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Abstract: One motivation for studying semi-supervised techniques for human pose estimation is
to compensate for the lack of variety in curated 3D human pose datasets by combining labeled 3D
pose data with readily available unlabeled video data—effectively, leveraging the annotations of
the former and the rich variety of the latter to train more robust pose estimators. In this paper, we
propose a novel, fully differentiable posture consistency loss that is unaffected by camera orientation
and improves monocular human pose estimators trained with limited labeled 3D pose data. Our
semi-supervised monocular 3D pose framework combines biomechanical pose regularization with a
multi-view posture (and pose) consistency objective function. We show that posture optimization was
effective at decreasing pose estimation errors when applied to a 2D–3D lifting network (VPose3D) and
two well-studied datasets (H36M and 3DHP). Specifically, the proposed semi-supervised framework
with multi-view posture and pose loss lowered the mean per-joint position error (MPJPE) of leading
semi-supervised methods by up to 15% (−7.6 mm) when camera parameters of unlabeled poses were
provided. Without camera parameters, our semi-supervised framework with posture loss improved
semi-supervised state-of-the-art methods by 17% (−15.6 mm decrease in MPJPE). Overall, our pose
models compete favorably with other high-performing pose models trained under similar conditions
with limited labeled data.

Keywords: human posture analysis; human pose estimation; semi-supervised pose estimation;
weakly supervised pose estimation

1. Introduction

A major challenge for 3D human pose estimation (HPE) in the wild is acquiring uncon-
strained training data annotated with accurate 3D poses. Human pose datasets used to train
and evaluate 3D pose estimators [1–5] typically contain a few million poses of a limited
set of persons, activities, and scenery. For example, the most studied H36M dataset [1] has
1.5 M poses in its training set, with only five persons performing 15 distinct actions in the
same room. Although a greater variety of subjects performing various activities in different
environments is needed to train robust pose estimators, it is costly and difficult to curate
such a rich dataset because of the constraining setup of synchronized cameras and motion
tracking systems needed to generate accurate joint annotations. This inadequate variety
in training data is one reason why leading pose estimators struggle to replicate their high
performance when tested in the wild, especially when exposed to unfamiliar activities and
environments. Our objective was to study semi-supervised training techniques that would
allow us to leverage the annotations of curated datasets and the richness of unconstrained
unlabeled video data to fine-tune state-of-the-art (SOTA) pose estimators. This paper
presents a semi-supervised training pipeline for monocular 3D pose estimation that learns
from both labeled and unlabeled data by (1) constraining the biomechanical and kinematic
properties of unlabeled poses using pose prior regularization [6] and (2) optimizing the
multi-view pose and posture consistency of estimated 3D poses. We present a fully differ-
entiable bone alignment procedure, which is the basis of our proposed posture loss term
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and evaluation metrics. Differentiability enables the seamless propagation of posture error
through the bone alignment procedure to update the network parameters responsible for
estimating the 3D pose, without leaving the network’s computation graph. This results in
the faster execution of backpropagation and optimization operations during training and
the faster and more accurate convergence of the network, as the gradients of the posture loss
are retained through the bone alignment procedure. We make the following contributions:

1. We propose a new posture metric that assesses the similarity between poses by com-
paring the relative orientation of bones irrespective of the poses’ global positioning
and orientation. Unlike existing normalized pose evaluation protocols, our posture
metric is better at isolating errors to the defaulting joints and bones.

2. The proposed posture metric is fully differentiable and therefore can be directly
optimized. We demonstrate its efficacy as a multi-view posture consistency loss
function that can be jointly optimized with multi-view pose consistency loss on
unlabeled poses in a weakly supervised training pipeline. The addition of these loss
terms significantly improves upon monocular pose estimators.

3. We present a posture-centric semi-supervised scheme for pose estimation that does
not require intrinsic or extrinsic camera parameters and no 2D or 3D pose annotations
for the majority of the training data. We significantly improve SOTA semi-supervised
pose estimation performance without camera parameter annotations (i.e., no ground
truth or estimated camera parameters are used).

2. Related Work

We review existing 3D-HPE methods at varying degrees of supervision.

Fully Supervised 3D-HPE with 3D Pose Ground Truth

The full supervision of deep learning models involves direct optimization by com-
paring their predicted output to the expected ground truth. Pose estimation methods in
this category learn a mapping from 2D to 3D poses by supervising pairs of 2D–3D corre-
spondence. Fully supervised multi-view 3D pose estimators [7–11] lead pose estimation
accuracy with 17.6 mm mean per-joint position error (MPJPE) state-of-the-art performance
on H36M [12]. However, most real-world scenarios are restricted to a single viewpoint.
This motivates the study of monocular (single-view) 3D human pose estimation. The
leading monocular 3D-HPE networks are trained with full supervision [13–18] and have
obtained a mean joint position error as low as 21.6 mm on the H36M dataset. We believe
that more training data with richer variety is key to bridging the performance gap between
monocular and multi-view 3D-HPE. However, curating a large dataset with a rich variety
of persons, activities, and scenery is difficult to accomplish because of the non-trivial setup
of motion capture systems used to generate 3D pose annotations. As an alternative, some
works have proposed the use of additional synthetic training data generated by stitching
together image patches [19–21] or poses [22], using graphics engines [23,24], or directly
augmenting 2D and 3D pose pairs via a jointly trained GAN that learns to generate realistic
3D poses [25–27]. Other works have explored weakly and semi-supervised 3D-HPE to
distill knowledge from large amounts of unlabeled data and leverage its rich pose variety.

