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Abstract: Accurate and timely monitoring of biomass in breeding nurseries is essential for evaluating
plant performance and selecting superior genotypes. Traditional methods for phenotyping above-
ground biomass in field conditions requires significant time, cost, and labor. Unmanned Aerial
Vehicles (UAVs) offer a rapid and non-destructive approach for phenotyping multiple field plots at a
low cost. While Vegetation Indices (VIs) extracted from remote sensing imagery have been widely
employed for biomass estimation, they mainly capture spectral information and disregard the 3D
canopy structure and spatial pixel relationships. Addressing these limitations, this study, conducted
in 2020 and 2021, aimed to explore the potential of integrating UAV multispectral imagery-derived
canopy spectral, structural, and textural features with machine learning algorithms for accurate oat
biomass estimation. Six oat genotypes planted at two seeding rates were evaluated in two South
Dakota locations at multiple growth stages. Plot-level canopy spectral, structural, and textural
features were extracted from the multispectral imagery and used as input variables for three machine
learning models: Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and
Random Forest Regression (RFR). The results showed that (1) in addition to canopy spectral features,
canopy structural and textural features are also important indicators for oat biomass estimation;
(2) combining spectral, structural, and textural features significantly improved biomass estimation
accuracy over using a single feature type; (3) machine learning algorithms showed good predictive
ability with slightly better estimation accuracy shown by RFR (R2 = 0.926 and relative root mean
square error (RMSE%) = 15.97%). This study demonstrated the benefits of UAV imagery-based multi-
feature fusion using machine learning for above-ground biomass estimation in oat breeding nurseries,
holding promise for enhancing the efficiency of oat breeding through UAV-based phenotyping and
crop management practices.
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1. Introduction

Oat (Avena sativa L.) is among the most widely cultivated small grains and is primarily
grown for forage and feed grain. It is considered as a superior forage crop because of
its fine stem [1], high dry matter content, and presence of digestible fibers in the leaves
contributing to high palatability [2,3]. In comparison to perennial forage crops such as
alfalfa, oat provides a quick supply of high-quality forage as an annual crop; it is fairly easy
to establish and harvest, and it has low production and management cost [4]. Improving
forage yield and quality of oat varieties is a key objective in oat breeding programs across
the US. Forage yield, which corresponds to above-ground biomass, is a complex trait
controlled by multiple genes [5] and is affected by the environment to varying degrees.
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Therefore, multi-environment large scale trials are often set up in breeding programs to
evaluate trait stability across environments.

Conventional phenotyping methods for quantifying above-ground biomass often
require manual measurement of biomass via cutting, weighing, and drying a sub-sample
for moisture estimation. This process is highly tedious, labor-intensive, costly, and de-
structive [6,7], and limits the extent of phenotyping since it is not operationally feasible
for large number of genotypes over multiple environments [8]. However, large scale
multi-environment trials are crucial to measure the extent of genotype-by-environment
interactions. Remote sensing technologies, including satellites, aircraft, Unmanned Aerial
Vehicles (UAVs), Unmanned Ground Vehicles (UGVs), and handheld instruments and
sensors, have been used as important tools for crop monitoring, and phenotyping. Aircraft
and satellite-based observations cover large areas, but the data often suffer from coarse
spatial resolution, the effect of clouds, and low temporal resolution [9,10]. Handheld and
UGV-based phenotyping are often inefficient, time consuming, and may destroy crops
and fields, limiting their applicability on a large scale [11]. In contrast, UAV-based remote
sensing is gaining popularity in plant phenotyping, especially crop biomass estimation
applications due to its cost effectiveness, as well as efficient and non-destructive nature of
data collection [12]. Additionally, UAVs enable flexible and high resolution image acqui-
sition [13], can avoid cloud cover disturbances, and are excellent for extracting plot-level
information from large fields. They can be equipped with different sensors, making them an
effective field phenotyping tool [14,15]. RGB [16,17], multispectral [18], and hyperspectral
images acquired from UAVs provide improved spectral, spatial, and temporal resolution,
in comparison to images acquired from satellite and airborne platforms. High throughput
phenotyping using UAVs has been reported for estimation of ground cover [19,20], nitrogen
concentration [21,22], and grain yield [23–25]. Similarly, UAVs have been also employed
for plant biomass estimation in alfalfa [5], grass swards [26], tomato [27], winter wheat [7],
sorghum [28], black oat [29], soybean [6], and barley [30].

Canopy spectral, structural, textural, and thermal features extracted from UAV-based
imagery can be used to estimate plant biomass. Spectral features, such as Vegetation In-
dices (VIs), have been commonly employed to estimate biomass in various crops, including
winter wheat [20], barley [31], rice [32], and maize [33]. However, spectral features can
present limitations [34]. For example, the Normalized Difference Vegetation Index (NDVI)
is a widely used VI that has a tendency of attaining asymptotic saturation once it reaches a
certain canopy density [12,34]. They are often easily affected by soil background and atmo-
spheric effects [35,36]. Moreover, canopy spectral features such as VIs are unable to capture
and explain the complex three-dimensional (3D) characteristics of the canopy structure.

