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Abstract: This article presents an integrated system that uses the capabilities of unmanned aerial
vehicles (UAVs) to perform a comprehensive crop analysis, combining qualitative and quantitative
evaluations for efficient agricultural management. A convolutional neural network-based model,
Detectron2, serves as the foundation for detecting and segmenting objects of interest in acquired aerial
images. This model was trained on a dataset prepared using the COCO format, which features a
variety of annotated objects. The system architecture comprises a frontend and a backend component.
The frontend facilitates user interaction and annotation of objects on multispectral images. The
backend involves image loading, project management, polygon handling, and multispectral image
processing. For qualitative analysis, users can delineate regions of interest using polygons, which are
then subjected to analysis using the Normalized Difference Vegetation Index (NDVI) or Optimized
Soil Adjusted Vegetation Index (OSAVI). For quantitative analysis, the system deploys a pre-trained
model capable of object detection, allowing for the counting and localization of specific objects, with
a focus on young lettuce crops. The prediction quality of the model has been calculated using the AP
(Average Precision) metric. The trained neural network exhibited robust performance in detecting
objects, even within small images.

Keywords: drones; deep learning; agriculture; neural networks

1. Introduction

Precision agriculture is a concept related to the need for progressive automation and
control of cultivation and breeding processes to maximize yields and manage available
resources sensibly. With the increase in population, there is also a growing demand for food
products, which consequently calls for an increase in food production. In order to enhance
the quality and quantity of yields obtained from cultivated fields, the use of unmanned
aerial vehicles (UAVs) for conducting plant protection treatments and detailed analysis of
cultivated fields using mounted multispectral cameras has become popular [1–3].

Multispectral terrain imaging was initiated with the launch of the “Landsat 1” satellite
into space by NASA. The satellite was equipped with a multispectral scanner capable of
recording four bands of light ranging from 0.5 µm to 1.1 µm [4]. The images captured by
the satellite provided a new perspective of the Earth and yielded data that was previously
unavailable on a global scale. One significant advantage of these images is their ability to
cover large areas with a single photograph; however, a drawback is the limited level of
detail in the obtained pictures.
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To increase the precision of the images, along with the miniaturization of electron-
ics and the proliferation of unmanned aerial vehicles, multi-rotor flying platforms with
mounted multispectral cameras have begun to be used. This enables detailed imaging of
soil and plants, providing precise data about the crops. These devices allow for relatively
fast and accurate examination of large-scale cultivated fields by capturing multiple images
in wavelengths invisible to the human eye.

Through a precise analysis of multispectral images, it is possible to accurately assess
the conditions of plants, including determining the vegetation phase, identifying specific
pathogens, and evaluating crop quality. Various indicators are used during the assess-
ment of crop quality and vegetation in a particular area. The most popular indicator is
NDVI (Normalized Difference Vegetation Index), which is sensitive to the absorption of
chlorophyll by plants, thereby allowing the estimation of its content in plants [5].

Conducting data analysis on crops using UAVs has become a popular and cost-effective
solution among farmers, enabling them to take preventive actions against crop failure.
Analyzing the data obtained in this way has a positive impact on the costs of using
expensive treatments by allowing targeted spraying only on infected areas rather than
treating the entire crop surface. To obtain information useful for farmers, data collected
by UAVs must be appropriately processed and subjected to analyses. For this purpose,
a specialized procedure is used, aiming to create a large composite image of the entire
cultivated field by merging smaller images, each with its individual geolocation data stored
in metadata (geotags). On such a prepared image, it is possible to manually input an
object index, which serves as the current reference object, and after conducting appropriate
calculations, manually identify areas exhibiting pathologies (Figure 1).
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The complexity of the entire process and hardware requirements are the reasons for
the limited availability of software solutions that enable a satisfactory level of automation
in crop research. However, by leveraging the knowledge of deep learning principles and
libraries that support multispectral image processing, it is possible to develop software that
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allows for a partially automated execution of specific analyses. Such software also enables
the marking of areas characterized by anomalies and can isolate only specific plant species
with minimal user intervention.