Weakly Supervised 3D-HPE without 3D Pose Ground Truth

The concept of the weak or self-supervision of deep neural networks involves the
implicit optimization of a model either without the knowledge of the expected output
or without a direct comparison between each predicted output and the corresponding
ground-truth target. The appeal of studying self- or weakly supervised deep learning
techniques is the lower reliance on the availability of structured annotated training data,
as they can be difficult to obtain in large amounts for some deep learning problems. Pose
estimation works in this category include methods designed to train pose estimators
without 3D pose annotations [28–31] or use 3D pose annotations to train a network without
one-to-one correspondence between input 2D images or poses and the target 3D pose
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annotations [32,33]. Zhou et al. [33] augmented a 2D pose estimator with a depth regression
sub-network and jointly trained both sub-nets with 2D and 3D labels to fully exploit the
correlation between 2D pose and depth estimation sub-tasks. Other works like [34] looked
to exploit multi-view information only during training. Hua et al. [35] proposed a U-shaped
cross-view graph convolution network (GCN) that was trained without 3D labels. Instead,
a triangulation and refinement procedure was performed across two views to lift 2D
keypoints into coarse 3D poses. Iqbal et al. [36] presented a weakly supervised framework
that optimized multi-view consistency. Given 2D images, their network estimated 2.5D
poses (2D joint heat maps and depth maps) from which scale-normalized 3D poses were
reconstructed. However, unlike our method, their multi-view consistency loss relied on
a non-differentiable rigid alignment procedure and intrinsic camera parameters. Wandt
et al. (CanonPose) [37] proposed a self-supervised method that exploited the multi-view
constraint by projecting the estimated 3D pose in one view to a 2D pose in another view
and optimizing juxtaposed reprojected 2D losses. The following self-supervised works
proposed different strategies for acquiring 3D pose annotations from multi-view 2D data.
Gholami et al. (TriPose) [38] triangulated a 3D pose given 2D poses from multiple views
and estimated the relative orientation of poses. The triangulated 3D poses were then
used as pseudo-annotations to train their 2D–3D pose lifting network. Kocabas et al.
(EpipolarPose) [39] presented a self-supervised method that utilized Epipolar geometry
to obtain person and camera 3D poses from multi-view 2D images that were used as
pseudo-labels to train their pose network.

Semi-Supervised 3D-HPE with some 3D Pose Ground Truth

Semi-supervised deep learning techniques look to leverage the advantages of full
and weak supervision by training a model on a structured subset of annotated data and a
larger subset of unlabeled data rich in variety. Thus, the model converges faster to a stable
optimum because of the full supervision while attaining generalizability robustness thanks
to the improved distribution of unlabeled data used in weak supervision. This category of
3D-HPE works tries to learn more robust 3D pose estimators by combining annotated 3D
pose training data with much more unlabeled video data. Existing works [40–42] have em-
ployed a dual-branch training pipeline with a fully supervised branch and a self-supervised
branch that learns from the 2D pose inputs without 3D pose annotations. Rhodin et al. [43]
proposed addressing the problem of insufficiently large training samples by learning a
latent representation of 3D geometry from multi-view 2D images. Wang et al. [44] trained a
3D pose estimator by distilling knowledge from a modified non-rigid structure from motion
(NRSfM) network used to reconstruct 3D shapes and camera positions from multiple 2D
poses. To reduce over-reliance on the reprojected 2D loss, some works have employed adver-
sarial networks that learn a distribution of realistic poses [25,45]. Gong et al. [25] presented
an auto-augmentation GAN framework that learned to generate realistic 2D–3D poses,
thereby increasing the quantity and diversity of supervised training data. Other works
have focused on enforcing kinematic and pose geometry constraints on semi-supervised
3D pose encodings [33,46–49]. Amadi and Agam [6] proposed two effective biomechanical
pose prior regularizers—bone proportion and joint mobility constraints—introduced to the
weakly supervised branch to regulate overfitting to the 2D reprojection loss and directly
optimize plausible 3D poses.

In the Context of Our Work

Naively enforcing multi-view consistency can lead to degenerated solutions. For exam-
ple, triangulating 3D poses from estimated multi-view 2D poses using bundle adjustment
may produce inaccurate results, especially when employing estimated camera parameters.
Consequently, supervising the network with sub-optimal triangulated 3D poses may ad-
versely affect performance. Previous works either used partial 3D annotation [50], learned
a multi-view latent embedding of 3D poses [51], proposed a 2.5D approach to constrain the
solution space [36], or used multi-view projection loss [37]. Iqbal et al. [36] used Procrustes
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analysis to derive a rotation matrix that aligns reconstructed multi-view 3D poses before
computing the joint position error loss. However, Procrustes alignment is non-differentiable
because it involves singular-value decomposition. Therefore, the crucial computation of the
rotation matrix must be detached from the network’s computation graph. This implies that
the network cannot backpropagate through the derivation of the rotation matrix, which
directly influences the loss being optimized. Unlike Iqbal et al., our proposed method is
end-to-end because our posture loss uses a novel differentiable bone orientation alignment.
This allows the resulting loss to be backpropagated through the alignment protocol, thereby
maximizing network optimization at each training iteration. Our work falls under the
category of monocular semi-supervised 3D-HPE. Our proposed multi-view posture consis-
tency loss is a soft constraint that teaches the network to learn consistent 3D pose encoding
across multiple viewpoints. We propose a framework that optimizes multi-view pose and
posture consistency without 2D and 3D pose annotations for the majority of training data
while utilizing biomechanical pose regularization techniques [6] to constrain the 3D pose
geometric properties. We also present a modified semi-supervised framework that does
not require camera parameters.

3. Method

Reconstructed 3D pose error is typically the main optimization objective of pose
estimation networks. Most pose models learn by minimizing the L2-norm between joints
or the mean per-joint position error (MPJPE), which computes the Euclidean distance
between estimated and ground-truth joints after aligning the root joints (typically the pelvis)
of both poses. The L2-norm optimizes the 3D pose and location in space with respect to the
observing camera, while the MPJPE optimizes the 3D pose irrespective of global placement.
We decouple a 3D pose into global placement, orientation, and 3D posture, where posture
captures the positioning of each joint relative to other joints, and independent of the camera
bearings. Hence, posture is invariant to the global placement and orientation of the pose
with respect to the observing camera. By extracting posture from pose we can analyze
the structural correctness of 3D poses beyond the confines of the camera position and
orientation. This becomes especially useful when exploiting multi-view information to
train pose estimators without 3D joint and camera parameter annotations.

In the following sections, we first review the concept of 3D pose prior regularization
adopted from an existing work to constrain the biomechanical properties of estimated 3D
poses. We then describe the bone alignment procedure that is critical to extracting posture
and is unaffected by the positioning, scale, and orientation of 3D poses in Section 3.2.
We then formulate the posture loss (Section 3.3) and evaluation metrics (Section 3.4) and
elaborate on the peculiar attributes that distinguish them from existing pose estimation
objectives and evaluation protocols. We describe the semi-supervised schemes used to train
pose estimator networks, first with camera parameters (Section 3.3.1) and then without
camera parameters (Section 3.3.2). The resulting performance of these configurations is
discussed in Section 4.

3.1. Biomechanical Pose Prior Regularization

This work builds upon our existing work on modeling the innate bone proportion
and joint mobility properties of 3D human poses and constraining these biomechanical
properties when training a weakly supervised 3D pose estimation network. The semi-
supervised frameworks we propose in this work are bootstrapped by the biomechanical
pose prior regularizers introduced by Amadi and Agam [6]. Here, we briefly summarize
the pose prior regularizers but refer the reader to the cited work for more details.

