
Citation: Zhu, H.; Sun, M.

Pressure-Sensitive Capability of

AgNPs Self-Sensing Cementitious

Sensors. Sensors 2023, 23, 9629.

https://doi.org/10.3390/s23249629

Academic Editor: Ricardo Perera

Received: 30 October 2023

Revised: 25 November 2023

Accepted: 3 December 2023

Published: 5 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Pressure-Sensitive Capability of AgNPs Self-Sensing
Cementitious Sensors
Haoran Zhu and Min Sun *

School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China;
18862161767@163.com
* Correspondence: sunmin@mail.usts.edu.cn

Abstract: Intelligent monitoring approaches for long-term, real-time digitalization in structural
health monitoring (SHM) are currently attracting significant interest. Among these, self-sensing
cementitious composites stand out due to their easy preparation, cost-effectiveness, and excellent
compatibility with concrete structures. However, the current research faces challenges, such as
excessive conductive filler, difficulties in filler dispersion, and insufficient stress sensitivity and
instability. This study presents a novel approach to these challenges by fabricating self-sensing
cementitious sensors using silver nanoparticles (AgNPs), a new type of conductive filler. The
percolation threshold of AgNPs in these materials was determined to be 0.0066 wt%, marking a
reduction of approximately 90% compared to traditional conductive fillers. Moreover, the absorbance
test with a UV spectrophotometer showed that AgNPs were well dispersed in an aqueous solution,
which is beneficial for the construction of conductive pathways. Through various cyclic loading tests,
it was observed that the self-sensing cementitious sensors with AgNPs exhibited robust pressure-
sensitive stability. Additionally, their stress sensitivity reached 11.736, a value significantly surpassing
that of conventional fillers. Regarding the conductive mechanism, when encountering the intricate
environment within the cementitious material, AgNPs can establish numerous conductive pathways,
ensuring a stable response to stress due to their ample quantity. This study provides a significant
contribution to addressing the existing challenges in self-sensing cementitious materials and offers a
novel reference for further research in this domain.

Keywords: self-sensing cementitious; silver nanoparticles; stress-sensitive; dispersion; long-cycle
loading test

1. Introduction

Structural health monitoring (SHM) is a vital research area in civil engineering, aimed
at intelligently and non-destructively ensuring the safety and reliability of everyday struc-
tures. Traditional SHM methods, which depend heavily on external sensors and monitoring
devices, often incur high installation and maintenance costs, and can sometimes cause
structural damage [1,2]. However, recent advancements in nanotechnology have given rise
to self-sensing materials, a revolutionary approach to SHM that has garnered significant
research interest. Among these, self-sensing cementitious composites stand out due to their
unique properties and potential applications. Their distinguishing characteristic is their
ability to monitor structural states non-intrusively [3,4]. Compared to traditional sensor
installation methods, the application of these materials reduces the maintenance costs of
monitoring systems, and improves the long-term reliability of the monitoring setup [5].

The core principle of self-sensing cementitious materials lies in the direct integration
of sensing capabilities. This allows the sensors to autonomously monitor structural forces
in real-time by observing changes in their own electrical resistance [6]. Currently, carbon
and metal fillers are the two main types of conductive fillers in use. Sevim, O et al. noted
an improved piezoresistive response in the sensor when 7.5% M graphene nanoparticles
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(GNPs) were added to the self-sensing cementitious material [7]. Suchorzewski, J et al.
discovered that adding 0.05% MWCNT to concrete enabled damage detection at a tensile
force of 85% Fmax, as evidenced by wedge splitting tests [8]. Roshan et al. developed
self-sensing cementitious materials by integrating two types of conductive fillers, namely
MWCNTs and GNPs. They uncovered a direct correlation between FCR changes and crack
propagation within a structure [9]. In their study, Han et al. observed a direct link between
the stability of piezoresistivity variations in self-sensing cementitious sensors and the
applied external stresses [10]. Feng Xu’s experiments demonstrated that reactive powder
cement concrete (RPC) with 1.0% nano-stainless steel powder (NSP) showed optimal strain-
sensing sensitivity. Furthermore, the research depicted a cubic relationship, suggesting a
decrease in the electrical resistance and drying shrinkage rate of RPC with the volume ratio
of NSP [11].