Therefore, this paper proposes an innovative approach to the process of monitoring
crop quality based on the utilization of georeferenced images analyzed by a properly
trained neural network. This approach aims to identify specific objects in the images and
estimate the effectiveness of cultivation through the conducted analysis. Section 1 presents
the idea of UAVs in agriculture; Section 2 covers similar or different approaches to the
presented problem. Sections 3 and 4 present the implementation of algorithms and usage of
Detectron2 while Section 5 focuses on the implementation of the presented idea. Section 6
presents the results and Section 7 summarizes the concept.

2. Related Work

Unmanned aerial vehicles (UAVs), commonly known as drones, have diverse appli-
cations across various industries. Their adaptability in carrying specialized measurement
equipment makes them valuable tools for object recognition and research.

In the realm of research, drones are extensively used for specific tasks, enhancing
various domains. Some researchers have devised solutions based on object recognition,
employing cameras affixed to UAVs [6–8]. Analyzing moving objects within imagery
remains an intriguing field of study, with several solutions designed to identify patterns
and extract specific data from images for subsequent analysis [9,10]. UAVs are especially
vital in scenarios involving peril, such as natural disasters. Various solutions have been
developed to aid in locating individuals affected by earthquakes, building collapses, or
river floods [11–16]. While these solutions use cameras to detect specific objects, they
primarily focus on object identification within images, which can vary in size depending on
the object being sought. This diversity of objects necessitates complex algorithms, increased
computational power for in-depth analysis, and the capacity to identify dissimilar objects.

UAVs also play a significant role in industrial inspections, often leveraging specialized
software or hardware [17–19]. However, these solutions are tailored to specific tasks and
are not versatile for other activities. In the case of multispectral analysis, as proposed here,
drones require dedicated multispectral cameras to capture the required images. Multi-
spectral cameras are instrumental in object classification [20–22] and pattern analysis [23],
and when combined with advanced deep learning algorithms [1,24–29], they can provide
substantial data for comprehensive analysis when used effectively.

Furthermore, UAVs are indispensable for inspecting agricultural fields [30–34]. Many
individuals employ algorithms and models to estimate NDVI (Normalized Difference
Vegetation Index) using images from multispectral cameras and aerial platforms equipped
with multispectral NDVI imaging systems [35,36]. Some algorithms are designed for route
planning or precise mapping through UAVs [37,38]. Other solutions incorporate cameras
and sensors to assess land and irrigation practices or to evaluate crop quality [39–43].
While these solutions enable the analysis of crop growth, none of them specifically address
the identification of damaged plants. The solution presented in this article centers on
identifying unhealthy trees, which are subsequently replaced through reforestation efforts.

3. Multispectral Image Processing

Photogrammetric analysis has diverse applications, enabling in-depth examination of
acquired images. Satellite images are commonly used to cover large areas, especially in
relation to vegetation. This information finds utility in various fields, such as geography,
geology, cartography, forestry, and agriculture. In agriculture and forestry, it allows for
easy estimation of vegetation coverage and well-being.

Nevertheless, satellite images come with certain limitations. One notable drawback
is their reduced level of detail when focused on a specific scanning area, especially when
compared to images captured using UAVs. For instance, the multispectral image resolution
for the Sentinel-2 satellite is 10 m per pixel, while a drone’s multispectral image offers
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much higher detail at 6 cm per pixel. This does not eliminate the possibility of using other
images from commercial satellites. However, their cost can be prohibitively high when
mapping extensive areas. Therefore, advancements in unmanned aerial vehicle (UAV)
technology, electronic miniaturization, and the expanded capabilities of these devices enable
customized terrain mapping tailored to the precise needs and preferences of landowners.
Scanning can be carried out within specified areas with a predefined level of accuracy.