Human bone proportions and joint rotations are modeled by observing the annotated
3D pose training data of the H36M dataset to compute the mean and variance of the
probability density functions (PDFs) that model the likelihood of bone proportions and
orientations, as illustrated in Figures 1 and 2, respectively. When training a network, the
precomputed PDFs are used to assess the likelihood of the bone proportions and orienta-
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tions of an estimated 3D pose. The model learns better pose estimation by maximizing the
log-likelihood of bone proportions and joint rotations. By maximizing the log-likelihood of
these biomechanical properties, the network is forced to encode more correct 3D poses.

Figure 1. The line plots represent the likelihood (Y-axis) of bone proportion values (X-axis) for pairs
of bone ratios. For example, “Hip/Thigh” is the ratio of the length of the hip and thigh bones. The
vertical dotted lines indicate the range of values for each pair of bones observed in the training data.

Figure 2. The point-cloud plots are visual representations of the likelihood of plausible orientations
of each bone. The orientation of a bone is captured by the bone’s unit vector after alignment, with
one end of the vector rooted to the Cartesian origin while the other end rests on the spherical surface.
Bright to dark colored regions on the spherical surface indicate high to low likelihoods of orientations
observed in the training data. Symmetrical parts like the right and left shoulder are grouped together.
The red, blue, and orange lines are the XYZ axis, respectively.

3.2. Differentiable Bone Orientation Alignment

The objective of the proposed bone alignment procedure is to transform components
of 3D poses in a standardized manner that facilitates the retrieval of the true orientation of
each bone. The goal is to extract the orientation of each bone relative to other neighboring
bones, irrespective of the size, global positioning, and general orientation of the 3D poses.
This is achieved by selecting a set of four joints in close proximity to each other to guide
the alignment of a bone. We start with the Pivot and Free keypoints, which are the joints at
either end of the bone whose true orientation we want to extract. The other two joints are
the Axis and Anchor keypoints. The Axis keypoint forms the Axis-Bone with the Pivot
keypoint, and the Pivot, Axis, and Anchor keypoints define a distinct plane that we refer
to as the Anchor-Plane. The purpose of the alignment procedure is to align the Anchor
plane to the Cartesian XY-Plane with the Pivot keypoint at the origin and the Axis-Bone
aligned with the X (or Y) axis. The outcome of this transformation is that the orientation of
the Free-Bone is normalized with respect to the Axis and Anchor keypoints in a way that is
invariant to the translation and rotation of the entire 3D pose. We ensure invariance to scale
by extracting the Free-Bone’s unit vector after alignment. This alignment transformation is
carried out for each bone with their corresponding, hand-selected, quadruplet keypoints.
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The procedure is illustrated for clarity in Figure 3 with the example of right elbow alignment
and described mathematically below.

Figure 3. A step-by-step illustration of the left bicep bone orientation alignment with the left shoulder
and elbow as the Pivot (grey dot) and Free (green dot) keypoints, and the neck and spine as the Axis
(blue dot) and Anchor (pink dot) keypoints. From left to right, the pose in the 1st image is translated
to place the Pivot keypoint at the origin. Then, it is rotated so that the Axis-Bone aligns with the
X-axis in the 3rd image. Finally, the pose is rotated so the Anchor-Plane aligns with the XY-Plane.
The Free-Bone vector in the 4th image describes the orientation of the left bicep. The red, blue, and
orange lines are the XYZ axis. This procedure is vital to extract the true orientation and posture of a
bone independent of the orientation, position, and scale of the 3D pose.

Given each set of quadruplet keypoints Qp
f of a 3D pose P, the goal is to align the Pivot,

Axis, and Anchor keypoints with the XY-Plane. Note that Qp
f = {j f , jp, ja, jc} contains

the 3D coordinates of the Free, Pivot, Axis, and Anchor keypoints, respectively. We first
translate Qp

f so that the Pivot keypoint jp moves to the Cartesian origin.

Qp′
f = Qp

f − jp = {j
′
f , j
′
p, j
′
a, j
′
c} (1)

Next, we build a rotation matrix Rp
f = [ûi

f , ûj
f , ûk

f ] to rotate the Free-Bone vector. The unit
vectors corresponding to the X-, Y-, and Z-axis of the rotation matrix are derived below.

~vk
f = j

′
a × j

′
c or j

′
c × j

′
a (2)

j
′
= j

′
a or j

′
c

~vc
f = ~vk

f × j
′

or j
′ ×~vk

f

(3)

ûa
f = δa

f ·
j
′
a
|j′a|

, ûc
f = δc

f ·
~vc

f

|~vc
f |

, ûk
f =

~vk
f

|~vk
f |

(4)

where δa
f , δc

f ∈ {−1, 1} changes the direction of the unit vector. Note that the order of the

cross products in Equations (2) and (3) and the choice of δa
f , δc

f and j
′
for each bone alignment

are guided by the right-hand rule and the relative positioning of the quadruplet keypoints
with respect to the structure of a standard skeletal pose. The selected configurations for all
16 bones are provided in the Supplementary Materials. The intuition behind the derivation
of the rotation matrix is that the Axis-Bone defines the direction of the new X- (or Y-)
axis. The normal vector to the Anchor-Plane is the direction of the new Z-axis and the
orthogonal vector between the new Z-axis, and the Axis-Bone defines the direction of the
new Y- (or X-) axis. Note that the Axis-Bone may be horizontally aligned with the X-axis or
vertically aligned with the Y-axis, depending on the Free-Bone. When horizontally aligned,
the superscripts a = i and c = j in Equations (3) and (4) (i.e., ûi

f = ûa
f , ûj

f = ûc
f ). Otherwise,

when vertically aligned, c = i and a = j (i.e., ûi
f = ûc

f , ûj
f = ûa

f ). Finally, the orientation of the

Free-Bone b̂ f is extracted after rotation alignment in Equation (5). b(h)f and b(x,y,z)
f are the

homogeneous and (x, y, z) components of the rotated bone, respectively.
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b f =

[
Rp

f 0
0 1

][
j
′
f

1

]

~b f =
b(x,y,z)

f

b(h)f

and b̂ f =
~b f

|~b f |

(5)

This alignment procedure can be implemented such that the computations are vec-
torized as tensor operations and executed at once for all poses and bones in a batch. This
makes it a fast and memory-efficient procedure. Our preset configurations for executing
bone orientation alignment for each bone and the resulting 3D pose transformation effect
are presented in Appendix B.