Cyclic loading testing is a prevalent method for assessing the sensing capabilities
of self-sensing cementitious materials [12,13]. By simulating the actual stress conditions
experienced by sensors through repeated vertical loading and unloading, it can evaluate
the sensing ability of self-sensing cementitious materials. This is significantly beneficial for
assessing the stability and durability of sensors [14]. Saptarshi Sasmal and his colleagues
found in their cyclic loading tests that the content of conductive fillers had a significant
impact on the piezoresistive response. An ideal result was not achieved when the filler
concentration was too high. Instead, the sensitivity of resistance changes under loading
decreased. They had also discovered that the microstructure within the specimen changed
during the loading process [15]. In the cyclic loading tests conducted by Yoo et al., they
discovered that the self-sensing capacity of cement composites, inclusive of CF and GNF,
under compression was not directly influenced by their conductivity. Furthermore, they
identified that composites containing CNTs exhibited superior self-sensing capacity under
cyclic compressive force at both 0.5 and 1 vol% [16].

In the study of self-sensing cementitious materials, fibers and powders emerge as the
two primary categories of conductive fillers [17]. The hydrophobic nature of most fibrous
fillers complicates their integration into these materials. In contrast, conductive powders,
typically non-hydrophobic, disperse well in water [18–20]. Nanosilver, with its unique
physical and chemical properties, has attracted significant interest in pressure-sensitive
research. Unlike fibrous fillers, nanosilver’s small particle size, typically 10–50 nm, consid-
erably reduces the composite system’s percolation threshold. Furthermore, nanosilver’s
outstanding electrical properties offer substantial potential for advancements in the pres-
sure sensitivity field [21,22]. Li et al. enhanced the surface conductivity of AgNW-PI
films significantly by blending silver nanowires (AgNW) with polyimide (PI) polymers
and employing a wet etching method for surface treatment. They further fabricated this
material into a flexible pressure sensor. Experimental results revealed that this sensor
demonstrated exceptional sensitivity, approximately 1.3294 kPa−1, under a pressure of
about 600 Pa [23]. Alessandro Paghi et al. utilized control over the piezoresistive proper-
ties of the AgNP electrical network formed on PDMS foams to manufacture flexible and
wearable pressure sensors. These sensors exhibit high deformation (GF) and pressure (S)
sensitivities, allowing the detection of small displacements of up to 4 µm and low stresses
of up to 25 Pa [24].

In the present study, a novel conductive filler, AgNP, was selected with the objective
of addressing the challenges of high dosage, limited stability, and reversibility that are
associated with traditional fillers. The stability and stress sensitivity of AgNP self-sensing
cementitious materials were evaluated under two distinct loading regimes: long-cycle fixed
amplitude intervals and long-cycle variable amplitudes.

2. Materials and Methods
2.1. Test Materials

The experiment primarily utilized PO.42.5 silicate cement and a commercially pro-
vided aqueous solution of silver nanoparticles (AgNPs) with a concentration of 1000 ppm
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(refer to Figure 1). The AgNPs, as shown in the SEM photographs in Figure 2, had an
approximate particle size of 10 nm. Six control groups were included in the experiment,
all maintaining a consistent water-cement ratio of 0.4. The water content within the Ag-
NPs, given their formulation as aqueous solutions, was incorporated into the specimen
fabrication process. Table 1 outlines the exact ratios used.
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Table 1. Proportioning of AgNP specimens.

Group Cement [g] Water [g] AgNPs Aqueous 1 [mL] AgNPs [wt% of Cement]

G0 450 180 0 0
G1 450 170 10 0.0022
G2 450 160 20 0.0044
G3 450 150 30 0.0066
G4 450 140 40 0.0088
G5 450 130 50 0.011

1 There are 0.01 g of AgNPs per 10 mL of aqueous AgNP solution.

2.2. Specimen Preparation

The specimens were prepared for by following the stipulations of GB/T 17671-2021 [25].
The specimens had external dimensions of 40 × 40 × 160 mm, with a water–cement ratio
of 0.4 in the matrix phase. To avoid the measurement error caused by the coincidence
of current and voltage poles, all specimens were made with a four-electrode design [26].
The resistance was measured with a Keysight Model 34461A digital multimeter, and the
preparation process can be found in Figure 3.