Canopy structural features, such as canopy height and vegetation fraction, offer a better
representation of the 3D canopy structure and geometric properties. Differences in canopy
height reflect the health and vigor of crops and thus, canopy height features are found to
be greatly correlated with biomass either used separately or in conjunction with spectral
features. Many studies have utilized 3D canopy structural features to estimate biomass
in a variety of agricultural crops such as soybean [6], black oat [29], maize [37,38], winter
wheat [7,39] and barley [30]. Canopy height often can be derived from photogrammetry-
based or Light Detection and Ranging (LIDAR) point clouds. Bendig et al. [30] reported
strong correlation of barley biomass with canopy height derived from photogrammetry-
based point clouds. Combining canopy spectral and structural features have also shown
great potential in crop biomass estimation in many crops [7,26,40].

Canopy height and density vary as plants mature, thus, characterizing spatial changes
in the plant canopy is very helpful. One of the limitations of spectral indices is that they
fail to capture the spatial variability of the pixel intensity level between neighboring pixels
within an image [41]. Canopy textural features, on the other hand, offer valuable insights
into the spatial distribution and patterns of pixel intensities in an image. They enable
the assessment of changes in pixel values among neighboring pixels within a defined
analysis window [42,43]. Canopy textural features are often utilized to smoothen the dif-
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ferences in canopy structure and geometric features [12], and to lessen the interference of
background [43]. These features have found widespread application in image classifica-
tion [44,45], and in forest biomass estimation [46,47], yet their potential in agricultural crop
biomass estimation is less explored. Few studies have examined the potential of textural fea-
tures and their incorporation with VIs for biomass estimation in agricultural crops [48,49].
Liu et. al. [49] found that the incorporation of textural features derived from multispectral
imagery reduced the RMSE by 7.3–15.7% when estimating winter oilseed biomass. Similar
results were reported by Zheng et al. [48] in their study estimating rice biomass, where the
inclusion of textural features into multispectral VIs exhibited improved results.

A combination of canopy structural and textural features with the spectral features
derived from UAV images has the potential to deliver better estimations of biomass and
crop grain yield than using a single type of features [12,49–51]. To the best of our knowl-
edge, no prior studies have explored the potential of combining canopy textural features
with multispectral VIs and canopy height features for oat biomass estimation. In recent
years, many studies have evaluated statistical and machine learning (ML) based regression
techniques for estimation of biophysical traits in a variety of crops like winter wheat [7,52],
potato [16,50], maize [38], etc. Biomass growth typically follows a complex, non-linear
pattern and, therefore, is hard to effectively model with linear statistical regression tech-
niques [8,53]. ML algorithms such as Random Forest, Support Vector Machine, Gradient
Boosting model, Neural Networks, etc. are gaining popularity nowadays in remote sensing-
based biomass estimation due to their ability to model complex non-linear relationships
between crop biomass and remote sensing variables [41,54]. Partial Least Squares Regres-
sion (PLSR), Random Forest Regression (RFR), and Support Vector Regression (SVR) are
being extensively used for the purpose of crop biomass estimation. Fu et al. [55] high-
lighted the flexibility and efficiency of using PLSR-based modelling to predict biomass of
winter wheat. Similarly, Wang et al. [36] reported that PLS and RF regressions perform
well to estimate biomass of winter wheat at multiple growth stages. SVR has been found
to adapt very well with complex data and can be effectively used in biomass estimation
studies [56]. Sharma et al. [57] also emphasized the benefits of using PLS, SVR and RF
regression for oat biomass estimation. The combination of canopy spectral, structural, and
textural features derived from UAV-based multispectral imagery to predict biomass in oats
using ML algorithms has not been explored. This study aims to examine the effectiveness of
combining canopy textural and structural features with multispectral VIs in the estimation
of oat biomass. The specific objectives of this study were to (i) evaluate the contributions of
canopy structural and textural features in biomass estimation; (ii) examine whether fusion
of multiple features (canopy spectral, structural, and textural) improve the accuracy of
biomass estimation models for oats; and (iii) compare the performance of different ML
models for oat biomass estimation.

2. Materials and Methods
2.1. Test Site and Field Data Acquision

A forage trial was planted at two sites in South Dakota (Volga and South Shore) in
2020 and 2021 (Figure 1). The trial included six oat genotypes (Jerry, Rushmore, Warrior,
SD150081, SD120665, and SD150012) were planted at two seeding rates (approximatelyp
150 and 300 seeds/m2) at a depth of approximately 0.038 m. Each plot was 1.524 m by
1.219 m. The trials were managed by using recommended agronomic practices for proper
growth and yield.

The experimental design consisted of a completely randomized block design with
8 replicates. Replications 1, 2, and 3 were harvested at booting, replications 4, 5, and 6 were
harvested at heading, and replications 7 and 8 were harvested at the milk stage (Table 1).
The multiple growth stage harvests and planting at two seeding rates ensured a wider
range of obtained biomass.
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Figure 1. Locations of the testing sites (b) and imagery of the experimental plots at each sites in 2021
((a) South Shore and (c) Volga).

Table 1. Planting and harvesting dates for the forage oat variety trial conducted at South Shore and
Volga in 2020 and 2021.

Year

Volga South Shore

Planting Booting
Stage

Heading
Stage Milk Stage Planting Booting

Stage
Heading

Stage Milk Stage

2020 19 May 9 July 16 July 22 July 22 May 9 July 16 July 22 July
2021 13 April 13 June 21 June 27 June 22 April 13 June 21 June 27 June

Throughout the growing season, oat growth was continuously monitored. On the
same days as harvesting, field measurements of canopy height and biomass sampling were
conducted to gather accurate and reliable data. The canopy height was measured using a
representative plant selected to reflect the average height of all plants within a plot. This
measurement, taken just prior to harvesting, recorded the distance from the soil to the tip
of the chosen plant’s panicle.