3.3. Bone Orientation Error for Posture Loss

Following the Free-Bone alignment procedure, we can easily assess the dissimilarity
between the isolated orientation of pairs of bones (i.e., the same bone in any two given 3D
poses) by computing the distance between their aligned Free-Bone unit vectors. These can
be pairs of bones in 3D poses estimated from different viewpoints or pairs of bones in an
estimated 3D pose and the corresponding ground-truth 3D pose. This gives us a measure
of the orientation of each pair of bones invariant to the global orientation, positioning, and
scale of either 3D pose. Collectively, we can evaluate the posture similarity between pairs
of 3D poses. Unlike the rigid alignment of the Procrustes mean per-joint position error (P-
MPJPE) that leads to numerical instabilities during backpropagation due to singular-value
decomposition, our Free-Bone alignment procedure is fully differentiable as it involves
basic addition, subtraction, multiplication, and division operations. This advantage over
the P-MPJPE enables the direct optimization of 3D posture as a loss term when training
a pose estimator. Our proposed mean per-bone orientation error (MPBOE) for a batch of
poses P and set of bones B is defined in Equation (6).

Lposture =
1
|P||B|∑P

∑
f∈B

d
(

α f b̂ f , α f b̂
′
f

)
(6)

where d is a distance measure (e.g., L2-norm, L1-norm, or cosine similarity); b̂ f is the Free-
Bone unit vector of the estimated 3D pose after alignment; and b̂

′
f is the corresponding Free-

Bone unit vector of the ground-truth 3D pose after alignment. Both unit vectors are scaled
by α f , which is the length of the corresponding ground-truth bone. This normalization is
critical to distribute the weight of the posture loss term amongst the bones of a 3D pose
such that the influence of a bone’s orientation error is directly proportional to the length of
the bone. Otherwise, shorter and more rigid torso bones would have the same influence as
longer and more agile limb bones, resulting in poorer performance. This posture loss can
be jointly optimized with the MPJPE as an auxiliary loss term in a fully supervised setting.
It can also be minimized for weakly supervised multi-view poses in a semi-supervised
setting as in Equation (7).

L′posture =
1

m|P||B|∑P
∑
f∈B

m

∑
c=0

d
(

α f b̂c
f , α f b̂c+1

f

)
(7)

Given a set of cameras C, m = |C| − 1, b̂c
f is the Free-Bone-aligned unit vector of the

pose estimated for the viewpoint of camera c. Note that in a semi-supervised setting, there
are no ground-truth 3D poses in the weakly supervised branch. α f is computed from the
batch of annotated 3D poses in the fully supervised branch as the mean bone length of the
corresponding bone. We set d as the L1-norm between vectors.

3.3.1. Semi-Supervision with Multi-View Posture Loss

Our semi-supervised training scheme, illustrated in Figure 4, adopts the dual-branch
(fully and weakly supervised) pipeline proposed by Pavllo et al. [41] to train a 3D pose
model and an auxiliary pose trajectory model.
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Figure 4. Our semi-supervised scheme for 3D human pose estimation consists of a fully supervised
(FS) pipeline (in black) and a weakly supervised (WS) pipeline (in blue). Each training batch contains
three subsets of 2D pose inputs. The 1st subset of 2D poses passes through the fully supervised
pipeline, which estimates their 3D poses and positions and minimizes the supervised losses (in red)
with ground truths (GTs). The other subsets of 2D pose inputs contain 2D poses p2D and matching
2D poses from other camera viewpoints p2D

c . These 2D poses are fed into the weakly supervised
pipeline to estimate their 3D poses (p, pc) and positions. The 2nd subset of estimated 3D poses p and
corresponding positions are combined to project 2D poses and minimize the reprojected 2D loss. Pose
prior regularizers [6] are also enforced on p. Our proposed multi-view (MV) pose and posture losses
are optimized between p and pc. We train an instance of the VPose3D [41] 3D pose lifting network.

We regularize the optimization of the weakly supervised 2D reprojection loss using
the biomechanical pose prior regularizers proposed by Amadi and Agam [6]. Each training
batch is made up of 3 parts: (1) A set of 2D poses (with corresponding 3D pose annotations)
for the fully supervised branch; (2) a set of 2D poses for the weakly supervised branch;
and (3) a matching set of 2D poses from other camera viewpoints corresponding to the
second set of 2D poses, also for the weakly supervised branch. Hence, for a batch of k fully
supervised 2D poses, we append m · k 2D poses, where m − 1 is the number of additional
camera viewpoints selected per weakly supervised pose. This setup allows us to optimize
multi-view pose and posture consistency during training but maintain monocular 3D pose
estimation at inference. We minimize a generic multi-view pose consistency loss L′pose
in the weakly supervised branch when camera extrinsic parameters are obtainable. The
trajectory model estimates the 3D position of the pose tc with respect to the observing
camera. Combined with the camera’s extrinsic parameters Qc, we transform the estimated
pose pc (in camera frame c) to a 3D pose in world coordinates p

′c.

p
′c = T (pc + tc, Qc)

L′pose =
1

m|P||J|
|P|
∑
i=0

|J|
∑
j=0

m

∑
c=1
‖p
′0
i,j − p

′c
i,j‖2

(8)

The multi-view pose loss is computed in Equation (8) as the mean Euclidean distance
between joint pairs (p

′0
i,j and p

′c
i,j) of the corresponding multi-view poses transformed to

world coordinates. P is the first set of estimated 3D poses in the weakly supervised branch,
and J is the set of joints in a 3D pose. T denotes the transformation function. Given a pose
p
′0
i ∈P, p

′c
i is a corresponding pose estimated from another viewpoint that is contained in

the second set of multi-view poses in the weakly supervised branch.
We apply horizontal flip augmentation to the 2D pose inputs of the weakly supervised

branch to generate more unlabeled training data. This simple pose augmentation technique
has been effective in previous works. However, once 2D poses are flipped in the image
frame, we expect the resulting 3D pose to be flipped in the camera frame. This will cause a
mismatch in multi-view 3D poses as each pose is flipped in its camera frame and will not
align when transformed to standard world coordinates. Hence, we cannot optimize the
multi-view pose consistency loss for such poses even if the camera’s extrinsic properties
are known, as this will lead to degenerated results. We can, however, optimize multi-view
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posture consistency loss for the reflected poses, as the posture remains consistent across
viewpoints even after horizontal flip augmentation.