Each electrode was composed of a 20-mesh copper mesh and a stainless-steel skeleton
with a dimension of 25 mm × 75 mm. The electrodes were installed in a buried configura-
tion. This design offers several benefits. It prevents the formation of a porous transition
zone between the sheet electrode and the cementitious contact surface, ensuring strong
contact. Additionally, it inhibits the formation of an adsorbed water layer that could other-
wise compromise the mechanical properties of the specimen [27,28]. The electrode style is
shown in Figure 4.
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2.3. Test Methods and Evaluation Indicators
2.3.1. Test Methods

In this study, the dispersion, percolation threshold, pressure-sensitive stability, and
stress sensitivity of AgNPs were verified through absorbance tests, polarization tests, and
cyclic loading tests, respectively. The loading principle is shown in Figure 5.
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In particular, the cyclic loading test was divided into two parts: equal amplitude cyclic
loading under a long period and variable amplitude cyclic loading under a long period. For
equal amplitude cyclic loading, a total of 120 cycles were applied, ranging from 1.25 MPa to
5 MPa, at a rate of 1 kN/s. In the case of variable amplitude cyclic loading, the amplitude
gradually increased from 1.25 MPa to 3.4 MPa, 3.75 MPa, 4.7 MPa, and 6.25 MPa. The
loading rate was 0.5 kN/s for cycles between 1.25 MPa and 3.4 MPa and 1 kN/s for the
subsequent cycles.

2.3.2. Analyzing Indicators

The relative rate of change of resistivity and the stress sensitivity factor are two impor-
tant evaluation indexes for the self-perceiving cementitious pressure-sensitive properties.

The calculation of the resistivity formula (ρ) is shown as follows:

ρ =
RS
L
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where R is the measured resistance of the specimen, S is the cross-sectional area of the
specimen, and L is the length between two neighboring electrodes.

Fractional change in the resistivity (FCR) is calculated as follows, where ρ is the value
of the resistance at any moment in time, and ρ0 is the calculated baseline resistance (ρ0 was
taken in this test to be the resistivity corresponding to 1.25 MPa in the last cycle).

FCR =
ρ− ρ0

ρ0
× 100%

The stress sensitivity factor (SS) characterizes the sensitivity of the self-perceiving
cementitious material to the stress response.

SS =
∆FCR [%]

∆σ [MPa]

where ∆FCR is the relative change in FCR for a single cyclic loading process and ∆σ is the
difference in stress during cyclic loading.

3. Test Results and Analysis
3.1. Absorbance of AgNPs

If conductive fillers naturally agglomerate and are difficult to disperse in water, these
agglomerates will adversely impact the pressure-sensitive properties of self-sensing cemen-
titious materials. In this paper, the dispersibility of AgNPs in an aqueous solution was
evaluated by UV spectrophotometer. According to the Beer–Lambert law (as shown in
Equation (1)), the absorbance of the solution is directly proportional to the concentration.
Consequently, the absorbance value of the solution serves as an evaluative indicator for
filler dispersion in the liquid phase. A higher peak absorbance value demonstrates im-
proved filler dispersion. For the absorbance test, the aqueous solution of AgNPs with a
concentration of 1000 ppm needed to be diluted, as per Table 2. The specific test results are
depicted in Figure 6. Equation (1) is as follows:

A = lg
1
T = Kbc (1)

where A is the absorbance and T is the transmittance ratio, which is the ratio of the outgoing
light intensity (I) to the incident light intensity (I0), K is the molar absorption coefficient,
which is related to the nature of the absorbing substance and the wavelength λ of the
incident light, c is the concentration of the absorbing substance in mol/L, and b is the
thickness of the absorbing layer in cm.

Table 2. Grouping of diluted solutions of AgNPs.

