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Abstract: This study proposed a strategy for a quick fault recovery response when an actuator failure
problem occurred while a humanoid robot with 7-DOF anthropomorphic arms was performing a
task with upper body motion. The objective of this study was to develop an algorithm for joint
reconfiguration of the receptionist robot called Namo so that the robot can still perform a set of
emblematic gestures if an actuator fails or is damaged. We proposed a gesture similarity measurement
to be used as an objective function and used bio-inspired artificial intelligence methods, including
a genetic algorithm, a bacteria foraging optimization algorithm, and an artificial bee colony, to
determine good solutions for joint reconfiguration. When an actuator fails, the failed joint will be
locked at the average angle calculated from all emblematic gestures. We used grid search to determine
suitable parameter sets for each method before making a comparison of their performance. The results
showed that bio-inspired artificial intelligence methods could successfully suggest reconfigured
gestures after joint motor failure within 1 s. After 100 repetitions, BFOA and ABC returned the
best-reconfigured gestures; there was no statistical difference. However, ABC yielded more reliable
reconfigured gestures; there was significantly less interquartile range among the results than BFOA.
The joint reconfiguration method was demonstrated for all possible joint failure conditions. The
results showed that the proposed method could determine good reconfigured gestures under given
time constraints; hence, it could be used for joint failure recovery in real applications.

Keywords: artificial bee colony algorithm; bacteria foraging optimization algorithm; bio-inspired
computing; failure recovery; genetic algorithm; joint reconfiguration; humanoid robots; redundant robots

1. Introduction

Recently, a greater number of social robots have been introduced to the service industry.
Anthropomorphic or humanoid social robots were designed and developed to attract
special attention from human users. An anthropomorphic robot arm allows design flexible
movement that can be easily adapted to various situations. A human arm can be modeled
as a 7-DOF kinematic model [1]; thus, an anthropomorphic robot arm should be at least
7-DOF to be able to mimic human-like motion. An anthropomorphic robot arm that has
7-DOF would have redundancy to perform many tasks similar to humans. However, since
high numbers of actuators are required for an anthropomorphic 7-DOF arm design, most
humanoid robots [2] have only 6-DOF or less-than-6-DOF arms.

Since 2010, the humanoid receptionist robot called Namo, which was developed by
the Institute of Field Robotics, KMUTT, has provided services for different social functions
such as opening ceremonies, fashion shows, etc. [3]. Namo has two 7-DOF arms, which
were designed to mimic human arms so that the robot can perform human-like upper-body
movements. Over the past few years, the reliability of the robot has become a critical issue.
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When only one of the actuators was malfunctioning, the robot was not able to perform
the tasks at hand, which caused serious problems, especially in time-critical situations.
This issue raised a research question on how to allow high-degree-of-freedom humanoid
robots to continue their operation even when some actuators malfunction or are damaged,
especially with anthropomorphic 7-DOF arms that have redundancy in their design. The
process that allows the robot system to generate a new motion trajectory for completing the
tasks with the remaining actuators is called joint failure recovery.

One way to handle the problem of some actuators malfunctioning is designing and
developing robots with redundancy mechanisms [4–8]; redundant robots are designed to
have more degrees of freedom than required to perform their tasks. These redundant joints
can be used to replace the failed joints and allow the robot to complete its tasks under the
joint failure condition in many different ways. For example, Lewis and Maciejewski [9]
used a 6 DOFs joint space PUMA560 robot manipulator for the end-effector, which requires
3 DOFs task space, and defined inverse kinematic joint velocities redistribution for the
redundant joints after a joint failed and locked at a position. Elsayed et al. [10] proposed
a differential-kinematics-based method to control the movement of neighbor joints of the
failed joint in a snake robot in order to recover from the failure to regain the snake-like shape
and resume locomotion. Chen et al. [11] proposed an optimization method to optimally
control the velocity and torque of remaining joints after a locked-joint failure occurred in
order to reduce the joint parameter jump of a space manipulator when carrying a load.

The concept of using redundancy in robots became commonly applied. Instead of
using complex computation to reconfigure the remaining joints, another approach to
handling the failure recovery problem is using soft computing techniques [12,13]. Nature
provides several good examples of using adaptation to solve a problem. Animals can adapt
to their injuries; although adapted gait may not be the same as normal gait, the animals can
still move from one place to another. Cully et al. [14] were inspired by those animals and
proposed a trial-and-error learning algorithm from the robot’s previous performance before
damage occurred. Cully et al. demonstrated the algorithm performance on a hexapod
robot adapting to recover from damaged legs in fire damage scenarios; the robot could
adapt within two minutes. Dereli and Köker [15] used a quantum-behaved particle swarm
optimization algorithm (Quantum PSO) to solve the inverse kinematic of a 7 DOFs serial
robot manipulator. Compared with other swarm intelligence techniques, including particle
swarm optimization (PSO), firefly algorithm (FA), and artificial bee colony (ABC), Dereli
and Köker found that the estimated position of the end effector by Quantum PSO was
more accurate and required less computation time. There are research studies that use
different bio-inspired artificial intelligence methods for solving inverse kinematics of the
7-DOF robotics manipulator, including the slime mold algorithm [16], boundary-restricted
PSO [17], firefly algorithm [18], and artificial bee colony [19].