The project presented by the authors involves the utilization of images captured by a
drone equipped with a multispectral camera and leveraging artificial intelligence for the
detection of areas and elements that require urgent attention, such as dead or diseased trees
or crops. However, the multispectral materials collected during the drone flights must be
adequately processed and subjected to analysis beforehand. Advanced software serves
this purpose, aiming to create a large composite image from multiple smaller photos, each
containing its individual geolocation data stored in metadata. The resulting image is not
only detailed but also capable of covering extensive cultivated areas, providing an accurate
description and representation. On such created images, one must manually input the
index of interest and, after performing appropriate calculations, independently identify
areas exhibiting pathologies.

The currently used systems do not allow for the automatic detection of areas of interest,
for example, the detection of a specific pathogen in a given area, but only manual marking
with polygons. Such tasks are carried out by experts who analyze maps and manually
mark suspected occurrences of plant diseases or create reports on the crop quality status.
This process may carry the risk of errors or omitting critical regions due to noise or errors
resulting from image registration and atmospheric contamination. Illustrating this situation,
Figure 2 shows a generated map of the Leaf Chlorophyll Index (LCI), representing the
chlorophyll content in tree leaves. In its lower part, tree canopies with low chlorophyll
concentration can be easily isolated, while in the upper part, significant noise can reduce
the clarity of the analysis and mislead the analyst.
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However, convolutional neural networks can come to the rescue, as they specialize
in object detection, segmentation, and classification in images. These techniques can
significantly accelerate the process of examining a specific area and can do it more efficiently
than an analyst. By leveraging the knowledge of deep learning principles and using
available libraries that support multispectral image processing, it is possible to develop
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software capable of conducting specific analyses, marking areas with anomalies, or isolating
specific plant species with minimal user intervention.

The process of transforming raw georeferenced images into a human-interpretable
form and subjecting it to analysis is complex. Each image contains metadata marked
with specific tags, providing information about coordinates in relation to the adopted
georeferencing units, pixel size in relation to the chosen unit of measurement, the number
of raster bands with information about reflected light, encoding information, maximum
and minimum values, sunlight, cloud cover, and many others. Then, using this metadata, a
single high-resolution image covering the entire surveyed area (extent) is created from a
set of smaller images for analysis. There can be many more tags, and their quantity and
content depend on the camera and the programmer who, during the initial processing and
assembly of such an image, can define additional metadata.

Having the single assembled image, one must read the tags to extract information
about the layers and their dimensions. Then, individual layer data presented in the form
of separate arrays of the original image’s size should be extracted. By doing so, we can
generate an image with a specific analysis. Consequently, it becomes possible to create an
RGB image or, using appropriate arithmetic operations on individual layers, generate an
index map.

In the process of quantitative analysis, the image is fed into a deep neural network,
which, thanks to its trained weights, performs object detection on the image, providing
information about their coordinates and quantities. As the output of the detection process
is a list of polygons with their X and Y coordinates, it is relatively easy to relate them to the
actual geolocation coordinates and determine their quantity.

However, to conduct qualitative analyses, appropriate rasters containing information
about the registered spectrum of reflected light need to be processed using index-specific
formulas, which will yield the desired indexed map.

The block diagram in Figure 3 lists the steps to be performed in the analysis process.Sensors 2023, 23, x FOR PEER REVIEW 6 of 18 
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4. Neural Network Training

Due to the presence of a neural network in the proposed solution, it was necessary
to prepare an appropriate training database and conduct its learning. To efficiently and
quickly carry out this process, a powerful computing unit capable of hardware acceleration
is required. Cloud solutions offer such a possibility, providing server machines designed for
complex computations. Once the neural network’s weights were trained, libraries enabling
its implementation and image manipulation were utilized (Figure 4).
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For this project, the QT Framework was used for the graphical interface, along with
PyCharm and the Python programming language for image analysis, processing, and
application logic. The Computer Vision Annotation Tool v1.7.0 (CVAT, Figure 5) was
utilized for annotating and classifying objects on images for computer vision and artificial
intelligence purposes. The prepared images were then used to develop a training database
using data acquired from photogrammetric surveys.
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The images were divided into two sets, the training set and the validation set, due to
the characteristics of the training process of convolutional neural networks. The training
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set is used to train the detector so that it activates in the locations where the detected object
is present. However, to check if the detector responds correctly, it needs to be tested on a
set it has not seen before, namely the validation set. As a result, the training process of the
detector can be appropriately manipulated to improve its performance and achieve its task
more effectively.

