is key, and it could be beneficial to consider dynamic
strategies when determining the ‘patience’ parameter for early stopping.

3. The Methodology
3.1. A Fuzzy-Based Patience Parameter Estimation for Early Stopping of LSTM Model Training

In contrast to traditional sequential models, our model dynamically adapts the number
of training epochs and batch size per epoch during training, based on how much each batch
contributes to the model’s accuracy. A key innovation is our use of fuzzy logic to optimize
the patience parameter, which controls when the early stopping mechanism is activated
during the model’s training.

In our approach, the early stopping mechanism commences training with arbitrary
parameters and suspends the process when there are no significant improvements at both
levels. This mechanism monitors one or more performance indicators during the training
phase of the model, which can prompt an early termination of the training process. In our
study, we monitor the loss on the validation set, and training is discontinued when no
further reductions in the validation loss are detected.

To avoid halting the training process prematurely, we have incorporated a dynamic
system for establishing a patience threshold. Instead of using a static value or a simple
running average of the loss differences, we have developed a fuzzy logic technique that
determines the optimal patience level based on multiple inputs: the model’s accuracy,
validation loss, and rate of improvement.

This fuzzy logic technique takes these inputs and, through a series of fuzzy rules
and defuzzification, outputs an optimal patience level. This patience level is then used
to decide when to stop the training process, providing a more dynamic and adaptive
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approach to early stopping. The system updates the patience level after each epoch, thereby
providing a nuanced, data-driven way to determine when to cease training. This novel
method therefore avoids arbitrary termination and helps to prevent both overfitting and
underfitting of the model.

Let F represent the fuzzy-based technique, which receives three inputs: accuracy
(A), validation loss (L), and the rate of improvement (R). These inputs are fuzzified, and
their corresponding membership value (µ) is determined via the following membership
functions.

A ∈ [0, 1]→ {(A low; µAlow), (Amedium; µAmedium
), (Ahigh; µAhigh)} (1)

L ∈ [0, ∞]→ {(L low; µAlow), (Lmedium; µAmedium
), (Lhigh; µAhigh)} (2)

R ∈ R→ {(R low; µRlow), (Rmedium; µRmedium
), (Rhigh; µRhigh)} (3)

The fuzzy-based patience estimation is denoted as P, which is a value de-fuzzified
based on two sets with corresponding membership functions:{(

Plow, µPlow

)
;
(

Phigh, µPhigh

)}
c (4)

This technique is controlled by two rules, R1 and R2, as follows.

R1 : IF
(

A is Agood

)
and

(
L is Lpoor

)
and

(
R is Rgood

)
THEN (P is Plow). (5)

R2 : IF
(

A is Apoor
)

and
(

L is Lgood

)
and

(
R is Rpoor

)
THEN

(
P is Phigh

)
. (6)

The outputs from these rules ORi is calculated using a min–max reference method, as
follows.

ORi = µPlow

(
min

(
µAgood(A), µLpoor (L), µRgood(R)

))
for Rule 1. (7)

ORi = µPhigh

(
min

(
µApoor (A), µLgood(L), µRpoor (R)

))
for Rule 2. (8)

So, the optimal patience value can be calculated according to the following equation:

P =
∫
(x ∗ µO(x))dx/

∫
µO(x)dx (9)

where O is the aggregated output membership function, which is obtained by taking the
maximum of OR1 and OR2 at each x.

An LSTM network is composed of an input layer, several hidden layers, and an output
layer. A key feature of this network is the LSTM memory cells embedded into the hidden
layers. Each of these LSTM memory cells possesses three distinct gates, which collectively
manage its cell state: the forget gate, the input gate, and the output gate. These gates
have unique roles: (1) the forget gate determines what information should be discarded,
(2) the input gate decides what information is to be incorporated, and (3) the output gate
establishes what information should be emitted from the cell state.