From the literature, the strategy for robots to recover from joint failure is using re-
dundant design and then performing computational reconfiguration of the remaining
functional joints to cope with the failed joint. Inverse kinematics [20,21], quadratic pro-
gramming algorithms [22], and optimization methods [11,23] are often used for joint
reconfiguration; however, these methods require complex computations, which could lead
to high computation resources and be time-consuming when used in real situations. The
approach using metaheuristic methods or soft computing algorithms could help reduce the
computational complexity and determine a good joint-reconfiguration solution for redun-
dant robots within an acceptable computation time, as shown in [15]. Unlike in industrial
robot manipulators, joint failure recovery of a humanoid receptionist robot must preserve
the robot’s communication ability by its basic gestures. Gestures are a part of non-verbal
communication that are important for human–robot interactive communication [24]. In this
study, we proposed the use of bio-inspired artificial intelligence algorithms for the failure
recovery of a service semi-humanoid robot with redundant manipulators to maintain its
emblematic gestures within a given reconfiguration time constraint.
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2. Materials and Methods
2.1. Namo Robot

Namo is a semi-humanoid receptionist robot, as shown in Figure 1. Namo’s head
can move with three degrees of freedom. Namo has two anthropomorphic arms designed
to mimic human arms so that most emblematic gestures can be naturally performed by
the robot. With these two arms, Namo can perform 13 pre-defined gestures. In this
study, we used the 4 main gestures for her normal operations as a receptionist robot.
Figure 1 illustrates Namo’s 4 main emblematic gestures, including Wai (or Thai greeting),
Bye, Salute, and Side Invite. We paid particular attention to the Wai gesture as it is the
traditional greeting of Thailand and an important part of Thai social behavior.
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Figure 1. Namo’s main emblematic gestures used in this study: (a) Wai (or Thai greeting), (b) Bye,
(c) Salute, and (d) Side Invite.

Each arm has seven degrees of freedom. The actuators are located on Namo’s arm,
as illustrated in Figure 2a. The forward kinematics of Namo’s arms were analyzed with
the Denavit–Hartenberg Convention [25]. Figure 2b illustrates the kinematic chains with
Denavit–Hartenberg frames of Namo’s right arm as an example. The parameter setting for
the Denavit–Hartenberg convention of Namo’s arm is shown in Table 1.

Table 1. Parameter setting for the Denavit–Hartenberg convention of Namo’s right arm.

Joint No. θi
(Degree)

di
(mm)

ai−1
(mm)

αi−1
(Degree)

1 θr1 + 90◦ 182 0 90◦

2 θr2 + 90◦ 0 0 90◦

3 θr3 − 90◦ 206.5 0 −90◦

4 θr4 0 0 −90◦

5 θr5 + 90◦ 206 0 90◦

6 θr6 − 90◦ 0 0 90◦

7 θr7 0 0 −90◦

E 0 0 −130 0
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frames.

2.2. Gesture Similarity Measurement

Unlike joint failure recovery for robot manipulators, joint failure recovery for hu-
manoid receptionist robots requires not only the correct end-effector position but the
overall robot arms’ positions must also represent the correct emblematic gestures; the
output combination of elbow, wrist, and palm positions should be perceived by humans as
emblematic gestures. We proposed a gesture similarity measurement to be the measure for
evaluating the similarity between the new joint configuration and the original configuration
for each gesture. The gesture similarity score consists of four weighted terms from four
components of the arm, including the elbow, wrist, fingertip, and palm orientation, as in

score = (welbow·delbow) + (wwrist·dwrist) + (wtip·dtip) + (ws·ds), (1)

where d is the Euclidean distance between the 3D space position of the reconfigured joint
angle and that of the reference joint angle of the gesture. Greater distance expresses less
similarity to the reference gesture. The Euclidean distance is used for the elbow, wrist, and
fingertip components. Figure 3b illustrates the frame-based model of Namo’s right arm in
simulation, as shown in Figure 3a; the reconfigured gesture of Namo’s right arm is shown
in orange, while the reference gesture is shown in blue. The orange dotted line denotes the
distance vector between the joint position of the reconfigured and reference gesture at the
same component.

For the hand orientation, we used the distance between rotation quaternions instead.
Assuming that the reconfigured wrist is at the same position as the reference wrist, as
illustrated in Figure 3c, we calculated the different angles from the distance between the
rotation quaternion of the reconfigured hand, p, and that of the reference hand, q. Then,
ds is the angular distance between the reconfigured hand orientation and the reference
hand orientation.