To obtain the above-ground fresh biomass, the plots were carefully cut close to the
ground using a Jari mower. During the harvesting process, the bordering rows on both
sides of the plot were excluded to ensure precise biomass sampling. A small subsample of
the biomass was collected, weighed, and dried in an oven set at 75 ◦C until a stable weight
was achieved. The dry matter content was determined by dividing the weight of the dried
subsample by the weight of the corresponding fresh subsample and multiplying the result
by 100%. The dry biomass yield was calculated by multiplying the dry matter content by
the fresh weight of the biomass, expressed in kilogram per hectare.

2.2. UAV Data Acquisition and Image Preprocessing

Aerial images were collected on the day of biomass harvest with a DJI phantom 4 pro
UAV (SZ DJI Technology Co., Shenzhen, China) (Figure 2c) equipped with a Multispectral
Double 4 K camera (Sentera Inc., Minneapolis, MN, USA) (Figure 2b). The camera has
a 12.3-megapixel BSI CMOS Sony Exmor R™ IMX377 Sensor. It can capture five precise
spectral light bands: blue, green, red, red-edge, and near-infrared (NIR). The central
wavelength and full width at half maximum (FWHM) bandwidth of each spectral bands is
presented in Table 2.
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Figure 2. UAV systems and their setup in the field. (a) DJI Phantom 4 pro and attached Sentera
double 4K sensor; (b) Sentera double 4K sensor (zoomed view); (c) DJI Phantom 4 pro (top view);
(d) Micasense calibrated panel; (e) white poly tarps as ground control points (GCPs).

Table 2. Center wavelength and full width at half maximum (FWHM) bandwidth of each spectral
band of Sentera Double 4K multispectral sensor.

Spectral Band Center Wavelength (nm) Bandwidth FWHM (nm)

Blue 446 60
Green 548 45
Red 650 70

Red Edge 720 40
Near Infrared 840 20

The UAV flights were conducted on sunny, cloud-free days with minimal sun shadow
and low wind speeds (wind gusts less than 12 miles per hour). The flights were performed
at an altitude of 25 m with 80% front and side overlap. Four white woven polypropylene
bags of size 0.35 m by 0.66 m, fixed permanently in the ground throughout the growing
period, were placed in the corners of the fields and used as Ground Control Points (GCPs)
for georeferencing purpose (Figure 2e). The geographic coordinates of these GCPs were
measured using Mesa ® Rugged Tablets from Juniper Systems (Juniper Systems, Logan,
UT, USA). Additionally, a calibration panel (Micasense Inc., Seattle, WA, USA) with known
reflectance factors was used for radiometric correction purposes (Figure 2d).

Digital Surface Model (DSM) and orthomosaic imagery were generated using Pix4D-
Mapper software v 4.8.0 (Pix4D S.A., Prilly, Switzerland). The process involved three main
steps: initial processing for key point computation and image matching, radiometric cali-
bration for converting raw digital numbers to reflectance values, and DSM generation for
surface elevation representation. Georeferencing was performed using GNSS coordinates of
four Ground Control Points (GCPs) recorded in QGIS software v 3.20 (QGIS Development
Team, Open Source Geospatial Foundation). Georeferenced images were saved in a TIFF
format and exported to ArcMap software for creating a 5-band orthomosaic and for spectral
indices extraction and DTM generation.

2.3. Features Extraction

Following image preprocessing, various features were extracted to be used as input
variables for oat biomass estimation. These included canopy spectral indices such as VIs,
canopy structural features such as plant height, and canopy textural features. For each plot,
a rectangular region of interest (ROI) or plot was defined on the images, and a polygon
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shapefile was created using ArcMap software (Redlands, CA, USA). Plot-level statistics
were obtained by averaging pixel values from spectral, structural, and textural raster layers
using the zonal statistics tool.

2.3.1. Spectral Features

Ten different VIs were calculated using the reflectance bands (red, green, blue, NIR,
and red edge) obtained from the multispectral sensor (Table 3). These VIs were categorized
into seven multispectral VIs (1–7 in Table 3) and three true-color VIs (8–10 in Table 3).
The selection of these VIs was guided by their ability to correlate well with biomass and
their sensitivity to changes in greenness and vegetation vigor, as observed in previous
studies [20,57–59].

Table 3. Details of spectral features used in this study to predict biomass in oats.

S.N. Spectral Indices Source Abbreviation

1 Normalized Difference Vegetation Index [60] NDVI
2 Green NDVI [61] GNDVI
3 Normalized Difference Red Edge Index [62] NDRE
4 Soil Adjusted Vegetation Index [63] SAVI
5 Optimized SAVI [64] OSAVI
6 Difference Vegetation Index [65] DVI
7 Ratio Vegetation Index [66,67] RVI
8 Normalized Difference Index [66] NDI
9 Green Leaf Index [68] GLI
10 Excess Green minus Excess Red Index [69] ExGR

2.3.2. Structural Features

Height features were derived through digital photogrammetry-based point clouds.
The Digital Surface Model (DSM) obtained from Pix4DMapper software was imported into
ArcGIS software. The DSM represents the ground’s structures, encompassing both bare
earth and canopy. Since we were not able to collect preplant bare soil UAV imagery to
generate Digital Terrain Model (DTM), which represents the soil surface elevation, thus,
bare surface points were selected from the DSM imagery and interpolated using the Inverse
Distance Weighting (IDW) method, resulting in a raster layer representing ground surface
elevation. The Canopy Height Model (CHM) was obtained by subtracting the DTM from
the DSM, capturing the height of the vegetation (CHM = DSM − DTM). Figure 3 provides
a comprehensive illustration of the canopy height extraction process.