3.3.2. Semi-Supervision without Camera Parameters

Although most 3D pose datasets provide camera parameter annotations, we under-
stand that camera parameters are not so easily obtainable for crowdsourced in-the-wild
video data. Since the ultimate goal of semi-supervised pose estimation is to leverage these
unlabeled in-the-wild training data, we propose a modified semi-supervised scheme that
does not rely on intrinsic and extrinsic camera parameters.

The main objective function of the weakly supervised branch is the reprojected 2D loss,
which projects the encoded 3D pose back to the 2D image space and computes the Euclidean
distance between keypoints of the input 2D pose and the projected 2D pose. The camera’s
intrinsic parameters are necessary to project 3D poses to 2D poses. Hence, the reprojected
2D loss cannot be optimized without the camera’s intrinsic properties. We bypass having
to estimate the camera’s internal parameters by replacing the non-linear projection with
an orthographic projection. Orthographic projection gives an acceptable approximation of
non-linear perspective projection up to scale when images are captured at a short distance
and from cameras with negligible skew and distortion effects. It is safe to assume that
this is the case for most crowdsourced video data. We then replace the auxiliary trajectory
model with an auxiliary scale model that estimates the 3D-to-2D pose scale factor. Note
that, as in Section 3.3.1, the 3D poses are always estimated with respect to the root joint.
That is, the pelvis joint should be at the Cartesian origin. The orthographic reprojected 2D
loss is computed in Equation (9) given an input 2D pose p̂2D

i , estimated 3D pose pi, and
3D–2D scale factor si. p̂2D

i,r is the 2D position of the root joint.

p2D
i =

(
p(x,y)

i · si

)
+ p̂2D

i,r

Lorth-2D =
1
|P||J|

|P|
∑
i=0

|J|
∑
j=0
‖p2D

i,j − p̂2D
i,j ‖2

(9)

where p(x,y)
i is the orthographic projected 2D pose that excludes the depth of the 3D pose pi.

In addition, we optimize our proposed multi-view posture consistency loss in Equation (7).
Note that multi-view pose consistency loss is not applicable in this scenario because we
assume that the camera’s extrinsic parameters are not available. The results show that
posture loss significantly boosts the performance of semi-supervised pose estimators trained
without camera parameters.

3.4. Bone Orientation Error as a Posture Metric

The proposed MPBOE is a notable posture evaluation metric because it captures and
isolates errors to the exact bones that are incorrectly oriented. This property is quite unlike
the P-MPJPE, a 3D pose protocol that technically measures posture alignment between
poses. The rigid alignment procedure of the P-MPJPE computes an optimal rotation matrix,
translation vector, and scale factor that best aligns a predicted pose to the ground-truth
pose, thereby implicitly assessing posture. However, because an optimal rotation matrix
is computed for the entire pose, an error in one joint is shared with other joints. In other
words, the significant deviation of a joint is dampened, as it is distributed to other joints.
This causes other more accurately predicted joints to further deviate from the ground truth.
Therefore, we cannot pinpoint the most faulty joints when analyzing errors per joint. In
contrast, because the bone orientation alignment procedure of the MPBOE aligns each bone
separately, it can isolate errors to defaulting bones and corresponding quadruplet joints.

This distinguishing property is illustrated in Figure 5 and demonstrated in detail in
Appendix A. To reconstruct the altered pose (in green), a sample 3D pose (in black) is
shrunk and translated a distance to the left. We then slightly rotate the upper body at the
pelvis joint. The outcome is that the original and altered pose now has a similar posture
except for the lower-torso region. Observe that the best fit of the P-MPJPE shows an offset
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at almost all joints. Whereas, the MPBOE reveals the most significant deviations in the thigh
and thorax bones that are in the lower-torso region, while other bones are in near-perfect
alignment. In the results section, we show the joint errors of existing protocols compared
to our proposed posture metric defined in Equation (6). Note that the distance function d
can be the cosine similarity, L1-norm, or L2-norm. We compute the L2-norm.

Figure 5. Visualization of posture metrics. Unlike the P-MPJPE, our proposed MPBOE highlights
defaulting bones (in red) of the altered pose (in green) that change the posture of the sample pose (in
black). Notice in P-MPJPE how most joints are displaced by some error after Procrustes alignment. In
contrast, MPBOE shows the orientations of a few bones (e.g., right and left thigh) are off after bone
orientation alignment and only a few joints show significant position displacement (illustrated by red
line) in J-MPBOE, after propagating bone orientation errors to neighboring joints.

Proof of Metric Property. The MPBOE qualifies as a metric because it satisfies the identity,
positivity, symmetry, and triangle inequality properties of a metric space. This follows
directly from the property of the distance measure d. Given two distinct postures p

′
x and p

′
y

(Free-Bone vectors of 3D poses after bone orientation alignment), notice that d(p
′
x, p

′
x) = 0

and d(p
′
x, p

′
y) = d(p

′
y, p

′
x). Given a third posture p

′
z that further deviates from p

′
y, we expect

d(p
′
x, p

′
z) ≤ d(p

′
x, p

′
y) + d(p

′
y, p

′
z). Proving the positivity property requires slightly more

intuition. Given a posture p
′
x, another posture p

′
y can be generated that is very similar

to p
′
x except that we move the Anchor keypoint of a bone p

′
x,i within the Anchor-Plane.

Because the Anchor-Plane is unchanged, the orientation of the bone in both postures will
align. Hence, d(p

′
x,i, p

′
y,i) = 0, although the posture of the bones relative to their quadruplet

keypoints is not the same. However, the deviation of that Anchor keypoint in p
′
y will

affect the orientation of a neighboring bone p
′
y,j when it is used as the Pivot, Axis, or Free

keypoint during alignment. Hence, d(p
′
x,j, p

′
y,j) > 0. Therefore, d(p

′
x, p

′
y) > 0.

3.5. Bone Orientation Error Propagated to Joints

The bone orientation error (MPBOE) is bone-centric because it computes the orienta-
tion deviation between pairs of aligned bones. However, 3D pose estimation is joint-centric,
as we are often interested in joint position errors. The orientation error of each bone
can be propagated to the quadruplet joints used to align the bone, resulting in the joint-
propagated mean per-bone orientation error (J-MPBOE). We achieve this by attributing
a weight βi to each quadruplet joint i of a bone. The error of a joint is accumulated by
computing the weighted sum of the errors of all bones that use the joint (as one of the
quadruplet keypoints) during alignment. To clarify, let Tj = {: (eb, βi)} be the set of tuple
pairs of bone errors eb (with joint j as a quadruplet keypoint) and corresponding quadruplet
keypoint weight βi. The accumulated error of the joint ej is computed as in Equation (10).

ej = ∑
Tj :(eb ,βi)

βieb (10)
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Provided the weight of all quadruplet keypoints for each bone sums to 1.0, the bone
orientation error will be properly dispersed to affected joints without increasing or decreas-
ing the cumulative posture error. We set the weights for the Free, Pivot, Axis, and Anchor
keypoints to 0.95, 0.03, 0.01, and 0.01 for all bones, effectively assigning more importance to
the Free and Pivot keypoints that define the bone. Therefore, the J-MPBOE captures and
concentrates 3D pose reconstruction errors to the exact out-of-position joints that cause
incorrect posture and bone orientations.