The overall architecture of a memory cell is depicted in Figure 1. This diagram presents
a structured view of a Long Short-Term Memory (LSTM) network integrated with a fuzzy
logic controller for early stopping. The network is organized into distinct layers, each
represented by color-coded blocks. The input layer, highlighted in light blue, consists of
neurons that receive the initial data. This data flows into the LSTM layer, depicted in light
green, where LSTM cells process the temporal aspects of the input layer. The processed
information then moves to the output layer, shown in light yellow, consisting of neurons
that generate the preliminary output of the network. Crucially, this output is fed into the
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fuzzy logic controller, colored in light pink, which comprises three parts: fuzzy input,
fuzzy logic, and fuzzy output. The fuzzy logic controller evaluates the output data and
applies fuzzy logic rules to determine whether the training should continue or stop early,
thereby preventing overfitting and enhancing the model’s efficiency. This decision is fed
back to the LSTM layer, as indicated by the dotted lines, influencing subsequent processing
cycles. This integration of fuzzy logic into the LSTM network aims to optimize the training
process, ensuring timely convergence and maintaining high detection accuracy, particularly
in dynamic environments like the Internet of Medical Things (IoMT).
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During the initial step, the forget gate’s activation values decide what information
from the prior cell state needs to be discarded. Equation (9) shows such calculation:

ft = sigmoid
(

W fx xt + W f hht−1 + b f

)
(10)

where W fx and W fh
are weight matrices, and ft is the result of adding the current input xt

at time t, the output ht−1 from the hidden cell state at the previous time step t − 1, and the
bias vector b f . The bias vector provides the model with a greater adaptability in terms of
fitting the data. The sigmoid function is used to scale the value within a range between 0
and 1, where 0 and 1 suggest that the results are interpreted as completely forgotten and
completely remembered, respectively.

The next phase involves deciding the extent of updating the current time series
information in the new cell state. This involves a two-step process. Firstly, candidate values

(
∼
S) that may be incorporated into the new cell state (St) are computed using the hyperbolic

tangent (tanh) function. Then, the activation values (it) of the input gate are calculated.

These values dictate which candidate values (
∼
S) are to be included in the cell state (St). The

calculation is as follows:
S = tanh

(
W∼

s x
xt + W∼

s h
ht−1

+b∼
s

) (11)

it = sigmoid
(
Wix xt + Wih ht−1 + bi

)
(12)
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Then, new cell states (St) are generated using a combination of the prior cell state

(St−1) and the current candidate values (
∼
S). The calculation for this is as follows:

St = ft × St−1 + it ×
∼
St (13)

Here, the product of the previous cell state (St−1) and ft establish the amount of past

information that needs to be discarded, whereas the product of the candidate values (
∼
St)

and it defines the volume of current information that needs to be retained. By adding the
preceding results, the new cell state (St) is obtained.

The output (ht) is regulated by the activation values (Ot). The calculation for this is as
follows:

Ot = sigmoid
(
WOx xt + Woh ht−1 + bO

)
(14)

ht = Ot × tanh(St) (15)

The LSTM network needs sequences of input features for its training process. The
network processes the sequential input at each instance (t), as expressed in the equations.
Throughout the training, the weights (W) and bias terms (b) are optimized with the goal of
minimizing the loss of the specified objective function.

3.2. The Improved Fuzzy-Based Self-Tuning LSTM Model for the IDS in the IoMT

The proposed fuzzy-based self-tuning LSTM model for the IDS in the IoMT (FST-
LSTM), as illustrated in Figure 2, consists of two main phases: data pre-processing and
model training. During data pre-processing, network flow and patient biometric data from
medical sensors are transformed into numerical forms suitable for modeling. Several steps
were taken during the pre-processing phase to maintain data integrity. These included
normalizing the data to retain its original range, refraining from reordering the dataset
to keep the time sequence intact, and avoiding any resampling operations to maintain
consistent data collection intervals. Such cautious pre-processing preserves critical data
characteristics, ensuring accurate subsequent analysis and results. Additionally, noise,
which can come from measurement errors, missing values, or outliers, can lead to poor
model performance and unreliable outputs. To tackle this issue, a filter based on the
statistical mean and standard deviation was employed to identify and eliminate outliers in
each attribute of the dataset.
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Then, normalization was conducted to scale all attribute values between 0 and 1,
which mitigates the risk of machine learning algorithms favoring attributes with larger
ranges during their training. Normalization also helps minimize the effect of large values,
improves the algorithm convergence, reduces overfitting, and prevents model bias toward
certain features. Hence, it facilitates a more accurate depiction of the relationships among
the features in the dataset. After that, we used the features selection technique proposed
in [54] to select a compact set of relevant, non-redundant features, which reduces the
model’s complexity.