The CHM and shapefile were subsequently exported to ArcGIS software to calculate
height features for each plot, including average height (Hmean), maximum height (Hmax),
minimum height (Hmin), median height (Hmedian), height standard deviation (Hstd), height
90% percentile (Hp90), height 93% percentile (Hp93), and height 95% percentile (Hp95).
(Table 4).

2.3.3. Textural Features

Textural features for the plots in each image were computed using the Gray Level
Co-occurrence Matrix (GLCM) texture algorithm, introduced by Haralick et al. [70]. The
GLCM provides information on the spatial relationship of pixel pairs in an image and is one
of the widely used image textural features in remote sensing. Using the ENVI 5.6.1 software,
different textural features were calculated for each of the five bands, including variance
(VAR), mean (ME) homogeneity (HOM), dissimilarity (DIS) contrast (CON), entropy (ENT),
angular second moment (ASE), and correlation (COR). A 3 × 3 moving window was set for
the calculations. Further details about these textural features can be found in [71]. Table 5
presents the list of GLCM textural features used in this study. To denote each extracted
texture, they are prefixed with either “R-”, “G-”, “B-”, “NIR-” and “Red edge-” to denote
the GLCM-based textures for the five bands (e.g., R-ME denotes the mean of the red band).
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Table 4. Digital photogrammetry-based point cloud-derived canopy structural features used in this
study to predict biomass in oats.

S.N. Height Measures Name

1 Mean height Hmean
2 Median height Hmedian
3 Minimum height Hmin
4 Maximum height Hmax
5 Standard deviation height Hstd
6 90th percentile Hp90
7 93rd percentile Hp93
8 95th percentile Hp95
9 98th percentile Hp98
10 99th percentile Hp99

2.4. Statistical Analysis
2.4.1. Data Preprocessing and Feature Selection

All data points including UAV imagery features and corresponding biomass ground
truth values from the 2 years and two fields were combined for further analysis and
modeling (Table 6). The dataset had ground-truth biomass and UAV imagery features
obtained from all three harvests: the first three replications from the booting stage harvest,
the next three from the heading stage harvest, and the final two from the milk stage harvest.
The dataset was first subjected to a preliminary statistical test to check the presence of any
outliers. Then, the correlation between canopy height features obtained from CHM and
canopy height obtained from ground measurement (Href) were calculated to investigate the
accuracy and quality of UAV-based canopy height data. In addition, correlations between
the spectral indices, structural features, and textural features with biomass were determined
and used for feature selection.
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Table 5. The grey level co-occurrence matrix (GLCM) textural features and their definitions used in
this study to predict biomass in oats.

S.N. Texture Measures Formula

1. Mean (ME) ME =
N−1
∑

x=0

N−1
∑

z=0
kP(x, z)

2. Variance (VAR) VAR =
N−1
∑

x=0

N−1
∑

z=0
(x− µ)2P(x, z)

3. Homogeneity (HOM) HOM =
N−1
∑

x=0

N−1
∑

z=0

1
1+(x−z)2 P(x, z)

4. Contrast (CON) CON =
N−1
∑

x=0

N−1
∑

z=0
(x− z)2P(x, z)

5. Dissimilarity (DIS) DIS =
N−1
∑

x=0

N−1
∑

z=0
P(x, z)|x− z|

6. Entropy (ENT) ENT = −
N−1
∑

x=0

N−1
∑

z=0
P(x, z)log(P(x, z))

7. Angular Second Moment
(ASM) ASM =

N−1
∑

x=0

N−1
∑

z=0
(P(x, z))2

8. Correlation (COR) COR =
N−1
∑

x=0

N−1
∑

z=0
P(x, z)

[
(x−ME)(z−ME)√

VAxVAz

]
Note: P(x,z) = V(x,z)/∑N−1

i=0 ∑N−1
j=0 V(x, z); where V(x,z) represents the value in the row at the cell x, and column z

within the moving window. N represents the number of rows or columns in the window.

Table 6. Statistics of ground-truth oat biomass data (kg/ha) at different oat growth stages.

Year Location Growth Stage No. Mean Min Max. SD

Volga
Booting 36 7836.9 5859.3 10,076.5 1046
Heading 36 10,934.1 6946.0 13,894.6 1514

Milk 24 12,140.9 9931.1 13,720.9 1031.6

2020
South Shore

Booting 36 12,232.3 7789.9 15,772.4 2196.5
Heading 36 16,418.5 13,799.2 19,645.6 1380.2

Milk 24 17,563.1 15,187.6 20,415.8 1414.1

All 192 14,067 5859.3 20,415.8 4116.4

Booting 36 3754.5 2201.4 4872.8 600.3
Volga Heading 36 5750.66 3967.1 7287.2 713.5

Milk 24 7873.39 6318.4 9068.8 778.8

2021
South Shore

Booting 36 3707.7 2410.1 4581.7 559.6
Heading 36 5344.8 4002.1 7738.0 680.2

Milk 24 5525.2 4554.4 6258.0 425.2

All 192 5154.3 2201.4 9068.8 1476.5

2.4.2. Biomass Estimation Modelling
Machine Learning Models

Machine learning (ML) algorithms like Partial Least Squares Regression (PLSR), Ran-
dom Forest Regression (RFR), and Support Vector Regression (SVR) were used to develop
predictive models for oat biomass yields. The implementation of ML methods was con-
ducted using the Scikit-learn library [72] in Python (Python version 3.9.7).