4. Experiments and Results

We executed various evaluation experiments to answer the following four questions:
(1) Can the addition of posture loss alone improve the performance of pose estimators
(especially in a semi-supervised setting with estimated 2D poses and without camera
parameters)? (2) How much more do semi-supervised pose estimator networks learn from
unlabeled data when bootstrapped with multi-view pose and posture loss, and how does
this impact pose estimation accuracy? (3) Are the improvements from multi-view pose and
posture loss consistent across different datasets? (4) What peculiar characteristics of the
proposed posture evaluation metric, if any, can be observed?

4.1. Experiment Setup
4.1.1. Training and Inference

The training pipeline was designed to utilize training data examples from two data
generators in each iteration. The first data generator fed a batch containing tuples of
input 2D poses and their corresponding 3D pose ground truths. Multi-view 2D poses
were not compiled by this generator. The training examples from this generator were
fed into the fully supervised branch of the semi-supervised network. The second data
generator fed a batch of multi-view 2D poses into the weakly supervised branch of the semi-
supervised network. Note that this data generator did not produce the 3D pose annotations
needed for direct supervision. Rather, by design, our weakly supervised branch utilized
the estimated 3D poses from different viewpoints to optimize the network by enforcing
multi-view posture and pose consistency and 3D pose biomechanical properties. Sets of
multi-view poses from m = 4 cameras were selected for weak supervision. Our models
were trained with the Adam optimizer for about 200k iterations with the learning rate
exponentially decaying from (0.001) to (1× 105) every 500 steps, a dropout of (0.1), and
batch normalization.

At inference, our trained models estimated a 3D pose given 2D pose(s) from a single
viewpoint. Unless otherwise stated, we performed estimated 3D pose augmentation during
inference. This involved estimating a 3D pose given a 2D pose (or temporal sequence of
2D poses), and another 3D pose was estimated for the horizontally flipped 2D pose(s).
Next, we reversed the horizontal flip of the second 3D pose before computing the final 3D
pose joint positions as the average of the first and second 3D poses’ joint positions. This
inference-time pose augmentation allowed the two network trials to correctly estimate the
3D poses and average the performance. We evaluated the accuracy of 3D pose estimation
using the MPJPE, P-MPJPE, MPBOE, and J-MPBOE. Note that we could evaluate the MPJPE
on 3D poses estimated by our networks because all configurations of our proposed semi-
supervised network reconstructed a 3D pose with respect to the observing camera. This
was ensured by the optimization of the MPJPE loss in the fully supervised branch of the
semi-supervised framework. In other words, the 3D poses estimated by our models were
not orientation- or scale-normalized. All models were trained and evaluated on Nvidia
RTX 1080 GPU servers, which handled all computations comfortably.

4.1.2. Datasets and Pose Models

We trained and evaluated the models on the Human3.6M (H36M) [1] dataset with video
data and 2.1 M annotated poses. Following the convention of previous works [6,25,40,41,52], we
conducted training on subjects 1, 5, 6, 7, 8 and evaluation on subjects 9, 11. The training set
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was split into a fully supervised subset with 3D pose annotations and a weakly supervised
subset with multi-view 2D pose inputs. We trained different models with an increasing
number of fully supervised data. We started with 0.1%S1 to S156 as the fully supervised
subset. Note that the weakly supervised subset decreased as the fully supervised subset
increased. This setup was used in previous works to simulate labeled data scarcity and was
intended to test the effectiveness of semi-supervised techniques in high and low labeled-
to-unlabeled training data ratios. We also evaluated our models on the MPI-INF-3DHP
(3DHP) [4] 3D pose dataset with 1.3 M frames. Compared to H36M, 3DHP contains a more
diverse collection of 3D poses and movements. We performed cross-validation on 3DHP’s
test set to evaluate our models’ ability to generalize to unseen data from a different domain.

We utilized the VideoPose3D (VPose3D) human pose estimation network architecture
in this study [41]. Thus, we applied the proposed semi-supervised scheme to train the
temporal dilated convolution neural network of VPose3D – a monocular 2D–3D pose lifting
network capable of lifting a single 2D pose to a 3D pose or a temporal sequence of 2D poses
to a 3D pose. We refer to the former as single-frame monocular pose estimation and the
latter as temporal monocular pose estimation. We trained and evaluated both types of pose
estimation. Therefore, the input to the networks was either a single 2D pose or a temporal
sequence of 2D poses. We used HR-Net [53] -detected 2D poses to train and evaluate the
networks and also determined how the networks performed with ground-truth 2D poses.

4.2. Results and Comparisons

The methods presented in this work are intended to utilize estimated 2D poses from
pretrained 2D pose detectors. As such, we evaluated the performance with 2D poses de-
tected by a pretrained HR-Net [53] pose detector. We followed a real-world inference setup
where estimated 2D poses from pose detectors are used to estimate 3D poses. In addition,
we established the performance of our methods when utilizing 2D pose annotations of
the dataset for two reasons: (1) to provide a fair comparison with other related works that
report performance when using ground-truth 2D poses, and (2) to assess the potency of our
method without carrying over the errors of a pretrained 2D pose detector. This allowed
for a direct assessment of our 3D pose lifting network independent of the accuracy of the
chosen 2D pose detector.

4.2.1. Semi-Supervision on H36M with Full Supervision on S1

To aid direct comparisons with leading semi-supervised pose estimation works, we
followed the convention of evaluating our networks’ performance in a limited labeled data
scenario where 3D annotations were provided only for the first subject (S1 in the H36M
training set) for direct supervision, while pose estimation on the remaining four subjects
(S5–8) of the training set were weakly supervised. Table 1 compares the performance of
leading semi-supervised, single-frame pose estimators that estimate a 3D pose given a
2D pose or image. Table 2 compares the performance of leading semi-supervised pose
estimators that estimate a 3D pose given a temporal sequence of 2D poses or a video clip.