For Wai, both of Namo’s arms need to be in the correct position in order to represent
the Thai greeting properly. Therefore, we added two more components in (1) to include the
distance between the wrist of the left and right hands, dwrist_LR, and the distance between
the fingertip of the left and right hands, dtip_LR, in the gesture similarity measurement, as

score = (welbow·delbow) + (wwrist·dwrist) + (wtip·dtip) + (ws·ds)
+ (wwrist_LR·dwrist_LR − doffset)

+ (wtip_LR·dtip_LR − doffset),
(2)
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where doffset is the offset value for the thickness of the hand. In this study, the weight values
for (1) and (2) were set as equal weight values for all components.
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concept for hand orientation similarity measurement.

2.3. Bio-Inspired Joint Reconfiguration Method for Failure Recovery

To solve the problem of joint failure recovery for humanoid receptionist robots, the
method should find the reconfigured joint angles of the remaining joints that allow the
robots to perform emblematic gestures; the output gestures may not be completely the same
as the reference gestures but still communicate the meanings of those gestures. Similar
to the way that animals adapt themselves to walk after a leg injury, bio-inspired artificial
intelligence methods simulate self-organized mechanisms occurring in nature and use
them to solve complex optimization problems [26]. In this study, we proposed the use
of bio-inspired artificial intelligence methods for the joint reconfiguration of humanoid
receptionist robots when one reference joint angle set for each emblematic gesture is
available to the robots.

Once that joint failure occurs, the robot cannot control the failed joint to a desired
angle. In this study, we proposed to lock the joint at a specific angle. We determined the
locked angle by averaging the joint angles of that failed joint from all reference emblematic
gesture sets; the average joint angle could potentially be a less restrictive constraint to the
robot system to regenerate a good gesture reconfiguration of the remaining joints for all
emblematic gestures. Under the constraint that the joint angle of the failed joint is locked at
a specific angle, the bio-inspired artificial intelligence methods, e.g., genetic algorithm (GA),
bacteria foraging optimization algorithm (BFOA), and artificial bee colony (ABC), are used
as optimizers to generate joint angle sets of the remaining joints and determine a good joint
reconfiguration solution that minimizes the difference between the reconfigured gestures
and the reference gestures. The similarity to the reference gesture set is the objective
function for the joint failure recovery problem; the greater similarity indicates the better
joint reconfigured solution. We used the proposed gesture similarity measurement in
(1) as the fitness evaluation of the generated joint reconfiguration. After running iterations
of bio-inspired artificial intelligence methods, the reconfigured gesture sets were obtained.
Figure 4 illustrates the process of the gesture reconfiguration methods with single reference
sets. Joint reconfiguration can be conducted separately for each emblematic gesture.
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2.4. Performance Analysis

We demonstrated the performance of the bio-inspired gesture reconfiguration method
with three techniques: GA, BFOA, and ABC. We explored the differences in using different
techniques for the same failure recovery problem on the Namo robot. The locked joint
angle for each of the joints that are averaged from the reference gesture can be expressed
in Table 2. Because the performance of each algorithm depends on how the solution
representation and parameter setting are set appropriately to the problem, the parameter
tuning is performed using a grid search to determine the most appropriate model parameter
set for each algorithm before making a comparison of the performance between methods.
The grid search was carried out for the Wai gesture, which is the most complex gesture
among other emblematic gestures. The tuned parameter sets given the maximum similarity
gesture were then used in joint reconfiguration when each joint failed to function. The
experiment setup for these algorithms is explained as follows.

Table 2. The joint angles for all emblematic gestures in this study and the averaged joint angles.

Gesture
Joint Angle (Degree)

1 2 3 4 5 6 7

Wai 30 5 −45 90 −10 −45 45
Bye 46 −11 24 95 −53 −32 41

Salute 100 −43 −45 100 47 28 10
Side Invite 34 −8 45 72 51 26 26

Average 52.5 −14.25 −5.25 89.25 8.75 −5.75 30.5

2.4.1. Genetic Algorithm

The GA was inspired by the evolution of life in nature. Each chromosome has geno-
types that can be expressed to the phenotypes of the lifeform. Through natural selection
among the population of lifeforms, better individuals can exist, mate, and reproduce new
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offspring. The chromosomes of the new offspring can inherit some of their parents’ geno-
types through the crossover process and may have some deviated genotypes from the
parents through the mutation process. With a number of generation cycles, it is possible
that the offspring from the later generation can evolve to survive in the environment better
than their ancestors. GA simulates such an evolution process and uses the process to solve
many complex problems [27–30]. Further details about GA can be found in [27].

In this study, the genetic representation of the chromosome is set as a sequence of
6 real-valued numbers, which correspond to the 6 remaining joint angles to be reconfigured.
A population of chromosomes was randomly generated with uniform distribution. The
parents for crossover operations were chosen at random. We chose a one-point crossover for
this problem. The population in the next generation was reproduced by generation rollover,
where the new, better offspring replaced the worst individuals. The key parameters that
regulate the evolution process for GA include the population size, crossover rate, mutation
rate, mutation step size, and the maximum number of generation cycles.