Concentration Aqueous AgNPs 1 [g] Deionised Water [g]

Neutral solution

0.01 mg/g 1 99
0.02 mg/g 2 98
0.03 mg/g 3 97
0.04 mg/g 4 96

1 The original solution concentration of the AgNP aqueous solution is 1000 ppm.

As shown in Figure 6, the AgNP aqueous solution displays a significant absorption
peak at a wavelength of 433 nm, with an absorbance of 1.856 at a concentration of 0.04 mg/g.
The fitted peak value in the upper left corner of the graph further confirms that the
absorbance data of AgNPs solutions at various concentrations comply with the Beer–
Lambert law. According to research data by Sobolkina et al., the absorbance peak for CNTs
falls between 0.5 and 1.2 at a wavelength of 260 nm [29]. Figure 7 compares the absorbance
data of AgNPs with that of Li et al.’s study. The absorbance peaks for C-CNT and P-CNT
materials, when dispersed with an SP dispersant, are around 0.8, which is lower than the
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1.856 value of AgNPs [30]. This suggests that AgNPs demonstrate better dispersibility than
traditional conductive fillers.
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3.2. On Initial Resistance Affected by Water Content and Filler Dose
3.2.1. Influence of Moisture Content

During the self-sensing cementitious application process, the specimen will interact
with the surrounding environment. These actions will result in variations in the water
content within the specimen and, consequently, will influence the specimen’s polarization
effect. Therefore, in this section, the effect on water content was analyzed by controlling
the drying time of water-saturated specimens.

Through specific tests, it was found that when the specimen was dried at 60 °C for 3 h,
its quality no longer changed. Thus, it can be concluded that the specimen has attained a
completely dry state at this point. Simultaneously, follow-up tests were conducted using
1-h intervals as test units, and the specimen was dried for three different durations: 1 h,
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2 h, and 3 h. The moisture content was calculated using Equation (2), and the results are
presented in Table 3 and Figure 7. Equation (2) is as follows:

W =
M0 −Mn

M0 −M1
× 100 (2)

where M0 is the mass of the specimen after water saturation, M1 is the mass after complete
drying, and Mn is the mass of the specimen at different drying durations.

Table 3. Corresponding table of water content of specimens.

Group Waterlogged
State (M0)

Absolute Dry
State (M1)

Moisture Content (After Drying) [%]

1 h 2 h 3 h

G0 502.2 491.3 55.96 24.77 0
G1 515.8 503.7 56.16 34.71 0
G2 509.4 497.6 55.93 28.81 0
G3 506.6 495.4 48.21 32.14 0
G4 509.1 495.9 54.39 31.06 0
G5 505.6 494.1 50.43 33.91 0

Figure 8a shows that the initial resistance value and moisture content of each specimen
decreased the most after 1 h of drying, and then the trend of decreasing slowed down.
This suggests a negative nonlinear correlation between the moisture content and the initial
resistance of the specimen.
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Figure 8. Resistance values and their variation with time. (a) Changes in initial resistance value vs.
drying time. (b) Polarization curves of G3 at different drying times.

When the specimen’s water content exceeded 50%, most pores became saturated,
making ionic conductivity the predominant factor. The conductive filler was enveloped by
the liquid phase, hindering its contribution to conductivity due to short-circuiting. This
elevated specimen resistance and reduced the sensor’s sensitivity to stress, diminishing the
self-sensing capabilities [31]. When the moisture content fell below 30%, tunneling effects
became prominent, diminishing the influence of ionic conductivity. A more consistent
conductive pathway formed within the specimen [32,33].

Using the G3 specimen as an example, Figure 8b displays polarization data at varying
water contents. The results show a gradual decrease in the growth rate of polarization
curves as water content reduces. As drying time increases, FCR decreases from 18.65%
to 1.95%. Previous discussions indicate that the reduction in polarization effect primarily
results from ionic conductivity. However, as water content decreases, the polarization effect
induced by ionic conductivity diminishes.
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In summary, cyclic loading tests for self-sensing cementitious materials should be
conducted at their natural moisture content, typically around 30%. This approach mitigates
the adverse effects of ionic conductivity and provides a cushioning effect for cracks and
fibers due to the presence of the liquid phase.

3.2.2. Percolation Threshold

According to Ruschau et al., the trend of specimen resistivity does not show a linear
correspondence with concentration [34]. The percolation threshold of different conductive
fillers varies; it is closely related to the filler’s shape, conductivity, and size. Generally, the
smaller the size of the filler, the lower the corresponding percolation threshold.