The next step was developing the LSTM-based model with an improved early stop-
ping mechanism that prevents the model from overfitting and underfitting. This stage
incorporates a deep learning model designed to detect attacks in IoMT network traffic.
The features are fed into Long Short-Term Memory (LSTM) layers, which collaboratively
learn their spatial and temporal patterns. Rather than using only the final hidden states,
the LSTM model takes all hidden states into consideration and feeds them into a global
attention layer similar to soft and additive attention, as described in [24]. This layer em-
ploys a Relu activation function on all of the hidden state features. These features then pass
into a fully connected layer with 50 neurons. Dropout and batch normalization methods
are used in the hidden layers to accelerate training. The model ultimately classifies data
inputs as either normal or attack. Due to the significant imbalance in IoMT network traffic,
this work adopts a cost-sensitive learning approach, assigning greater weights to the attack
class and lesser weights to the normal class during model training. Initial values for the
cost matrix are randomly selected following a Gaussian distribution and are fine-tuned
during the training phase.

3.3. Description of the Dataset

In this study, we utilized the WUSTL-EHMS-2020 dataset, which combines network
flow parameters and patient biometric data. This dataset originated from an Enhanced
Healthcare Monitoring System (EHMS) testbed that operates in real-time. The testbed
consists of four main elements: medical monitoring sensors, a data-transmitting gateway,
a network infrastructure, and a control unit with visualization capabilities. The data are
collected from sensors attached to patients, transmitted through the gateway, and then sent
to a dedicated server for visualization using routing and switching mechanisms. The EHMS
testbed was specifically designed to gather network flow metrics and biometric data from
patients. Its system includes six crucial components: a multi-sensor board, a gateway or
central control hub, a data server, an intrusion detection system (IDS), a simulated attacker,
and a dedicated network.

The PM4100 Six Pe Multi-Sensor Board, manufactured by Medical Expo, is equipped
with four sensors that monitor important patient vitals such as electrocardiograms (ECGs),
blood oxygen saturation (SpO2), body temperature, and blood pressure. The collected
data is transmitted via a USB interface to a laptop running Windows, which serves as the
gateway. The gateway presents the data visually through a graphical user interface (GUI),
while also transmitting it to a server for further processing. The server, operating on an
Ubuntu system, collects and analyzes the data, and assists in making informed medical
decisions. The network infrastructure includes an Ethernet switch that connects the server,
IDS, and a computer simulating attacks, with a router responsible for assigning dynamic IP
addresses. The IDS relies on Argus network flow monitoring software to gather network
flow metrics and biometric data, enabling important decisions about traffic packets. The
simulated attacker, using Kali Linux, creates potential threats such as data spoofing or
altering patient data during transmission to simulate hazards that may exist in healthcare
monitoring systems.

Prior to utilization, the dataset underwent several pre-processing steps to ensure data
quality and relevance. These steps included data cleaning to remove any inconsistencies or
outliers, normalization to standardize the range of continuous initial variables, and feature
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selection to identify the most relevant attributes for intrusion detection. This pre-processing
was critical in refining the dataset for optimal model training and performance.

3.4. Experimental Environment

The construction and performance assessment of the proposed model was executed
using various software and tools, such as Python, Skfeature, TensorFlow, Keras, Scikit
Learn, and NumPy. In addition, the organization of data samples, application of algorithms,
and results interpretation were performed on a device equipped with an Intel(R) Core (TM)
i7-4790 CPU @ 3.60 GHZ and 16 GB RAM.