2.4.2. Bacteria Foraging Optimization Algorithm

BFOA was inspired by the foraging behavior of E. coli and M. xanthus bacteria [31].
With chemotaxis, which is the movement based on their senses of the changing con-
centration of nutrients in the environment, bacteria can move toward the food location;
additionally, they can release chemical substances to attract and recruit other bacteria in the
area to the location as well. These bacteria move with the flagella that rotate to create force
and push them in one direction [32]. They can perform two movement patterns: swimming
and tumbling. When they sense the target, they move with the swimming pattern toward
the target. The tumbling pattern allows the bacteria to move in a random direction. Bacteria
use these two movement patterns in their foraging to increase the foraging area and to
collaboratively find their food; many studies [33,34] have successfully used BFOA to solve
complex problems. Further details about BFOA can be found in [27].

Similar to the GA algorithm, each bacterium is a sequence of 6 real-valued numbers.
The control parameters for BFOA include the population size, the number of chemotactic
steps, the swimming length, the number of swim steps, the number of elimination–dispersal
events, the number of reproduction steps, and the probability of elimination. Additionally,
the control parameters for the swarming dynamics of the bacteria population that should
be set appropriately to the application include the depth of attractant released by the cell,
the width of the attractant signal, the height of the repellant effect, and the width of the
repellant effect.

2.4.3. Artificial Bee Colony Algorithm

ABC was inspired by the foraging behavior of honey bees [35]. During foraging, bees
can be in three statuses. The bees that find food sources are called employed bees. Onlooker
bees are those staying at the hive and waiting for information. The employed bees fly
back to the hive and share information about the quality and location of the food sources
they found through waggle dances. Scout bees are bees that explore a new food source.
ABC simulates the bee foraging behavior with these three phases to find a good solution
for complex problems in many research areas [35,36]. Further details about ABC can be
found in [37].

The dimension of the search space in this problem is 6 according to the 6 remaining
joint angles to be reconfigured. Each employed bee represents the solution or food source
location in the search space. The best solution has the minimum difference from the
reference gesture. The control parameters for ABC include the number of employed bees,
the limit number that employed bees will search until abandoning the area to explore other
areas in the search space, and the maximum number of cycles. Note that ABC uses the
same number of employed bees for onlooker bees at the hive. While employed bees exploit
the food source area that they found, onlooker bees can be recruited to explore the adjacent
area from the food source the employed found.
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3. Results and Discussion

In this study, we used bio-inspired artificial intelligence algorithms, including GA,
BFOA, and ABC, for joint reconfiguration after a joint failure of a service semi-humanoid
robot with redundant manipulators to maintain its emblematic gestures. To be used instead
of using complex, time-consuming computation of inverse kinematics, the bio-inspired joint
reconfiguration results must be within the acceptable difference from the reference gestures;
in addition, the computation time must be low enough to allow quick maintenance so that
the service robot could continue her duty. All the experiments were run on a computer with
a 12th Gen Intel (R) Core (TM) i7-12700K (5 GHz) with 64 GB RAM, running on Ubuntu
22.04 with Visual Studio Code IDE, implemented with Python 3.9 and NumPy 1.20.3.

3.1. Parameter Set Tuning for Optimal Solution

We performed a grid search on varying control parameter values of each algorithm
on the Wai gesture in order to determine a good combination of parameters that yields
the minimum gesture difference from the reference gesture within 1 s of computation time
for joint reconfiguration. We conducted an experiment in the case where Joint 2 failed
as an example in this study. The tuned parameter sets given the maximum similarity
gesture for GA, BFOA, and ABC are reported in Table 3. ABC returned the best joint
reconfiguration solution that had minimum difference from the reference gesture, while the
best solution from GA had the largest difference from the reference gesture. The best joint
reconfiguration solution from ABC had a similar difference value to BFOA but took a little
less computation time than BFOA. Although the population size for ABC seems smaller
than BFOA, as shown in Table 3, which may be the reason for the lower computation
time, ABC uses the same number for both employed bees and onlooker bees, so the actual
population size is the same as BFOA. In terms of ease of use, ABC has a smaller number of
control parameters than BFOA; hence, it seems more convenient to apply ABC in real joint
reconfiguration applications.

Table 3. The tuned parameter sets and best joint reconfiguration solutions when joint 2 failed.

Control Parameter Values Best Gesture
Similarity Score

Computation
Time (s)

GA 58.1797 0.6540
Population size 80
Maximum iteration 50
Crossover rate 0.8
Mutation rate 0.25
Mutation step size 0.15

BFOA 57.1479 0.5655
Population size 10
Swimming length 0.5
Number of elimination-dispersal events 2
Number of reproduction steps 6
Number of chemotactic steps 10
Number of swim steps 15
Probability of elimination-dispersal 0.3
The depth of the attractant signal 0.4
The width of the attractant signal 0.3
The height of the repellant effect 0.4
The width of the repellant effect 0.3

ABC 57.1431 0.5457
Population size 5
Maximum iteration 500
Limit 150

The best values are shown in bold.
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We used the tuned parameter sets of each algorithm for emblematic gesture reconfigu-
ration on the Namo robot when Joint 2 failed to function. The experiment was repeated
100 times in order to test if the tuned parameter sets could be used for other emblematic ges-
tures. The resulting gesture similarity measurement to the reference gestures and resulting
computation time are reported in Tables 4 and 5, respectively.