Depending on the type of detection being conducted, several popular formats are used
for preparing the training dataset. The Common Objects in Context (COCO) format is the
most advanced one. It supports creating bounding boxes, polygons, skeletons, points, and
many others, for instance, segmentation, object detection, or skeleton tracking [44]. The
Pascal Visual Object Classes (VOC) format is also used, allowing annotations for objects
and instance detection like COCO, but the information is stored in an XML file instead
of a JSON file [45]. Additionally, there are formats like YOLO and ImageNet. The YOLO
format is specifically designed for annotating images for the You Only Look Once network
architecture, which is used exclusively for object detection, supporting only bounding box
creation. On the other hand, ImageNet’s format is similar to Pascal VOC in usage since
annotations are stored in XML, but it supports only object detection. To perform instance
segmentation of objects, the prepared training dataset was based on the COCO format.

The learning process was based on the Detectron2 model, an updated version origi-
nally based on the Faster R-CNN model, created by the Facebook AI Research team [46].

Detectron2 naturally derives from the Faster R-CNN architecture, whose base detector
is built upon the Feature Pyramid Network (FPN) [47]. By utilizing the FPN, Faster R-CNN
becomes a multi-scale detector, enabling the detection of objects both small and large.
Consequently, it serves as the backbone of the Detectron architecture. Its primary task is to
extract feature maps for the input image at various scales. The scales divide the image into
1/4 (P2), 1/8 (P3), 1/16 (P4), 1/32 (P5), and 1/64 (P6) of the original resolution. From each
scale layer, the Region Proposal Network (RPN) identifies object regions in the feature map,
providing a confidence level for each detection. Next, the Box Head trims the objects and
extracts the essence from the feature maps to dimensions proposed by the RPN, forming
multi-dimensional features of constant size. Fully connected layers fine-tune the location of
bounding boxes and classify the detected objects. Finally, the result of all these operations
is 100 (by default) boxes which are filtered using non-maximum suppression [48].

Knowing that the first part of the Detectron2 architecture relies on feature extraction, by
downsizing the input image’s scale by subsequent powers of two, images with dimensions
of 256 × 256 pixels resulting from cropping the indexed map after the Optimized Soil
Adjusted Vegetation Index (OSAVI) analysis were prepared. In this way, a training and
validation dataset of five images each was obtained. Despite having a very small training
dataset, the annotation process yielded over 1200 instances of objects, and for the validation
set, over 800 instances. For research purposes, young butterhead lettuce was selected as the
crop for detection.

The utilization of advanced learning and image processing algorithms required pow-
erful computing units. Leveraging hardware acceleration, the learning process took approx-
imately 4h on highly efficient NVIDIA Tesla P4 graphic cards. This process was conducted
on the Google Colab platform, which provides an environment and hardware architecture
for such tasks. The preparation of the training environment is depicted in Figure 6. It shows
the sequential import of the training dataset, its registration as a dataset compatible with
the COCO standard [49], the preparation of a pre-trained model provided by the creators
of the architecture, the configuration of learning parameters, and the initiation of the entire
process. To speed up the learning process, the authors used a method called transfer
learning. It involves utilizing a pre-trained model with learned weights and activation
tensor layers for certain characteristic features of the image and adapting it to the current
training data. This way, the improved model gains additional information that could not
be extracted from a small training dataset while also shortening the learning time.



Sensors 2023, 23, 9251 8 of 17Sensors 2023, 23, x FOR PEER REVIEW 9 of 18 
 

 

 

Figure 6. Diagram showing the operation of the Google Colab script for network training. 

 

Figure 7. Plots showing the accuracy of the classification of detected objects during training (left) 

and the percentage of false negative samples (right). 