Model Building and Evaluation

A 10-fold cross-validation analysis was performed by randomly splitting all data
points (n = 384) into the training dataset (70%) for calibrating the model and the testing
dataset (30%) for model testing. Feature scaling was carried out before fitting our model.
To find the best set of hyperparameters for each model, a hyperparameter optimization
strategy, namely Grid search cross-validation, was used.
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To evaluate and compare the model performance, the coefficient of determination (R2),
root mean square error (RMSE), and relative RMSE (RMSE%) were calculated as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2

RMSE =

√
∑n

i=1(yi − ŷi)
2

n− 1

RMSE% =
RMSE

y
× 100

where yi and ŷi are the measured and predicted biomass yield, respectively; y is the mean
of measured biomass yield; and n is the total number of samples in the validation set.
A detailed workflow showing feature extraction (spectral, structural, and textural) and
modelling using traditional ML algorithms for biomass estimation of oats is presented
in Figure 3.

3. Results and Discussions
3.1. Statistical Analysis of Biomass Data

The genotype, seeding rate, year, location, and the growth stage all affected biomass
yield. Growing conditions in 2020 were more favorable than in 2021 at both locations; as
a result, the biomass production was higher in 2020 compared to 2021 (Table 3). In 2021,
the drought stress experienced in June reduced mean biomass production by 63.37%. The
location (Volga vs. South Shore) also affected biomass production. In 2020, the highest
biomass was produced in South Shore (Table 3). The severe (Puccinia coronate f. sp. avenae)
infections observed on susceptible cultivars in Volga that year likely contributed to the
lower biomass production at that location in comparison to South Shore. In 2021, however,
higher biomass was produced in Volga compared to South Shore (Table 3). The more severe
drought stress in South Shore likely affected plants more severely in comparison to those
at the Volga site. Finally, as expected, we consistently observed an increase in biomass
production at later growing stages. Biomass production increased by 56% between booting
and milk stage in 2020 and by 112% between those two stages in 2021. Overall, in this study,
a wide range of biomass was obtained, ranging from 2201.4 to 20,415.8 kg/ha (Table 3).

3.2. Correlation Analysis
3.2.1. Relationships between Manually Measured and UAV-Estimated Canopy Height

Pearson’s correlation coefficient (r) was calculated between the manually measured
and UAV-estimated canopy height. Compared to other height features, a strong correlation
(r = 0.77) is found between Hp90, Hp93, and Hp95 of estimated canopy height and manually
measured canopy height (Href) (Table 7). A similar relationship between the 90th percentile
of UAV estimated canopy height and manually measured canopy height was reported in a
study to predict sorghum biomass [58]. In our study, some negative values were reported
for the minimum canopy height estimated from UAV imagery. This could be attributed to
errors incurred during the interpolation step of DTM extraction, which added noise. While
the DSM-extracted canopy height is surely a low-cost solution, there is a high chance of
error in this method as it requires large bare buffer zones that are not always assured [16]
and a high resolution in the extracted DTM, which is also a problem with multispectral
imagery. As an alternative approach, DEM can be acquired by capturing images of the
bare ground prior to plant emergence. This method would be more practical and would
offer more reliable estimates of extracted canopy height, provided an adequate number of
ground control points is available.
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Table 7. Pearson correlation coefficient (r) of manually measured canopy height with UAV-derived
height features.

Height Features Pearson’s Correlation Coefficient (r)

Hmean 0.74 ***
Hmedian 0.74 ***

Hmin 0.53 ***
Hmax 0.63 ***
Hstd 0.43 ***
Hp90 0.77 ***
Hp93 0.77 ***
Hp95 0.77 ***
Hp98 0.76 ***
Hp99 0.74 ***

p-value significance: *** = p ≤ 0.001.

3.2.2. Relationships between UAV Imagery-Extracted Features and Biomass

Pearson’s correlation coefficient (r) was calculated between biomass and UAV imagery
extracted spectral, structural, and textural features (Tables 8 and 9). Among the three
different feature types, structural features are the most strongly correlated with biomass.
All spectral and structural features (except Hmin) show significant positive correlations
with biomass (Table 8).

Table 8. Pearson correlation coefficient (r) of oat biomass with VIs and canopy height features.

VIs r Height Features r

NDVI 0.33 *** Hmean 0.59 ***
NDRE 0.49 *** Hmedian 0.73 ***

GNDVI 0.24 *** Hmin −0.31 ***
RVI 0.37 *** Hmax 0.61 ***
DVI 0.17 *** Hstd 0.39 ***
SAVI 0.33 *** Hp90 0.74 ***

OSAVI 0.33 *** Hp93 0.73 ***
NDI 0.38 *** Hp95 0.73 ***
GLI 0.63 *** Hp98 0.73 ***

ExGR 0.19 *** Hp99 0.72 ***
p-value significance: *** = p ≤ 0.001.