Figure 9 displays the stabilized resistance value of self-sensing cementitious materials
after polarization in its natural state. The figure shows that the resistance value of the
specimen gradually decreases with increasing AgNP content and exhibits a sudden change
at G3 (0.0066 wt%). Subsequently, the slope of the resistance value corresponding to the
concentration slows down. Through extensive literature research, it can be confirmed that
the AgNP content level of 0.0066 wt% in the cement reaches the percolation threshold.
This indicates that self-sensing cementitious sensors in this state should yield the best
pressure-sensitive test results.
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Figure 9. Correspondence between specimen resistance and doping amount of AgNPs.

3.3. Equal Amplitude Long-Cycle Loading

Cyclic loading is the optimal test method for assessing the stability of the pressure-
sensitive curve in the self-sensing cementitious materials. To accurately reflect the stability
of AgNP self-sensing cementitious materials under the background of long cycle loading,
the test involved 120 ultra-long cyclic loading cycles at a rate of 1 kN/s and stress variations
ranging from 1.25 MPa to 5 MPa. Linear fitting was applied to supplement the evaluation
of the self-sensing properties of the sensors. The results are shown in Figure 10.
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Figure 10. Cyclic loading test results of AgNP specimens. (a) G1. (b) G2. (c) G3. (d) G4. (e) G5.

3.3.1. Loading Results

Figure 10 reveals that the poorest pressure sensitivity performances were observed in
the G1 and G2 samples, while the G3, G4, and G5 samples demonstrate relatively robust
pressure sensitivity stability. This aligns with earlier findings on percolation thresholds. It
is worth mentioning that a substantial difference in pressure-sensitive performance exists
between the G1 and G2 samples. The G1 sample showed error responses and late-stage
curve up-slips. Conversely, G2 only experienced curve up-slips, with no issues in its
pressure-sensitive response.

∆FCR represents the relative difference in FCR during each loading cycle, as shown
in Figure 11. Upon observing the data, it is evident that ∆FCR exhibits a trend of initially
increasing and then decreasing with the gradual rise in AgNP content. The peak value
is observed at G3 (0.0066 wt%), reaching 41.92%. The data for AgNPs demonstrates a
significant advantage when compared to other similar studies. In Mardani et al.’s study,
the CNT self-sensing cementitious material showed a change in FCR of less than 10% over
the loading interval of 0.625–6.25 MPa [35]. Similarly, in Suo et al.’s study on graphene
oxide self-sensing cementitious material, the sensor’s FCR change was also less than 10%
at pressures ranging from 0 to 15 MPa [36].
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3.3.2. Fitting Analysis of Loading Results

To accurately assess the stability of sensor pressure sensitivity, an analysis was conducted
on 30 cycles from the pre- (1st–10th), mid- (50th–60th), and post-phases (110th–120th). A
linear fit was used to establish their “stress-resistivity” relationship. The goal of this fitting
process is to obtain a continuous, sloping straight line without any discretization. The
results are illustrated in Figure 12.

In Figure 12a, a noticeable dispersion is observed in the linear “stress-resistivity” curve
for G1, particularly during the first 10 cycles (as indicated by the blue box in the figure).
This observation suggests that the ∆FCR of the specimen gradually increases with the
number of cycles. In Figure 12b, G2′s stress–resistivity curves during the initial, middle,
and final stages do not exhibit any apparent discrete behavior; however, a significant
translation phenomenon is observed.
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The fitting data for the adjusted R2 is shown in Figure 12f. Among all the specimens,
G3 exhibits the least curve dispersion and curve translation, indicating the most stable
response to cyclic loading. It achieves an R2 value of 0.99907, significantly higher than that
of G1 and G2. While the R2 values for G4 and G5 are marginally lower than those of G3,
the fitted resultant curves do not exhibit noticeable dispersion. This demonstrates that the
stability of these two specimen groups is also relatively robust.

3.3.3. Discussion

Based on the experimental results and the literature, the pressure-sensitive stabilization
of AgNPs self-sensing cementitious materials is primarily influenced by three factors: the
quantity of doped conductive filler, the polarization effect, and the elastic deformation of
the cementitious matrix.

According to Al-Dahawi, Luo et al. it was shown that the effect of the polarization
effect is persistent and does not disappear during the loading process [37,38]. Consequently,
an instable conductive network undermines the sensor’s capacity to counteract the polar-
ization effect, leading to a slip in the pressure-sensitive curve. The data in Figures 10 and 11
for G1 and G2 provide a detailed illustration of this phenomenon. Nevertheless, increased
AgNP quantities can effectively control slippage. Nonetheless, excessive dosages do not
ensure a positive outcome. The surplus use of conductive fillers can lead to AgNPs contact-
ing each other, causing a shift from electron-leaping to contact conductivity. This shortens
the sensor’s ∆FCR, as depicted in Figure 11.