In assessing the effectiveness of our model, we selected a set of performance metrics
that are widely recognized in the field of intrusion detection. Accuracy (ACC) was chosen as
the primary indicator of overall model performance, providing a straightforward measure
of the model’s ability to correctly classify instances. However, to gain a more nuanced
understanding of the model’s predictive power, we also included the false positive rate
(FPR), detection rate (DR), and F1 score (F1). These metrics were selected because they offer
a balanced view of the model’s performance, accounting for the costs of misclassification.
The FPR is particularly important in the IoMT context, where false alarms can be costly
and disruptive. The DR (also known as recall) is critical for ensuring that actual intrusions
are reliably detected, and the F1 score provides a harmonic mean of precision and recall,
which is useful when seeking a balance between the model’s sensitivity and specificity.

ACC =
TP + TN

TP + TN + FP + FN
(16)

FPR =
FP

TN + FP
(17)

DR =
TP

TP + FN
(18)

F1 =
TP

TP + 0.5 ∗ (FP + FN)
(19)

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false
negative, respectively.

4. Results and Discussion

This section discusses the outcomes of the proposed fuzzy-based self-tuning IDS (FST-
LSTM) model and provides comparisons with related studies. Experimental evaluations
were conducted using various Python-based packages, including SkLearn, Pandas, NumPy,
and SkFeature. To evaluate the performance of our technique, multiple performance metrics
were used, namely accuracy (ACC), false positive rate (FPR), detection rate (DR), and F1
score (F1). The training process for intrusion detection in the IoMT involved several steps.
Initially, data pre-processing was performed, including normalization, handling missing
values, and transforming the data for model training. Then, a set of relevant and non-
redundant features were selected and projected onto the dataset. The dataset was then
divided into training and validation sets. The training set was utilized to train the LSTM,
while the validation set was used to assess its performance. The model’s parameters, such
as the number of layers, neurons, activation function, and optimizer, were defined. The
model architecture was subsequently trained using the training set, and adjustments were
made based on prediction errors calculated via the loss function. After training, the model’s
performance was evaluated using the validation set, involving metrics such as accuracy,
precision, recall, and other relevant measures.

Table 1 shows the performance metrics for different numbers of features used in the
training of the proposed LSTM-based IDS model.
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Table 1. The performance evaluation of the proposed model in terms of accuracy (ACC), false positive
rate (FPR), detection rate (DR), and F1 score (F1).

No. of Features ACC FPR DR F1

5 0.944 0.17 0.93 0.947
10 0.942 0.144 0.934 0.943
15 0.952 0.132 0.937 0.958
20 0.960 0.13 0.941 0.962
25 0.967 0.104 0.943 0.966
30 0.961 0.122 0.942 0.964
35 0.956 0.134 0.94 0.96
40 0.951 0.147 0.941 0.957
45 0.948 0.15 0.938 0.952

As the number of features increases from 5 to 45, the accuracy (ACC) remains consis-
tently high, ranging from 0.944 to 0.967. The false positive rate (FPR) decreases gradually,
indicating a reduction in the number of false alarms, with the lowest value observed at
0.104 for 25 features. The detection rate (DR) also shows a gradual improvement, reaching
a peak of 0.943 for 25 features. The F1 score, which considers both precision and recall,
increases as the number of features increases, with the highest value of 0.966 achieved
for 25 features. Overall, the results demonstrate that increasing the number of features
has a positive impact on the performance of the LRGU-MIFS technique, leading to higher
accuracy and improved detection rates while maintaining a low false positive rate.

The results in Table 1 provide evidence of the model’s sustained high performance,
demonstrating the effectiveness of the fuzzy logic in determining the optimal patience value
for an improved self-tuning capability. This can be attributed to the integration of fuzzy
logic within the self-tuning mechanism, which accurately estimates the value of the patience
parameter during the training phase. By dynamically adjusting the number of epochs and
preventing overfitting, our model successfully avoids both underfitting due to insufficient
epochs and overfitting caused by excessive training. This robust approach contributes
to the reliable detection rate of our fuzzy-based self-tuning LSTM IDS, highlighting its
ability to effectively identify a significant proportion of actual intrusions within the IoMT
environment. Through the effective capture and classification of anomalous patterns, the
proposed IDS has the ability to ensure the security and integrity of healthcare systems,
protecting them from potential threats.