5. Implementation 

Based on the promising learning results, the authors created an application that 

would facilitate the creation of index maps and conduct quantitative crop analysis. The 

application consists of a backend and a frontend layer. The backend, written in Python, 

manages all the logic and analysis processes, implements the functionality of the De-

tectron2 network architecture, and handles the import and arithmetic operations on mul-

tispectral images. The frontend layer is responsible for the user interface and is written in 

QML, a modification of JavaScript. The Signal-Slot system enables the calling of functions 

and data transfer between the frontend and backend layers. The architecture of the pre-

pared application is depicted in Figure 8. The logic and interface layers are shown in the 

diagram, with corresponding classes inheriting from each other. 

Figure 6. Diagram showing the operation of the Google Colab script for network training.

After the completion of the learning process, the trained weights were saved, and
model evaluation was performed. Consequently, plots were generated to visualize how
well the network underwent the learning process (Figure 7). The first plot displays the
accuracy achieved by the network, which is the ratio of correctly detected objects to the total
number of annotated objects, expressed as a percentage. The second metric shown is the
percentage of false negatives, which represents objects incorrectly classified as background
and belonging to the described class. As observed, the learning process was chaotic, but
with each iteration through the network, its parameters improved. This was due to the small
number of batch images, resulting in a more stochastic process of improving prediction
accuracy. Nonetheless, notable benefits arose from the implementation of transfer learning.
After just a thousand iterations, the network achieved an accuracy exceeding 90%, and
with each subsequent iteration, its precision continued to increase.
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5. Implementation

Based on the promising learning results, the authors created an application that would
facilitate the creation of index maps and conduct quantitative crop analysis. The application
consists of a backend and a frontend layer. The backend, written in Python, manages all
the logic and analysis processes, implements the functionality of the Detectron2 network
architecture, and handles the import and arithmetic operations on multispectral images.
The frontend layer is responsible for the user interface and is written in QML, a modification
of JavaScript. The Signal-Slot system enables the calling of functions and data transfer
between the frontend and backend layers. The architecture of the prepared application
is depicted in Figure 8. The logic and interface layers are shown in the diagram, with
corresponding classes inheriting from each other.
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The frontend layer is based on the main window class, which contains all graphical and
interactive elements. There are several key elements defining the operation of the graphical
interface and interactions with the user, including project creation and communication with
the backend.

• Image Container: Stores an object containing the loaded image and allows interaction
with it through mouse cursor movement and scaling. It aggregates the Image Element.

• Image Element: A crucial element responsible for storing, displaying, and creating
maps on the graphical interface. It reloads the image and displays it after analysis
when the appropriate signal is received from the backend.

• Polygon Canvas: Enables drawing polygons on the image.
• Polygon List: Stores a list of drawn polygons, allowing the user to select areas of the

map for analysis.
• Dialogs: Manages dialog windows, pop-ups, and feedback messages. It handles

project creation, selection of feedback information files related to the analysis, and
other summary windows.

• Menu Top: Contains tools that users can use during interaction with the application.
• Connections: Responsible for managing signals and connections between the frontend

and backend as well as signals within classes and elements of the user interface.
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The backend layer mainly consists of two key objects. The first one is QGuiApplication,
which creates support for system interruptions needed for the application’s functioning.
The second one is QQmlApplicationEngine, which launches the application and allows
interaction between the frontend and backend. Within it, there is a class called AppCore
which aggregates all the other classes operating within the program. It implements the
singleton design pattern, which means there is exactly one instance of each class within
this main object. In this case, these classes are:

• OpencvImageProvider: Responsible for loading images, storing them in the engine’s
memory, and appropriately managing all the results of the conducted analyses. Addi-
tionally, it facilitates sending images to the user interface.

• ProjectManager: Used in the initial phase to create a project and later to save it and
generate reports from the conducted analyses.

• PolygonManager: Stores data related to specific analyses. For qualitative analysis,
it provides the averaged index value for the area, while for quantitative analysis, it
provides the number of detected object instances. Its data are used by ProjectManager
to generate the appropriate report. It also contains information about the list of
polygons and points, which is used to visualize them on the user interface.