In addition to the factors discussed earlier, elastic deformation of the cement matrix
significantly influences pressure-sensitive stability. Continuous loading causes the matrix
phase to compact, making recovery challenging without complete unloading. With more
loading cycles, the variation in inter-particle spacing stabilizes. This phenomenon explains
the reduced dispersion of the pressure-sensitive curve in Figure 12 with an increasing
number of loading cycles.

3.4. Results and Analysis of Variable Amplitude Loading Tests

Variable amplitude loading can effectively demonstrate the stress sensitivity coeffi-
cient (SS) of self-sensing cementitious sensors, serving as a crucial reference for sensor
applications. In this test, the amplitude varied over four intervals of 1.25 MPa to 3.4 MPa,
3.75 MPa, 4.7 MPa, and 6.25 MPa, none of them exceeded 50% of the ultimate compressive
strength of the specimen.

3.4.1. Loading Results

Figure 13 depicts the pressure-sensitive response performance of five specimen groups
subjected to varying loads. Among the test results, G1 exhibited one of the poorest out-
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comes, followed by G2. Within G1, the pressure-sensitive curve displayed instability,
primarily attributed to the low AgNP content. Notably, G2 did not display a consistent
upward sliding curve in response to low stresses. Instead, the curve shifted upward only
under loads exceeding 4.7 MPa. In contrast, G3, G4, and G5 exhibited relatively improved
pressure-sensitive performances due to increased AgNP doping.
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Figure 13. Variable amplitude loading test results for AgNP specimens. (a) G1. (b) G2. (c) G3. (d) G4.
(e) G5.

Figure 14 and Table 4 provide a comparative analysis of the stress sensitivity factor
(SS) for each specimen. The findings reveal a non-linear relationship between SS and ∆σ,
wherein SS initially increases and subsequently decreases as ∆σ rises. Furthermore, it is
evident from Figure 15 that although ∆FCR demonstrates a positive correlation with the
external load, this correlation is not linear.
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Figure 14. Variation in SS in AgNP specimens during variable amplitude loading tests.

Table 4. SS and ∆FCR under different loads.

Stress/MPa
G1 G2 G3 G4 G5

∆FCR 1 SS 1 ∆FCR SS ∆FCR SS ∆FCR SS ∆FCR SS

1.25–3.4 1.834 0.838 3.853 1.761 25.436 11.628 12.916 5.904 11.431 5.225
1.25–3.75 2.714 1.086 4.411 1.764 29.339 11.736 15.115 6.046 13.359 5.344
1.25–4.7 3.555 1.034 5.828 1.695 36.534 10.628 17.414 5.066 16.417 4.776
1.25–6.25 3.931 0.786 6.815 1.363 44.879 8.976 19.528 3.906 17.489 3.498

1 The unit of ∆FCR is % and SS is (%/MPa).
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Figure 15. ∆FCR variation in AgNP specimens in variable amplitude loading tests.

3.4.2. Discussion

Experiments utilizing variable amplitude cyclic loading addressed two primary con-
cerns: (1) the correlation between stress sensitivity (SS) and conductive filler doping, and
(2) the variation in ∆σ and ∆FCR growth during incremental loading.

Following the percolation threshold theory, the specimen’s conductivity gradually
transitions through the three regions of insulation, percolation, and conductivity as the
conductive phase increases [33]. The SS in these three regions does not increase with
doping; instead, it exhibits a peak response. High concentrations of conductive filler in the
cementitious matrix increase particle contact, weakening the tunneling effect. This reduces
the extent of ∆FCR change in the sensor, leading to decreased SS. Therefore, only sensors
doped at the percolation threshold, where internal particles are uniformly dispersed, can
simultaneously achieve peak SS and pressure-sensitive stability.