The results presented in Table 1 also demonstrate interesting performance trends,
particularly when the number of features reaches 25. At this point, there is a noticeable
improvement in the model’s performance across multiple evaluation metrics. The accuracy
(ACC) increases to 0.967, indicating a high level of correct classifications. Additionally,
the false positive rate (FPR) significantly decreases to 0.104, indicating a reduced number
of false alarms. The detection rate (DR) remains consistently high at 0.943, indicating the
model’s ability to accurately identify intrusions. The F1 score (F1) also reaches a high
value of 0.966, reflecting the model’s balanced precision and recall. These performance
enhancements at 25 features suggest that the proposed model was able to perceive the
attack patterns even with a fewer number of epochs and fewer features used as inputs.
Such a level of performance suggests that the early stopping mechanism maintained a
good trade-off between performance and complexity, allowing the model to achieve high
accuracy without sacrificing efficiency.

The performance of the proposed FST-LSTM model is compared with three existing
models, namely the DL-IDS [24], RNN-IDS [55], XSRU-IoMT [25], GDRL [5], and ODLN [38],
across multiple evaluation metrics, as shown in Figures 2–5. The rationale for choosing
these studies to compare ours with is that they work on IoMT data and apply deep learning
algorithms for developing the IDS. Figure 2 presents the accuracy scores, indicating the
proportion of correct classifications. The FST-LSTM model consistently outperforms the other
LSTM models across different numbers of features, achieving the highest accuracy scores. The



Sensors 2023, 23, 9247 13 of 19

proposed model shows a high accuracy, peaking at 25 features with a score of 0.967. Beyond
30 features, a slight decline in accuracy is observed for most models, including the FST-LSTM,
suggesting a potential threshold for optimal feature utilization.
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Figure 4. Detection rate comparison between the proposed FST-LSTM model and existing models.

The comparison results in the table reveal the FST-LSTM model as a robust per-
former in the IoMT IDS landscape, consistently outperforming other models, especially
in scenarios with a higher number of features. Its peak performance at 25 features
suggests an optimal balance between feature count and model efficiency. The decline
in accuracy beyond this point for the FST-LSTM and other models implies a potential
overfitting or diminishing of returns with too many features. Comparatively, models
like the XSRU-IoMT show close competition, especially at higher feature counts, while
the GDRL and ODLN lag slightly behind across most feature ranges. These results
underscore the importance of feature selection in IDS model performance, highlighting
that an increased number of features does not always correlate with enhanced detection
capabilities, particularly beyond a certain threshold.
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Similar trends can be observed in Figure 5, which presents the F1 scores, reflecting
the balance between precision and recall. The FST-LSTM model consistently achieves the
highest F1 scores, indicating its superior performance in capturing both true positives
and true negatives. The proposed model demonstrates a consistent increase in F1 score
as the number of features grows from 5 to 25, peaking at 0.966 for 25 features. Beyond
this point, a gradual decrease in F1 score is observed for the FST-LSTM and other models,
indicating a potential limit to the effectiveness of increasing feature counts. Comparison
reveals that the FST-LSTM model is a highly effective solution concerning the IoMT IDS,
maintaining superior performance across a wide range of feature counts. Its peak F1
score at 25 features suggests an optimal point for feature utilization, balancing precision
and recall effectively. The gradual decline in F1 scores beyond 25 features for all models,
including the FST-LSTM, suggests a potential overfitting issue or inefficiency in handling
an excessive number of features. In comparison, models like the DL-IDS and RNN-IDS
show competitive performances, especially at higher feature counts, closely following the
FST-LSTM model. The XSRU-IoMT, GDRL, and ODLN models exhibit varying degrees
of effectiveness, with some performing better at lower feature counts and others at higher.
These results highlight the importance of an appropriate feature count in maximizing the
F1 measure, indicating that an excessive number of features might lead to a decrease in the
balance between precision and recall.