Table 4. The descriptive statistics of difference from reference gestures of GA, BFOA, and ABC
reconfigured gestures from 100 repetitions using the tuned parameter sets.

Emblematic
Gestures

Descriptive Statistics of Difference from Reference Gestures
Kruskal–Wallis

TestMIN MAX MEAN SD Median Interquartile
Range

Wai
GA 58.1797 88.1129 70.7241 5.9783 70.6528 9.0588 H(2) = 144.539

p = 0.000BFOA 57.1479 139.2824 64.4391 16.8914 58.4939 3.4149
ABC 57.1431 83.2653 59.1699 3.0858 58.1876 2.1447

Bye
GA 6.0976 55.3328 26.9466 10.0887 25.6681 14.0880 H(2) = 138.612

p = 0.000BFOA 3.4758 82.5701 16.8547 17.9914 9.4605 16.5519
ABC 3.2491 61.4498 6.8030 6.6568 5.6970 3.7215

Salute
GA 37.2962 64.8065 48.6495 6.5060 48.4423 9.7109 H(2) = 133.416

p = 0.000BFOA 35.4799 123.0403 51.0233 25.0001 37.5537 20.9101
ABC 35.4694 42.6509 36.2064 1.1113 35.8170 0.8266

Side Invite
GA 8.8991 34.1130 19.6917 6.4367 19.4553 10.2574 H(2) = 97.740

p = 0.000BFOA 7.5411 124.6998 27.7533 28.9818 11.0276 37.2525
ABC 7.4523 37.3143 9.3562 3.3229 8.6145 1.8183

The best values are shown in bold.

Table 5. The descriptive statistics of computation time of GA, BFOA, and ABC output gestures
reconfigured gestures from 100 repetitions using the tuned parameter sets.

Emblematic
Gestures

Descriptive Statistics of Computation Time (Seconds)
Kruskal–Wallis

TestMIN MAX MEAN SD Median Interquartile
Range

Wai
GA 0.6120 0.7307 0.6635 0.0316 0.6531 0.0202 H(2) = 192.905

p = 0.000BFOA 0.4658 0.6895 0.5669 0.0456 0.5674 0.0713
ABC 0.5427 0.5729 0.5504 0.0050 0.5500 0.0058

Bye
GA 0.5529 0.6139 0.5725 0.0212 0.5604 0.0435 H(2) = 151.510

p = 0.000BFOA 0.4291 0.6526 0.5256 0.0371 0.5215 0.0478
ABC 0.5290 0.5550 0.5365 0.0045 0.5356 0.0037

Salute
GA 0.5441 0.6098 0.5608 0.0197 0.5496 0.0402 H(2) = 88.890

p = 0.000BFOA 0.4186 0.6195 0.5415 0.0487 0.5433 0.0700
ABC 0.5274 0.5500 0.5356 0.0046 0.5352 0.0050

Side Invite
GA 0.5431 0.6034 0.5601 0.0199 0.5492 0.0392 H(2) = 103.477

p = 0.000BFOA 0.4427 0.6216 0.5338 0.0394 0.5375 0.0577
ABC 0.5261 0.5501 0.5356 0.0053 0.5344 0.0077

The best values are shown in bold.
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The tuned parameter sets from performing a grid search on joint reconfiguration with
the Wai gesture can be used for other gestures as well. Using the Kruskal–Wallis test,
it can be concluded that using different algorithms demonstrated significantly different
effects on gesture similarity and computation time for joint reconfiguration. Compared to
other algorithms, after 100 repetitions, ABC resulted in the best values in many aspects.
ABC yielded lower difference values from the reference gestures, except for the lowest
difference in the Salute gesture; however, the values are not significantly different. ABC
produced more reliable results, as shown in Table 4, with the lowest SD and interquartile
range for all gestures. When comparing two unmatched algorithms’ solutions with the
Mann–Whitney test, it was found that most of the algorithms’ solutions are distinctive
from each other in terms of gesture similarity (p = 0.000), except for the Wai gesture for
which BFOA and ABC did not show the difference (p = 0.072). On the other hand, the
Mann–Whitney test on computation time suggested that all algorithms’ solutions returned
with distinct computation time from other algorithms’ solutions (p = 0.000), except for the
Salute and Side Invite gestures for which BFOA and ABC did not show the difference
(p = 0.274 and p = 0.642, respectively). BFOA used the lower computation time to yield the
solutions in most cases, as shown in Table 4. Nevertheless, the primary concern in choosing
the algorithm for real application is the quality of the solution; the computation time is the
secondary concern. Hence, the results suggested that it is possible to use ABC with the
tuned parameter set for joint reconfiguration after failure.