Ours–MvP in Tables 1 and 2 indicates the version of our semi-supervised network
trained with the addition of our multi-view posture loss and with estimated 2D pose inputs.
Note that this configuration is fitting for most real-world applications where ground-
truth 2D poses and extrinsic camera parameters are unknown. Nevertheless, Ours–MvP
outperformed leading single-frame semi-supervised methods that use ground-truth 2D
pose inputs (PoseAug) and a combination of 2D pose and image inputs (EpipolarPose
and Iqbal et al.). Our model just about outperformed PoseAug, which uses a generative
adversarial network (trained on ground-truth 2D and 3D poses of the first subject) to
augment poses in the training set, thereby generating more 2D and 3D pose pairs to fully
supervise the network. Unlike EpipolarPose, Ours–MvP did not use GT 2D poses. The
addition of multi-view pose consistency loss (Ours–MvP&P) further improved the model
accuracy to a 54 mm MPJPE. This setup required camera extrinsic parameters, which are
obtainable in some real-world applications.
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Table 1. SOTA semi-supervised, single-frame 3D pose estimation methods. These include methods
that use GAN pose augmentation (AG), leverage multi-view information (MV), and process additional
image data to estimate 3D poses (IM). In the 2D column, FT indicates methods that use 2D poses
from a pretrained pose detector fine-tuned on the H36M dataset. HR indicates methods that use
2D poses from a pretrained HR-Net pose detector. † and GT denote methods that use ground-truth
2D keypoints only during training and in both training and inference, respectively. We use ? to
denote our models trained with ground-truth 2D poses.

Semi-Supervision with FS on S1 (16% of TD) and WS on S5–8

Methods AG IM 2D MV MPJPE ↓ P-MPJPE ↓ J-MPBOE ↓
EpipolarPose [39] CVPR’19 X FT X 65.3 57.2 -
Iqbal et al. [36] CVPR’20 X † X 62.8 51.4 -
PoseAug [25] CVPR’21 X GT 56.7 42.3 -
Amadi and Agam [6] ICIP’22 GT 52.6 37.3 40.6

Ours–MvP ? GT X 48.4 34.3 37.8
Ours–MvP&P ? GT X 43.5 32.7 37.2

Ours–MvP HR X 56.1 42.2 49.2
Ours–MvP&P HR X 54.0 41.5 49.1

Table 2. SOTA semi-supervised, temporal, monocular 3D pose estimation methods with 27 temporal
frames. These include methods that generate synthetic poses (AG), leverage multi-view information
(MV), and process video data (IM). In the 2D column, HR indicates methods that use 2D poses from a
pretrained HR-Net pose detector, while GT denotes models that use ground-truth 2D poses in both
training and inference. We use ? to denote our models trained with ground-truth 2D poses.

Semi-Supervision with FS on S1 (16% of TD) and WS on S5–8

Methods AG IM 2D MV MPJPE ↓ P-MPJPE ↓ J-MPBOE ↓
Pavllo et al. [41] CVPR’19 GT 49.7 36.7 -
AdaptPose [26] CVPR’21 X X GT 42.5 34.0 -
Amadi and Agam [6] ICIP’22 GT 50.1 36.8 40.3

Ours–MvP ? GT X 47.0 33.3 37.2
Ours–MvP&P ? GT X 42.2 31.8 36.7

Ours–MvP HR X 55.0 41.1 48.2
Ours–MvP&P HR X 52.4 39.7 47.5

We compared our models’ performance to that of leading temporal semi-supervised
3D pose estimators that reconstruct a 3D pose from a temporal sequence of 27 2D poses
or 27 video frames. These methods leverage temporal information to estimate more
accurate 3D poses than single-frame pose estimators. The performance of Ours–MvP in
Tables 1 and 2 shows that the accuracy boost from temporal cues was only about 1 mm
in the MPJPE, P-MPJPE, and J-MPBOE. This suggests that the posture learning cues from
multiple viewpoints that were distilled by our proposed multi-view posture consistency
loss in single-frame pose estimation significantly compensated for the absence of temporal
information. The addition of pose consistency loss to our temporal semi-supervised
framework (Ours–MvP&P) decreased the pose estimation error by an additional 2.6 mm in
the MPJPE. Observe that the accuracy of Ours–MvP&P was close to that of the methods
proposed by Pavllo et al. and Amadi and Agam, even though their pose estimators were
trained and tested with ground-truth 2D pose inputs. We achieved comparable results with
less accurate 2D poses estimated by a pretrained HR-Net pose detector.

When we trained and tested our models with ground-truth 2D poses (following Pavllo
et al. and Amadi et al.), we recorded an additional 10 mm MPJPE decrease in the pose
estimation error (comparing Ours–MvP&P ? and Ours–MvP&P). This showed that our
semi-supervised framework was superior to those of Amadi and Agam, and Pavllo et al.
Note that just like our method, the semi-supervised frameworks proposed by Pavllo et al.
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and Amadi et al. were a combination of a fully supervised branch and a weakly supervised
branch with 2D reprojected loss as the main objective function of the weakly supervised
branch. Our framework differed from theirs in that Pavllo et al. introduced a secondary
mean bone length error loss term to the weakly supervised branch, while Amadi and Agam
enforced biomechanical pose regularization constraints on the weakly supervised branch.
Neither framework leveraged multi-view information to train a more robust monocular 3D
pose estimator.

Our model trained with multi-view pose and posture loss (Ours–MvP&P ?) also
outperformed AdaptPose (42.2 vs. 42.5 MPJPE, 31.8 vs. 34.0 P-MPJPE). Observe that the
3D posture accuracy (assessed by P-MPJPE) of the 3D poses estimated by our method was
better than that of AdaptPose. It is important to note that both methods were fundamentally
different in how they approached semi-supervised pose estimation, although they used the
same information in different ways. The motion GAN of the AdaptPose model reported in
Table 2 was trained on ground-truth 2D and 3D poses of S1 and ground-truth 2D poses from
video data of the remaining subjects (S5–8). The optimized human motion generator (HMG)
then generated additional synthetic 2D–3D pairs for training the 3D pose lifting network
in full supervision. At inference, the AdaptPose model predicted a 3D pose given GT 2D
poses of a video clip input. In contrast, Ours–MvP&P ? was trained with ground-truth
2D pose inputs from different viewpoints. We did not synthesize 2D–3D pose motion
data to directly supervise the 3D pose lifting network. Instead, we leveraged multi-view
posture and pose analysis to loosely supervise non-trivial 3D pose estimation for subjects
5–8 without 3D pose annotations. Note that we did not use additional training data. We
simply curated each training batch to contain sets of multi-view poses already existing in
the dataset. At inference, our model predicted a 3D pose given a temporal sequence of
ground-truth 2D poses from a single viewpoint. Both methods used intrinsic and extrinsic
camera parameters during training, although AdaptPose did not require camera parameters
for subjects 5–8. We recognize that the inference setting with ground-truth 2D pose inputs
is not ideal. We applied this setting to compare our results with previous semi-supervised
learning methods that have reported results with 2D GT inputs. Nevertheless, we speculate
that our method could achieve comparable performance with improved 2D pose detection,
which is expected as SOTA 2D pose estimation improves. Note that all methods in Table 2
used VPose3D as the baseline 2D–3D pose lifting network.