Figure 3 shows the false positive rates (FPRs), wherein the FST-LSTM model consis-
tently exhibits lower FPR values compared to the other models, indicating its ability to
reduce false alarms. The proposed model demonstrates an overall decreasing trend in false
positive rates as the number of features increases, with a notable dip at 25 features (0.104).
Beyond 25 features, there is a gradual increase in false positive rates for the FST-LSTM
and other models, suggesting a limit to the effectiveness of feature count in reducing false
alarms. Analysis of the false positive rate indicates that the FST-LSTM model is effective in
minimizing incorrect threat detections, especially in scenarios with a moderate number of
features. Its lowest false positive rate at 25 features suggests an optimal balance in feature
count, where the model efficiently distinguishes between normal and malicious activities.
The increase in false positive rates beyond this point for the FST-LSTM and other models
implies a potential overfitting or reduced efficiency with too many features. Compared to
other models, the FST-LSTM generally maintains a lower false positive rate, indicating its
superior capability to avoid false alarms. Other models, such as the DL-IDS and RNN-IDS,
show competitive performances but slightly higher false positive rates at various feature
counts. The XSRU-IoMT, GDRL, and ODLN models exhibit higher false positive rates,
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particularly at higher feature counts, indicating a potential difficulty to maintain accuracy
without compromising on false detections. These results highlight the importance of a
balanced feature selection in IDS models for the IoMT, where an excessive number of
features might lead to increased false alarms, undermining the system’s reliability and
user trust.

Lastly, Figure 4 presents the detection rates, measuring the ability to accurately identify
intrusions. Again, the FST-LSTM model demonstrates higher detection rates across different
numbers of features, showcasing its effectiveness in identifying intrusions in the IoMT
environment. The proposed model exhibits a steady increase in detection rate as the number
of features increases from 5 to 25, reaching a peak at 0.943 for 25 features. Beyond 30 features,
the detection rate for the FST-LSTM and other models shows a slight fluctuation, suggesting
a plateau in performance improvement with an increase in feature count. Comparison
reveals that the FST-LSTM model is a consistently strong performer in detecting intrusions
within the IoMT environment. Its peak performance at 25 features indicates an optimal
balance in utilizing a sufficient number of features to effectively identify threats. The slight
fluctuations in detection rate beyond 30 features across all models, including the FST-LSTM,
hint at a potential limit to the benefits of increasing the feature counts, where additional
features may not significantly enhance detection capabilities. Compared to other models,
the FST-LSTM generally maintains a higher detection rate, especially in the mid-range of
feature counts. Models like the DL-IDS and RNN-IDS show competitive performances,
closely following the FST-LSTM model, while the XSRU-IoMT, GDRL, and ODLN models
exhibit varying effectiveness at different feature counts. These results underscore the
importance of an optimal feature selection strategy in IDS models for the IoMT, where too
many features might not necessarily lead to improved detection rates and could potentially
introduce complexity without significant benefits.

These results highlight the superior performance of the proposed FST-LSTM model
compared to the existing LSTM models, suggesting its efficacy in intrusion detection tasks.

To mitigate overfitting and underfitting in our LSTM model and better its perfor-
mance, we have implemented a multifaceted approach that leverages both algorithmic
and architectural strategies. Algorithmically, our model employs a fuzzy-based dynamic
adjustment of the patience parameter in the early stopping mechanism. This approach is
preferred over static early stopping because it allows the model to adaptively determine
the optimal point at which to halt training based on the actual learning progress, rather
than a predetermined, fixed number of epochs. The fuzzy logic system evaluates the
model’s performance, considering accuracy, validation loss, and the rate of improvement,
to dynamically adjust the patience parameter. This ensures that the model continues to
learn as long as significant improvements are made, thereby avoiding premature stopping
(which could lead to underfitting) and excessive training (which could lead to overfitting).