Figure 5 illustrates the best output gestures of the four main emblematic gestures
of the Namo robot in simulation from GA, BFOA, and ABC in comparison with the
reference gestures. Although the output gestures from ABC are most similar to the reference
gestures, the differences are not much and cannot be visually perceivable. In Table 4,
the minimum difference values for the Wai and Salute gestures are higher than other
gestures. From Figure 5, the output gestures from all algorithms are the same. This may
be because the locked joint angle of the failed joint limits the possibility of obtaining
better-reconfigured gestures.

As gradient-based optimization algorithms are also found to be efficient for solving
inverse kinematics problems, we verified that the chosen optimization methods could
perform better than gradient-based algorithms. We compared the performance of emblem-
atic gesture reconfiguration when Joint 2 failed to function for the Wai gesture between
using the gradient descent optimization algorithm with momentum [38] and the ABC
algorithm. The tuned parameter set of the ABC algorithm used in the comparison is
shown in Table 3. For the gradient descent algorithm, the decay rate was set as 0.9. The
learning rate was set as 0.1 and 0.05 for comparison. Both algorithms were run with ran-
dom initial seeds for 1000 iterations. Figure 6 illustrates the gesture similarity scores from
gradient descent (GD) and ABC algorithms over all iterations in comparison. The best
gesture similarity scores from the gradient descent algorithm with 0.1 and 0.05 learning
rates are 113.95 and 112.83 mm, respectively. The best gesture similarity score from ABC is
57.16 mm. The time spent to complete 1000 iterations are 1.3550, 1.3483, and 1.0740 s for
GD_0.1, GD_0.05, and ABC, respectively. Figure 6 shows that ABC can quickly converge to
the solution with a better gesture similarity score than the gradient descent algorithms. The
performance of gradient-based algorithms depends on the initial seed; it could lead to a
local optimum. Many of the bio-inspired algorithms, including ABC, utilized a population
of agents to search for the solutions collectively, so they have a greater chance of finding
global optimal solutions.

3.2. Joint Reconfiguration for All Possible Joint Failures

It is interesting to investigate whether the tuned parameter sets from one scenario can
be extended to use in other joint failure scenarios. In this experiment, we used the tuned
parameter sets from Joint 2 failure to reconfigure joint angles after the failure of all possible
joints. Table 6 shows the comparison of algorithm performance in terms of the minimum
difference values of the output gestures from the reference gestures, the computation
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time used for obtaining the best joint reconfiguration, the median difference values, and
the interquartile range from 100 repetitions. The best values from the comparison are
shown in bold.
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Table 6. The comparison of algorithm performance on joint reconfiguration for all joint failures using
the tuned parameter sets.

Gestures/Joint
Failure

Algorithm Performance
GA BFOA ABC

Min.
Diff. Time Median

Diff.
IQR
Diff.

Min.
Diff. Time Median

Diff.
IQR
Diff.

Min.
Diff. Time Median

Diff.
IQR
Diff.

Wai
Joint 1 49.1402 0.6566 69.6643 11.0471 42.8178 0.6187 50.5072 10.7610 41.0485 0.5774 44.3499 2.8718
Joint 2 58.1797 0.6540 70.6528 9.0588 57.1479 0.5655 58.4939 3.4149 57.1431 0.5457 58.1876 2.1447
Joint 3 98.6053 0.6567 107.8992 10.9072 93.7746 0.5258 93.9123 3.2764 93.7706 0.5617 93.8543 1.0137
Joint 4 18.9686 0.6536 45.7340 15.0691 2.2879 0.5539 14.2642 10.6975 2.2689 0.5570 6.0225 2.7596
Joint 5 39.3249 0.6435 55.4432 9.6103 23.1424 0.5179 29.7293 10.5429 24.2184 0.5498 30.7042 10.7042
Joint 6 35.2101 0.6485 43.5085 8.2551 32.8321 0.5077 36.2486 12.7388 33.0264 0.5456 35.3097 9.2949
Joint 7 19.5293 0.6496 39.3058 14.2708 8.8689 0.4662 12.9176 10.1463 8.8584 0.5688 10.0184 2.8088

Bye
Joint 1 18.1645 0.5614 32.6537 8.6828 14.5946 0.5371 14.9520 29.3480 14.5736 0.5344 14.8986 0.4006
Joint 2 6.0976 0.5573 25.6681 14.0880 3.4758 0.5088 9.4605 16.5519 3.2491 0.5413 5.6970 3.7215
Joint 3 41.6956 0.5581 53.1471 13.9760 38.5793 0.4468 46.0145 4.2315 38.5830 0.5342 39.3959 4.2612
Joint 4 11.2942 0.6028 35.2845 17.4609 9.5524 0.5492 9.9890 49.1354 9.5561 0.5338 9.7593 0.9447
Joint 5 54.8825 0.6036 58.8346 4.7642 52.7563 0.4211 53.8811 1.6746 52.6081 0.5304 53.5293 2.2006
Joint 6 31.7665 0.5477 44.6053 10.7182 27.5324 0.4849 28.2962 4.5840 27.6241 0.5431 31.1612 6.7783
Joint 7 8.7007 0.5956 28.9101 15.9774 7.8289 0.4960 11.0214 37.2409 7.8396 0.5404 8.9075 4.0756