Yang et al. proposed that the nonlinear increase in ∆FCR with stress is attributed
to changes in cracks within the specimen [39]. As stress increases, the crack width also
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expands, leading to physical isolation of the conductive path built by the conductive
filler. Consequently, the tunnelling effect pathway becomes damaged, resulting in the
nonproportional increase in ∆FCR. However, this viewpoint solely focuses on macro-level
crack development and overlooks the dynamic changes in conductive pathways inside
the specimen during stress variation. According to the tunneling effect principle, electron
leaps occur only when particle spacing ranges from 1–10 nm. Nevertheless, under high
stress, some particles compressed to 10 nm enable improved current flux by participating
in tunneling, while others, originally capable of tunneling, become compressed to contact
each other, losing the ability to facilitate electron jumps and transforming into contact
conductivity. Therefore, the nonlinear growth in SS under loading is a consequence of a
combination of these factors [40].

3.5. Analysis of the Application Effect of AgNPs

Tests in this paper reveal that a mere 0.03 g of AgNPs per 450 g of cement is needed for
optimal results, amounting to just 0.0048 wt% of the total mass of the cementitious sensors.
This amount is substantially lower than that of conventional conductive fillers. Table 5
shows that percolation thresholds of conventional self-sensing cementitious conductive
fillers typically range within a few thousandths of a percent, contrasting significantly with
AgNPs. The main reason for this variation is the difference in appearance and size of
the conductive filler. As suggested by Qingzhong Xue, the percolation threshold of the
composite system decreases with the reduction in the size of the conductive particles’
appearance [41]. This explains how AgNPs can reduce the amount of conductive filler by
over 90% compared to conventional fillers while establishing more conductive pathways
within the cementitious matrix.

Table 5. Electrical properties of cement-based sensors with different conductors.

Type of Matrix Vol. or wt. Ratio in Cement [%] ∆FCR Reference

CNF
0.5 wt 0.9

Galao et al. [40]1.0 wt 1.0
2.0 wt 1.8

CF 0.1 wt 13 Baeza et al. [42]

Nano-graphite 3.0 vol 2.5
Sun et al. [43]5.0 vol 15.6

Taking the P-CNT percolation threshold (0.03 wt%) from the group’s previous study
as an example, the two materials were randomly dispersed using the Digimat analysis
platform, and the dispersion parameters are presented in Table 6. Figure 16 illustrates the
dispersion results. Despite AgNPs having only 1.59% of the mass of P-CNT, the number
of fillers within the same computational cell is 1138 times greater than that of P-CNT.
This observation indicates that AgNPs can establish a greater number of tunneling effect
pathways inside the specimen, thereby ensuring the pressure-sensitive stability of the
specimen. The specific principle is depicted in Figure 17.

Table 6. Dispersion indicators for AgNPs and P-CNTs.

Appearance Dopant
Amount 1

Volume
Ratio

Calculate the Edge Lengths of the
Microelements [nm]

P-CNT Tubular 0.3 wt% 0.391% 1712
AgNPs Spherical 0.0048 wt% 0.0117% 164

1 The dopant amount and volume ratio were calculated based on the total mass and volume of the cementitious
sensors.
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4. Summary and Conclusions

In this study, five groups of self-sensing cementitious bases were prepared, each
containing AgNPs at various doses: 0.0022 wt%, 0.0044 wt%, 0.0066 wt%, 0.0088 wt%,
and 0.011 wt%. The dispersion, percolation threshold, polarization under varying water
contents, pressure-sensitive stability, and stress sensitivity of AgNPs were investigated.
The following conclusions were derived from the experiments:

1. At equivalent concentrations, AgNPs exhibited 1.15 to 9 times greater dispersibility in
aqueous systems compared to conventional conductive fillers.

2. The percolation threshold of AgNPs in the cement matrix was determined to be
0.0066 wt% through polarization testing on five sets of specimens.

3. Long-term cyclic loading tests, both of equal and variable amplitude, revealed that self-
sensing cementitious materials with 0.0066 wt% AgNPs exhibited optimal pressure-
sensitive stability. The change in fractional change resistance (∆FCR) reached up to
41.92%, and the maximum value of the stress sensitivity (SS) was as high as 11.736.

4. The utilization of AgNPs leads to a significant reduction in the quantity of conduc-
tive filler by approximately 90% or more. Their minute size and extremely high
numbers contribute to a substantial increase in the number of conductive pathways
within cementitious composite systems, thereby ensuring the stability of the pressure-
sensitive effect.
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