Among the spectral features, GLI shows the strongest correlation with biomass
(r = 0.63). The usefulness of GLI in predicting biomass and green vegetation has been
highlighted by previous studies. Taugourdeau et al. [73] found GLI to be among the
most important variables when estimating herbaceous above-ground biomass in Sahelian
rangelands. In another study, GLI was found to show higher sensitivity in detecting green
vegetation [74]. However, other studies reported GLI to be a weak indicator for biomass
estimation [75,76]. Among the NIR-based VIs, NDRE shows the strongest correlation
(r = 0.49) with biomass (Table 8). NDRE is based on Red Edge spectral band, which does
not suffer from the optical saturation issue and, hence, performs well even at a higher
plant density [34].

Among the structural features, Hp90 shows the strongest correlation with biomass
(r = 0.74) (Table 8). The correlation between biomass and manually measured canopy height
is found to be 0.88, which is higher than the correlation observed between UAV multi-
spectral imagery-derived height features and biomass. Most of the literature has reported
promising and reliable estimates of UAV imagery extracted canopy height (r ≥ 0.8) [12,58],
and, therefore, strong correlations between biomass and UAV imagery extracted canopy
height were reported. Nonetheless, in our study too, moderate to strong correlations are
obtained between most canopy height features and biomass. These results suggest that
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canopy height is an important indicator of biomass as it directly reflects plant growth (i.e.,
biomass) and can be used to quickly estimate oat biomass.

Table 9. Pearson correlation coefficient (r) of oat biomass with textural features.

Textural Features r Textural Features r

Red ME −0.14 *** Blue DIS −0.07
Red VA −0.05 Blue ENT −0.15 ***
Red HO −0.12 Blue ASM −0.02
Red CO 0.01 Blue COR −0.45 ***
Red DI 0.07 NIR ME −0.16 ***
Red EN −0.11 *** NIR VAR −0.3 ***
Red SM 0.02 NIR HOM 0.05
Red CC −0.36 *** NIR CON −0.19 ***

Green ME −0.11 *** NIR DIS −0.1 **
Green VA −0.19 *** NIR ENT −0.14 ***
Green HO −0.03 NIR ASM −0.01
Green CO −0.07 NIR COR −0.71 ***
Green DI −0.01 Red edge ME −0.24 ***
Green EN −0.27 ** Red edge VAR −0.31 ***
Green SM −0.15 Red edge HOM 0.11
Green CC −0.62 *** Red edge CON −0.22 ***
Blue ME −0.16 *** Red edge DIS −0.17 ***
Blue VA −0.11 *** Red edge ENT −0.19 ***
Blue HO 0.06 Red edge ASM −0.04
Blue CO −0.06 Red edge COR −0.56 ***

p-value significance: ** = p ≤ 0.01, *** = p ≤ 0.001.

Textural features are not all significantly correlated with biomass (Table 9). The features
with significant correlations are all negatively correlated with biomass (r = −0.1 to −0.7).
The Gray Level Co-occurrence Matrix (GLCM) textural features showing the strongest
negative correlation with the biomass yield is Correlation (COR) calculated on NIR Band
(r = −0.7) (Table 9). Correlation measures, in general, showed higher negative correlation
with biomass than any other measures (Table 9). This correlation measure characterizes the
texture of an image by measuring the joint probability of the occurrence of two specified
pixel pairs. Liu et al. [50] have also reported strong correlations of canopy textural features
(COR, CON, HOM) calculated on RGB bands with potato biomass, suggesting that canopy
textural features are suitable in predicting biomass.

3.3. Oat Biomass Estimation Analysis

Machine learning models PLSR, SVR, and RFR were used to predict the biomass of
oats using UAV multispectral imagery-derived spectral, structural, and textural features
individually and in combination. The 10 VIs calculated using five-spectral bands, along
with 8 texture parameters for each band gave a total of 40 textural features but only 24
were selected based on their correlation with the biomass. So, the 10 VIs, 10 canopy height
features, and 24 textural features, resulted in a total of 44 features that were used for
modelling. The model testing statistics for biomass estimation are presented in Table 10.

3.3.1. Spectral Feature-Based Biomass Estimation

Variations in seeding rates, genotypic differences, and in growing environments
(two locations and 2 years) led to a variation in oat canopy growth. These variations
consequently led to differences in canopy spectral reflectance. Biomass estimation models
were built based on PLSR, SVR, and RFR methods by using 10 VIs as input variables. The
estimation accuracy obtained from three models are in the range of 0.53–0.71 (Table 10).
The highest estimation accuracy (R2 = 0.71) and lowest estimation error (RMSE% = 35.12)
was obtained from RFR modelling. The superior goodness RFR model in comparison to
the other two ML models is also visible on the scatter plots as the data points are seen to be
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more converged towards the bisector (black dashed line) (Figure 4). The lowest accuracy
(R2 = 0.53 and highest RMSE% = 40.14%) was yielded by SVR. Significant correlations
of the VIs are seen with the biomass (Table 8) suggesting that spectral features derived
from UAV-based multispectral imagery are important indicators for oat biomass estimation.
Biomass estimation using canopy spectral features has been reported extensively in the
literature. Many studies have shown the usefulness of using multiple VIs for biomass
estimation and our results are in agreement with those previous studies.

Table 10. Validation statistics of oat biomass yield estimation using three machine learning methods.