• Processing: Implements the entire process of both qualitative and quantitative analyses,
including generating index maps and using artificial intelligence for
quantitative analysis.

The application uses multiprocessing to create separate processes to optimize the pro-
gram’s performance and avoid blocking other threads, such as the one responsible for the
graphical interface. The architecture of the application with inter-process communication
is presented in Figure 9.
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The creation of an index map is done by importing a multispectral map in the .tiff
format and processing it within the application engine. For this purpose, the GDAL library
is utilized. It supports reading and writing of geospatial raster images, handling various
common extensions, and encoding and decoding metadata tags associated with the images.
The map is loaded into a list with dimensions W × H × N, where: W (width)—the size
of the image horizontally, H (height)—the size of the image vertically, N—the number of
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registered bands. Depending on the camera used to capture the images, the raster data of a
single pixel may be stored as a variable of different sizes, but it is commonly assumed to
be stored as int16 type. This prepared list can serve as the source data for further analysis.
Then, the red, green, and blue color bands are extracted and combined to form an RGB
image, which is more interpretable than a mixed or monochromatic image. By using
the OpenCV and Numpy libraries, combining multiple layers into a single image can be
achieved quickly through matrix operations. Consequently, a clear terrain map is obtained.
Once this preparation process is complete, a corresponding signal is sent to the frontend of
the application to reload/load the graphic. This way, an RGB image is generated on the user
interface from the previously loaded layers. Utilizing the aforementioned ability to analyze
data areas, the user marks the desired area with points to create an appropriate polygon,
with its vertices corresponding to specific points on the image and georeferenced on the
ground. Upon user confirmation of the requested operation, a specific signal is sent and
intercepted by the appropriate slot (which is essentially a function with the corresponding
decorator), initiating the background analysis process. By utilizing the multiprocessing
library, a separate non-blocking process is created, ensuring that the main interface loop is
not affected. The “worker” of this process is provided with the loaded multidimensional
list of multispectral images and a list of polygons with areas for analysis. The algorithm of
the implemented solution is presented in Figure 10.
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Figure 10. An algorithm creating an index map for a given analysis.

After the user indicates the type of analysis, an empty polygon list is created. Then, a
copy of the original image is made, and the appropriate bands are retrieved and stored as a
list. Next, the user-defined polygons to be analyzed are added to a variable if there are mul-
tiple polygons. Then, for each polygon, their coordinates are extracted, and the correspond-
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ing photogrammetric bands are extracted from the list and passed to the map_generator()
function. For each analysis, this function is customized to the specific index we want to
obtain. In this function, an equation is implemented that calculates the index value (e.g.,
NDVI) for the given pixels using the following formula [5]:

NDVI = (NIR − VIS)/(NIR + VIS)

As a result, a set of pixels with calculated index values is obtained, which are then
overlaid on the original image. The final step of the process is emitting signals to reload the
image on the frontend layer.

In the case of quantitative analysis, the process is the same up to the point of cropping
the bands to the required input size for the detector. In the next step, the appropriate
weights are loaded. If these weights are not available in the project folder at the specified
path, the user must specify which model to load. With the prepared input data, the
model loads the configuration regarding the threshold values at which classification and
separation of the detected object from the background are performed, resulting in a list of
coordinates with polygons.

Due to the large number of objects in the image, image processing can be very time-
consuming as well as consume a large amount of RAM, as observed during testing by the
authors of this project. With the mentioned list of coordinates, it is possible to overlay
the polygons and their confidence labels on the image for visualization. Additionally, by
combining the previously conducted quantitative analysis on a specific area, it is possible
to link it to the detected object, thus providing an analysis for each individual plant and
determining its health status.