Salute
Joint 1 82.3338 0.5472 84.8872 3.4310 82.2325 0.6137 82.5707 31.2031 82.2782 0.5369 82.7736 0.4377
Joint 2 37.2962 0.5469 48.4423 9.7109 35.4799 0.6014 37.5537 20.9101 35.4694 0.5394 35.8170 0.8266
Joint 3 44.2610 0.5525 57.1333 11.2424 42.0222 0.5558 43.1040 46.4772 42.0221 0.5408 42.3335 0.7601
Joint 4 21.5768 0.6080 34.7085 13.3364 18.1860 0.5824 22.5206 54.7482 18.1818 0.5389 18.6810 1.8249
Joint 5 28.2134 0.5476 38.8455 10.0302 24.1045 0.4632 27.6639 30.6599 24.1781 0.5323 29.4687 5.8234
Joint 6 34.2160 0.5542 50.9548 11.3999 33.0824 0.5050 35.3237 35.8533 33.2683 0.5367 33.8175 16.5031
Joint 7 21.3601 0.5929 30.4201 8.2655 17.4007 0.5125 17.5952 21.4105 17.3955 0.5364 17.3971 0.0105

Side Invite
Joint 1 51.7017 0.5483 61.7445 7.1490 48.8570 0.5537 58.0899 54.1146 48.8454 0.5376 49.1610 0.5528
Joint 2 8.8991 0.5464 19.4553 10.2574 7.5411 0.5404 11.0276 37.2525 7.4523 0.5428 8.6145 1.8183
Joint 3 62.9119 0.5445 75.5241 8.7711 57.7096 0.4627 58.9446 20.0700 57.7082 0.5331 57.7507 0.2847
Joint 4 27.2899 0.5526 32.6247 6.0936 26.7073 0.5202 34.6626 28.3888 26.7035 0.5513 26.7821 0.3401
Joint 5 32.7265 0.5671 47.7179 8.7698 29.8469 0.4813 35.3923 18.5515 29.6142 0.5386 31.0482 2.3620
Joint 6 24.1722 0.5683 31.1570 8.5519 23.7687 0.5164 28.4278 42.2346 23.7868 0.5481 26.6748 4.3452
Joint 7 7.8360 0.5744 19.4936 10.9503 3.5024 0.5659 23.3782 50.3712 3.4910 0.5402 4.4502 1.5727

The best values from comparison with values in the same row are shown in bold.

The results showed that the best reconfigurations, which are the reconfiguration with
the minimum difference value, from BFOA and ABC, were significantly better than those
from GA (Wilcoxon matched-pairs signed-rank test, p = 0.000 and p = 0.000, respectively).
Between the BFOA and ABC pair groups, the Wilcoxon matched-pairs signed-rank test did
not show significant differences in the minimum difference values (p = 0.399). When consid-
ering the algorithm performance on the reliability of the results, the Wilcoxon matched-pairs
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signed-rank test showed significant differences in median difference values and the in-
terquartile range of resulting difference values between BFOA and ABC (p = 0.000). Hence,
it may be concluded that BFOA can provide a chance to yield better joint reconfiguration,
but ABC can be relied upon for determining good joint reconfiguration.

From the gesture similarity measure, the failure at one joint position could contribute
to the difficulty of joint reconfiguration on each emblematic gesture differently. The best
gesture difference values for the Wai gesture in Table 6 ranged the widest among the values
from all gestures, from 2.2689 to 93.7706 units. Figure 7 illustrates the best reconfiguration
outputs of the Wai gesture as an example. To perform the Wai gesture beautifully, the
robot’s palms of both hands should be put together at the chest level. From Figure 7, the
output reconfigured gestures when Joints 2 and 3 failed to have more errors than in other
cases. If we use the three-dimensional Cartesian coordinate system, where the x-axis is in
the direction of the robot’s face, the y-axis is pointed to the side of the robot, and the z-axis is
pointed upward, Joint 2 is responsible for the control of the upper arm up and down to the
side of the robot body (or rotating around the x-axis). Joint 3 is responsible for the control of
the lower arm from the elbow to open or close (or rotate around the z-axis). When joint 2 or
3 fails and is locked at the averaged angle from all the reference gestures, the space for the
robot hands to reach and join together at the chest area is limited. The joint reconfiguration
method has attempted to determine a good solution with low gesture difference values, but
the locked joint angle at the averaged angle from all reference gestures seemed to limit the
search space. In our future study, we plan to include the locked joint angle in the problem
so that the joint reconfiguration method can determine a good joint angle to lock the failed
joint and may allow better-reconfigured gestures than the output in this study.
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3.3. The Analysis of Output Gestures through the Gesture Similarity Measurement