Architecturally, we introduced dropout layers and batch normalization within the
hidden layers of our LSTM network. Dropout layers randomly deactivate a subset of
neurons during the training process, which prevents the network from becoming overly
dependent on any specific neuron and thus reduces overfitting. Batch normalization
standardizes the inputs to a layer for each mini-batch, stabilizing the learning process and
accelerating convergence by reducing internal covariate shift. These combined strategies
form a robust defense against overfitting and underfitting, ensuring that our model achieves
a balance between bias and variance, ultimately leading to better generalization of unseen
data. Our choice of these specific techniques is driven by their proven effectiveness in
similar contexts, as documented in the literature, and their suitability for the complex and
dynamic nature of IoMT network traffic and attack patterns.

5. Future Research Directions

The self-tuning mechanism of our fuzzy-based LSTM model presents a novel approach
to intrusion detection in the Internet of Medical Things (IoMT), yet there is ample room for
further refinement and exploration. Future research could delve into optimizing the fuzzy
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logic rules and membership functions to enhance the model’s responsiveness and accuracy.
Additionally, investigating adaptive self-tuning techniques that can adjust not only the
patience parameter but also other hyperparameters such as learning rate and dropout rate
in real-time could lead to more sophisticated and finely tuned models. Another promising
direction is the application of self-tuning mechanisms to different types of neural network
architectures that are gaining traction in the IoMT, such as attention-based models or
transformer networks. These architectures could potentially benefit from the dynamic
adjustment capabilities of self-tuning models, particularly in handling the vast and varied
data streams inherent in IoMT environments.

Moreover, the integration of self-tuning models with online learning paradigms
could be explored to facilitate continuous learning and adaptation to new and evolving
attack patterns without the need for retraining the model from scratch. This could
significantly enhance the model’s longevity and effectiveness in real-world applications.
The potential for self-tuning mechanisms to reduce computational overhead and en-
ergy consumption in IoMT devices also presents an important research opportunity.
By optimizing the training process, such mechanisms could enable a more efficient
deployment of advanced IDSs on resource-constrained devices, thus broadening the
reach and scalability of secure IoMT solutions.

Lastly, the development of benchmarking frameworks to evaluate the performance
of self-tuning models against traditional and static approaches in various IoMT scenarios
would provide valuable insights and drive innovation in the field. Such frameworks
could help in systematically assessing the impact of self-tuning on the overall efficacy
and efficiency of intrusion detection systems. By focusing on these areas, future research
can significantly advance the state of the art in self-tuning intrusion detection systems,
paving the way for more autonomous, reliable, and efficient security solutions in the
IoMT landscape.

6. Conclusions

In conclusion, our research introduced a novel fuzzy-based self-tuning LSTM intrusion
detection system (IDS) specifically designed for the Internet of Medical Things (IoMT). The
model’s dynamic adjustment of training epochs and implementation of early stopping have
proven to be highly effective, as evidenced by our experimental results, which indicate su-
perior performance over existing IDS models in key metrics such as accuracy, false positive
rate, detection rate, and F1 score. Importantly, these advancements in intrusion detection
directly contribute to the broader IoMT context by enhancing the security framework
essential for reliable healthcare operations. The ability of our system to accurately and
efficiently detect intrusions ensures that healthcare providers can maintain the integrity
and availability of critical medical devices and patient data. This, in turn, is fundamental
to patient safety, as secure IoMT devices are less likely to suffer from disruptions that
could lead to adverse health outcomes. While our findings mark a significant step forward,
we acknowledge that the landscape of IoMT security is ever-evolving, with numerous
opportunities for further research. Future work could refine the application of fuzzy logic
in early stopping to optimize both the performance and convergence speed of IDS models.
Additionally, integrating a broader array of data sources and employing advanced machine
learning techniques could further bolster the IDS’s ability to pre-empt sophisticated cyber-
threats. Extending our model to handle real-time data more effectively will also be crucial
in minimizing response times to potential attacks, thereby safeguarding the continuity of
healthcare services. Lastly, as the IoMT continues to grow, ongoing research must address
the challenge of advancing security measures to protect against new threats and ensure
the privacy of sensitive health data. By continuing to develop robust and adaptive security
solutions, we can better protect the IoMT infrastructure, which is so integral to modern
healthcare delivery and patient safety.
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