6. Results

The operation of the application for a sample area and the NDVI vegetation index
can be observed in Figure 11. As a result of its function, it was possible to load a large
georeferenced image file and generate a vegetation index map within the marked square
polygon area. At the same time, the application maintained smooth performance, and its
operation did not consume significant resources except for the RAM, where the loaded
image is stored.
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In Figure 12, in a large zoom-in view, one can observe how Detectron2 performs object
detection and segmentation oriented towards the OSAVI index. Despite the small size of
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the input image (256 × 256) and the small objects, it was able to correctly recognize and
isolate most of them from the background.
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In order to assess the quality of the trained model, the AP (Average Precision) metric
was employed. This metric is applicable in tasks related to object detection, segmentation,
and separation in artificial intelligence models. It not only informs us about whether an
object was correctly classified but also measures how close the predicted bounding box
and segmentation mask are to the real object’s position, separating it from the background
or objects of other classes. In the model evaluation process, it is first tested on a dataset,
and then precision and recall are calculated for various decision thresholds. Precision is
the ratio of true positive detections (correctly classified) to the sum of true positive and
false positive detections. Recall is the ratio of true positive detections to the sum of true
positive detections and false negative detections. For each point on the precision–recall
curve, interpolation is performed to obtain a smooth curve by replacing precision at a given
point with the maximum precision value for any higher recall. AP is calculated as the
average precision value after interpolation for all recall values.

Mathematically, AP is computed as the sum of recall differences multiplied by preci-
sion at each point:

AP = sum(Rn − Rn−1) × Pn

where Rn and Pn represent recall and precision at the n-th point on the curve, and the sum
is calculated over all points on the curve.
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The AP metrics are calculated for various Intersection over Union (IoU) thresholds.
IoU, in turn, represents the ratio of the overlapping area between two segmentation masks
or bounding boxes to the sum of these two areas. In other words, if the location prediction
is perfect, IoU is equal to 1, and if the prediction does not overlap with the reference at all,
IoU is 0. AP50 uses an IoU threshold of 0.5, AP75 uses an IoU threshold of 0.75, and AP95
calculates the average AP across IoU thresholds from 0.5 to 0.95 with a step size of 0.05.

The quality analysis of the trained model consisted of two stages. First, the quality of
object bounding box predictions was examined, followed by the assessment of segmentation
mask predictions. The results are presented in Table 1. The “AP” column represents the
average of all precisions at IoU thresholds from 50 to 95. The next columns show the
average accuracy for IoU thresholds of 50% and 75%, and the last column is “AP50:95” for
a small detection area.

Table 1. Prediction quality for bounding boxes and segmentation masks using various AP metrics.

Prediction AP AP50 AP75 AP50:95

Bounding boxes 56.096 89.069 66.683 56.096
Segmentation masks 54.253 89.069 58.230 54.253

As observed, the prediction of bounding boxes for IoU 50% and 75% is very good,
with accuracies of 89% and 66%, respectively. On the other hand, the prediction of seg-
mentation masks for IoU 50% has a high accuracy of 89%, while for IoU 75%, it is lower at
58%. The reason for this discrepancy may be the size of the detected lettuce in the culti-
vated area, which averaged around 28 pixels, depending on its growth stage. Therefore,
even slight inaccuracies in mask predictions resulted in a significant reduction in the AP
metric’s quality.

7. Conclusions

The authors of the work have created a system for simultaneous analysis of the quality
and quantity of crops. The detector exhibits high confidence in its predictions, but it also
shows some shortcomings in generalizing the features of the remaining undetected lettuce.
This phenomenon may be attributed to two reasons. First, the dataset used for training
might have been too small and should be enlarged and diversified more randomly. Another
reason could be overfitting, a situation where the model becomes too specific to the training
data, losing its ability to effectively generalize features.

The potential for further development of the application is quite significant. The
trained neural network worked on the lettuce dataset, but it can be quickly and efficiently
retrained to detect other objects, such as apple tree crowns, beet crops, etc. Furthermore,
the network can be fine-tuned to detect specific shapes or arrangements of objects, which
can positively influence the quality of the subsequent analysis process. Each individually
detected object can undergo individual analysis to identify specific crop pathogens, or
this process can be automated to only return diseased plants or crop parts that require
specific care. In this way, farmers can have better control over their crops, taking preventive
measures against diseases in a timely manner or determining the ideal time for harvesting.
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