Input Features No. of
Features Metrices PLSR SVR RFR

R2 0.645 0.535 0.713
Spectral 10 RMSE 3325.62 3803.1 2986.49

RMSE% 35.1% 40.14% 31.52%

R2 0.682 0.614 0.732
Structural 10 RMSE 3146.57 3464.92 2887.85

RMSE% 33.21% 36.57% 30.48%

R2 0.862 0.834 0.92
Textural 24 RMSE 2068.59 2276.1 1582.69

RMSE% 21.83% 24.02% 16.7%

Spectral + Structural
R2 0.79 0.664 0.788

20 RMSE 2555.28 3233.34 2569.01
RMSE% 26.97% 34.12% 27.11%

Spectral + Structural
+ Textural

R2 0.903 0.852 0.926
44 RMSE 1733.61 2144.09 1512.77

RMSE% 18.30% 22.63% 15.97%
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It is worth noting that the three models based on spectral features underestimated
biomass samples with higher values (Figure 4). One reason behind this could be the optical
saturation of the VIs. Similar results were also observed in winter cover crop biomass
estimation [20] and soybean biomass and LAI estimation [77]. VIs that are based on NIR
and red ratios (e.g., NDVI) tend to saturate at high/dense canopies [34,78], which result in
poor performance of predictive models. Prabhakara et al. [20] reported that NDVI showed
asymptotic saturation in the higher range of rye biomass (>1500 kg/ha). VIs are also
environment and sensor specific [79]. They often do not reflect 3D canopy structure and
geometrical patterns.

3.3.2. Structural Feature-Based Biomass Estimation

Structural features like canopy height metrics were also used for estimating oat
biomass. In this study, canopy structural features resulted in superior estimations than
spectral features (Table 10). Noticeably higher estimation accuracies were obtained from
models based on structural features (R2 ranges from 0.61 to 0.73 and RMSE% ranges from
30.48 to 36.57%) than canopy spectral features-based models. RFR also exhibited the highest
estimation accuracy for biomass with R2 of 0.73 and RMSE% of 30.48%. With improved
R2 and decreased RMSE%, the use of structural features improved the estimation results
for oat biomass, which is also demonstrated by general convergence pattern of the spread
points towards the bisector (Figure 4). Nonetheless, the SVR model still underestimates the
higher values of biomass.

A possible explanation of the superior performance of estimation models based on
structural features over those based on spectral features is that canopy structural features
can provide the three-dimensional canopy information and can better reflect canopy growth
and biomass. Also, canopy structural features do not suffer from asymptotic saturation,
unlike spectral indices [77]. Many studies have validated the potential of structural features
in biomass estimation. Bendig et al. [30] reported that canopy height derived from Crop
Surface Model (CSM) is a suitable indicator of biomass in barley. In their study, they
tested five different models based on canopy height and predicted biomass with R2 of
0.8. Similarly, a study for rice crop [80] showed good estimations of biomass from canopy
height (R2 = 0.68–0.81). Acorsi et al. [29] also showed successful estimations of fresh and
dry biomass of black oats using structural features (R2 ranges from 0.69 to 0.81).

Many studies have highlighted the potential of combining canopy height with VIs,
rather than using them separately [7,31,40,81], which resulted in robust and improved
estimations of biomass yield in previous studies. Consistent with previous studies, the
results in this work also show that a combination of spectral and structural features resulted
in more improved estimation accuracy than using spectral or structural features alone, with
R2 ranging from 0.66 to 0.79 and RMSE% ranging from 26.97 to 34.12% (Table 10). Canopy
structural features can provide information about canopy architecture, not provided by
spectral features and can, to some extent, overcome the saturation problem of spectral
features. This is observed in our study as well. A combination of spectral and structural
features has resolved the underestimation trend of biomass samples at higher values to
some extent, which is demonstrated by scatter plots of measured vs. predicted oat biomass
yield (Figure 4).

3.3.3. Textural Feature-Based Biomass Estimation

Textural features have been widely used for image classification purposes and for
forest biomass estimation. Textural features have also been tested in a few studies for
crop biomass estimation in recent years. In these studies, textural features are often used
alone [71] or in conjunction with spectral features [48,49,52]. Our study demonstrates
that biomass estimation using textural features alone shows a higher accuracy than either
spectral or structural features, with an R2 ranging from 0.834 to 0.92 and RMSE% from
16.7 to 24.02%. (Table 10). The data points are also more converged towards the bisector,
which demonstrated the improved estimation performance of canopy textural feature-based
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biomass estimation (Figure 4). Textural features are based on spectral bands, and, thus,
they show some collinearity with the spectral features. However, in contrast to spectral
features, textural features can characterize canopy architecture and structure patterns to
some extent [82], as well as weaken saturation issues and suppress the soil background
effect. This could be a possible explanation for the superior performance of textural features
over spectral features. The superior performance of textural features over spectral features
in this study is in agreement with previous findings estimating forest biomass [71,83].

Several studies have also combined canopy spectral and textural features to improve
estimation accuracy for crop biomass estimation. Wengert et al. [84] found that GLCM-
based textural features improved the estimation of barley dry biomass and leaf area index.
Similar results were also documented in above-ground biomass estimation of legume grass
mixtures [41], rice [48], and winter wheat [52]. It is worth noting that, in this study, the
estimation accuracy provided by using only textural features is higher than combining
spectral and structural features. A possible explanation for the improved estimation
accuracy is that textural features takes into account the spatial variation in the pixels and
provides additional information about the physical structure of the canopy, edges of a
canopy, and overall canopy architecture [85,86].