Considering the resulting gesture similarity measurement from all possible joint
failures, we found that the strategy to lock the failed joint at some specific joint angle had
an immense impact on the success of performing the emblematic gestures. The average
joint angle from all gestures may not always be suitable. We analyzed the distance of
each component of the robot arm in all best-reconfigured gestures when each failed joint
occurred. Figure 8 illustrates the boxplot of all distance components in the gesture similarity
measurement in (1) and (2) for all possible joint failures. Note that the distance components
of the elbow, wrist, fingertip, and palm orientation, as shown in Figure 7a–d, are calculated
for all emblematic gestures in this study, but the distance components between the left and
right hands, as shown in Figure 7e–f, are used for the Wai gesture only.

Joints 1–3 are located in the shoulder area and are designed to control the movement
of the robot’s upper arm. Joint 1 is responsible for controlling the upper arm to swing
forward and backwards. Joint 2 controls the upper arm to swing up and down to the
side of the robot. Joint 3 controls the upper arm to rotate inward and outward from the
robot’s body. When one of these joints fails, it affects all the components along the arm. The
results in Table 6 show that the minimum difference values of the reconfigured outputs
when the joints in this area failed were greater than those when other joints failed for all
gestures. The boxplot in Figure 8 also confirms that when either of the joints in this group
failed, the distance values between the reconfigured outputs and reference gestures of all
components became high. Among the joints in this group, Joint 3 seemed to cause problems
in performing the most emblematic gestures when it failed.
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Although we can employ the bio-inspired AI technique to determine a good solution
to control other functional joints to compensate for the failed joint that was locked to a
specific angle, the compensation from other joints might not be enough to recover from the
failure for performing some gestures if the locked joint is not suitable. Figure 7d shows a
good example of this inappropriate locked angle for the Wai gesture. The locked angle that
averages from the joint angles of all emblematic gestures causes the upper arm to rotate
inward to the robot’s body. Under such limited movement, the methods determine good
compensation solutions from other joints but can no longer compensate for locked joint
failure. As a result, the best solution is to keep the fingertips of both hands close to each
other, as shown in Figure 7d.

Joint 4 is located at the elbow and controls the movement of the lower arm upward and
downward. When Joint 4 fails, the methods can determine good solutions with minimal
difference values compared to when other joints fail, as shown in Table 6. Figure 8 also
confirms that the distances of all components are relatively shorter than in the case where
other joints failed.

Joints 5–7 are located at the wrist area and are designed to control the movement of
the robot’s hand, including the palm orientation. The Wai gesture is a good example of the
performance of joint reconfiguration when the joints in this area fail. Figure 7h shows good
recovery from Joint 7 failure; the wrist, fingertip, and palm orientation of both hands are
close, so the output gesture can indicate the Thai greeting and salutation nicely. Figure 7f
illustrates that the fingertips of both hands are close to each other, but the palms are opened
a little; this may be due to the locked angle of Joint 5 limiting further adjustment to close
the palms. When Joint 6 fails, the locked angle limits the movement to push the palms
of both hands together; Figure 7g shows that the hands are crossed in the simulation. If
the robot performs this reconfigured output, the real output gesture may be different from
this picture.

From the results of all possible joint failures, it can be concluded that the strategy to
set the joint angle to lock the failed joint is another issue that should be considered for joint
reconfiguration to recover from joint failure.

4. Conclusions

In this study, we proposed gesture similarity measurement for semi-humanoid robots
performing emblematic gestures and proposed the use of bio-inspired AI techniques for
joint reconfiguration to recover from joint failures within a given time constraint. We
explored the performance of the joint reconfiguration method with a strategy that used
the average values of joint angles from all gestures as the locked angle for the failed joint.
We found that the joint reconfiguration method using bio-inspired AI techniques could
determine good reconfigured gestures for the robot. The results suggested that ABC and
BFOA have the potential to generate the best-reconfigured outputs within 1 s of computa-
tion time, which allow quick maintenance in real applications. From 100 repetitions, ABC
showed the higher reliability of the results with less interquartile ranges of the results in all
emblematic gestures.

By analyzing the distance between the reconfigured gestures and the reference gestures,
we realized that the intuitive strategy, which uses the average values from joint angles of
all emblematic gestures the robot performs as the locked angle for the failed joint, was
not suitable for performing all emblematic gestures as expected. In the future, we plan to
improve our joint reconfiguration method using bio-inspired AI so that the method could
suggest a suitable locked angle for the failed joint as well. Nevertheless, having just one
reference joint angle set for each emblematic gesture may result in difficulty in determining
a suitable locked angle for all gestures. As humans, each of us performs gestures differently;
we plan to explore the idea of using multiple reference joint angle sets for each gesture to
aid joint failure recovery in humanoid robots performing emblematic gestures.
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