3.3.4. Data Fusion and Biomass Estimation

Inclusion of textural features to the spectral and structural features provided superior
estimations of oat biomass. For all three regression models, fusion of all three types of
features have yielded improved estimations of biomass over using a single type of features
or combining two types of features, with R2 varying from 0.85 to 0.92 and RMSE% ranging
from 15.97% to 22.63%. However, the estimation accuracy was not substantially improved
when combining all three features compared to using textural features only (Table 10).
Also, it is noteworthy that the estimation accuracy provided by PLSR when using textural
features is slightly higher than that provided by SVR when combining all three features.
This could be associated with information overlapping and redundancy issues linked with
canopy spectral, structural and textural features [77].

The improved performance of combination of all three features can also be observed
from the scatter plots of measured vs. predicted biomass (Figure 4). Observing the distri-
bution of data points around the bisector (black dashed line), it is found that combining
all three features significantly improved the estimation accuracy as data points are more
converged towards the bisector. However, what is prominent and consistent with all the
three models is the underestimation of higher biomass values. The higher values of biomass
are underestimated to some extent by all three models. This is likely attributed to an optical
saturation issue. Overall, combining structural features with spectral features increased
R2 by 5–14%, whereas combining all three features led to an almost 28–56% increase in R2,
depending on the models.

Several studies have tested the combination of multiple information, by integrating
non-spectral features (3D, thermal) or textural features with spectral features for the evalu-
ation of biomass in grasslands [26,87,88] and in cultivated crops. There have been many
studies that have combined spectral and textural features [48,49] or spectral and structural
features [40,89] to improve biomass estimation accuracy in agricultural crops. A study
conducted in soybean [12] highlighted the benefits of fusing multiple features and multi-
source information for the estimation of grain yield (R2 = 0.72). Future research should
focus more on evaluating the benefits of feature fusion (spectral, structural, thermal, textu-
ral features) and multi-source (RGB, hyperspectral, LiDAR) data fusion for oat biomass
estimation purposes.

3.4. Performance of Different ML Models

Figure 5 shows the performance of each model in the estimation of biomass based
on five different input feature combinations. Based on R2 and RMSE%, the RFR model
yielded superior performance compared to the other two models for oat biomass estimation,
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irrespective of the input features. In all five combinations, SVR yielded estimations with the
lowest R2 and highest RMSE% with the poorest estimation obtained when using spectral
features only as the independent variable (Figure 4 and Table 10). With all the five different
input feature scenarios, RFR and PLSR generally exhibited very close performance with
RFR performing slightly better. The best performance was observed when using the RFR
model with all three features, giving an R2 of 0.92 and RMSE% of 15.97%.
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Random forest is a tree-based ensemble learning method, which combines multiple
predictors by building a complex non-linear relationship to solve complex problems [90].
It has gained considerable attention in terms of crop biomass modelling as it offers the
advantage of faster training time, improved accuracy, higher stability, and robustness. Our
results are consistent with many other studies that have demonstrated the superiority of
RFR in modelling biomass and yield-related variables [26,41,84,91].

3.5. Limitations and Future Work

The digital terrain model used in our study has notable limitations. To obtain DTM,
we employed an Inverse Distance Weighting (IDW) approach due to the absence of bare
ground imagery before crop emergence. The DTM generated through this method may
suffer from inherent errors, including issues related to shadows, interpolation, and the
identification of ground versus off-ground surfaces, potentially resulting in underestimated
canopy height data [92]. Therefore, we recommend acquiring imagery of bare ground
before crop emergence to improve the reliability of DTM data.

In terms of future work, we propose several directions. Firstly, the use of transfer
learning techniques holds significant potential for enhancing model generalizability, es-
pecially when predicting biomass across different years and locations [93]. A valuable
approach involves utilizing one location for training and another for testing, or likewise,
one year for training and another for testing. This allows for the assessment of spatial and
temporal model transferability, which is of substantial value for future research. In the
realm of biomass estimation, it is important to recognize that factors beyond imagery, such
as soil properties, rainfall, irrigation, weather conditions, and solar elevation angle, play a
significant role. Integrating weather, soil, and crop management information could help
enhance the precision and reliability of oat biomass estimations.

4. Conclusions

This study investigated the potential of UAV-derived spectral, structural, textural
features, and their combination for predicting the biomass yield of oats. The results show
that a combination of multi-features can be superior to using spectral features alone for
predicting oat biomass. The importance of canopy structural features when estimating
plant biomass was highlighted by the strong relationships observed between biomass and
UAV-derived canopy height. Canopy textural features also proved to be an important
indicator for oat biomass estimation as the model using canopy textural features achieved
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higher estimation accuracy than models using spectral or structural features alone. Canopy
structural and textural features likely provide a more accurate measurement of canopy
architecture than spectral features and may also provide a means to overcome saturation
issues associated with spectral features. All three machine-learning algorithms used in this
study were highly efficient in oat biomass estimation, with RFR producing slightly higher
estimation accuracies.

In light of these findings, it is evident that the integration of multi-feature data sources,
including spectral, structural, and textural features, offers a promising avenue for accurate
oat biomass estimation. The underestimation trend observed for higher biomass values
suggests the need for further research in addressing the optical saturation issue. Addi-
tionally, future investigations in this field should explore the advantages of incorporating
additional variables, such as soil properties, weather conditions, and crop management
information, to enhance the robustness and precision of oat biomass predictions. This
study contributes to the growing body of research on precision agriculture and remote
sensing applications, and it paves the way for more comprehensive and reliable oat biomass
estimation techniques in the years to come.
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