4.2.2. Ablation of Camera Parameters with Increasing Full Supervision

To evaluate the significance of our proposed pose and posture consistency loss terms
in a limited-data scenario, we trained VPose3D on increasing fully supervised subsets. We
started with 0.1%S1 (containing 0.02% of H36M the training data) to S156 (poses from
subjects 1, 5, and 6 containing 57% of the H36M training data). We trained the baseline
VPose3D lifting network using the semi-supervised learning frameworks proposed by
Pavllo et al. and Amadi et al. and our proposed pipelines (Ours–MvP and Ours–MvP&P).
Figure 6 shows the results of the models trained with camera parameters, and Figure 7
contrasts this to the performance of the same models trained without camera parameters.
Note that the X-axis of Figures 6 and 7 denotes the source of the 2D and 3D pose ground
truths used for full supervision. For example, “50% S1 – 8% TD” implies that 50% of the
poses from the first subject were fully supervised, while the remaining poses from subjects
5–8 were weakly supervised. This would be equivalent to 8% of the entire training data used
in full supervision. Observe that both our proposed semi-supervised frameworks trained
with and without camera parameters consistently outperformed the leading methods in
each subset. Our pose estimator trained with camera parameters, pose prior regularizers,
and multi-view pose and posture consistency loss (Ours–MvP&P) achieved SOTA results,
decreasing the MPJPE by −6.6 mm (11%) on average. The highest percentage decrease of
−7.3 mm in the MPJPE (14%) was observed for 50%S1.
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Figure 6. Comparing SOTA semi-supervised frameworks used to train VPose3D backbone with our
proposed semi-supervised scheme bootstrapped with pose regularizers, multi-view posture loss
(Mv-P), and multi-view pose loss (Mv-P&P). Our models consistently outperformed leading methods
on all configurations of increasing subsets of fully supervised training data. FS indicates the baseline
VPose3D network trained with the fully supervised pipeline only. Camera parameters were provided
during training; FS. VPose3D [41]; Pavllo et al. [41]; Amadi and Agam [6].
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The results also show that our novel multi-view posture loss (Ours–MvP) was effective
as a standalone multi-view consistency loss in the weakly supervised branch, particularly
when training without intrinsic or extrinsic camera parameters, as in Ours–MvP �. Note
that in the weakly supervised branch of all methods, we replaced the non-linear reprojected
2D loss, which required intrinsic camera parameters, with our proposed orthographic
reprojected 2D loss (Lorth-2D). The addition of multi-view posture loss to the semi-
supervised framework without camera parameters further decreased the MPJPE by −6.1
mm (8%) on average. We observed that the effect of our proposed posture loss was more
prominent in scarce-supervised-data scenarios, where fewer than 2% of the training data
were fully supervised (i.e., 0.1%S1 to 10%S1). We recorded a substantial −15.6 mm (17%)
decrease in the MPJPE and −10.4 mm (16%) decrease in the P-MPJPE for .1%S1. With just
multi-view posture consistency loss as the supporting loss term in the weakly supervised
branch, our models were still capable of predicting accurate non-trivial 3D poses. This
shows the significance of 3D posture correctness in 3D pose estimation when posture loss
is optimized.

Figure 6. Comparing SOTA semi-supervised frameworks used to train VPose3D backbone with our
proposed semi-supervised scheme bootstrapped with pose regularizers, multi-view posture loss
(Mv-P), and multi-view pose loss (Mv-P&P). Our models consistently outperformed leading methods
on all configurations of increasing subsets of fully supervised training data. FS indicates the baseline
VPose3D network trained with the fully supervised pipeline only. Camera parameters were provided
during training; FS. VPose3D [41]; Pavllo et al. [41]; Amadi and Agam [6].
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Figure 7. Corresponding semi-supervised VPose3D lifting network trained without camera parame-
ters (denoted by �). Observe the error reduction by our proposed semi-supervised framework with
multi-view posture loss (Mv-P) compared to leading methods; Pavllo et al. [41]; Amadi and Agam [6].

The results also show that our novel multi-view posture loss (Ours–MvP) was effective
as a standalone multi-view consistency loss in the weakly supervised branch, particularly
when training without intrinsic or extrinsic camera parameters, as in Ours–MvP �. Note
that in the weakly supervised branch of all methods, we replaced the non-linear reprojected
2D loss, which required intrinsic camera parameters, with our proposed orthographic
reprojected 2D loss (Lorth-2D). The addition of multi-view posture loss to the semi-
supervised framework without camera parameters further decreased the MPJPE by −6.1
mm (8%) on average. We observed that the effect of our proposed posture loss was more
prominent in scarce-supervised-data scenarios, where fewer than 2% of the training data
were fully supervised (i.e., 0.1%S1 to 10%S1). We recorded a substantial −15.6 mm (17%)
decrease in the MPJPE and −10.4 mm (16%) decrease in the P-MPJPE for .1%S1. With just
multi-view posture consistency loss as the supporting loss term in the weakly supervised
branch, our models were still capable of predicting accurate non-trivial 3D poses. This
shows the significance of 3D posture correctness in 3D pose estimation when posture loss
is optimized.

Figure 7. Corresponding semi-supervised VPose3D lifting network trained without camera parame-
ters (denoted by �). Observe the error reduction by our proposed semi-supervised framework with
multi-view posture loss (Mv-P) compared to leading methods; Pavllo et al. [41]; Amadi and Agam [6].

The results also show that our novel multi-view posture loss (Ours–MvP) was effective
as a standalone multi-view consistency loss in the weakly supervised branch, particularly
when training without intrinsic or extrinsic camera parameters, as in Ours–MvP �. Note
that in the weakly supervised branch of all methods, we replaced the non-linear reprojected
2D loss, which required intrinsic camera parameters, with our proposed orthographic repro-
jected 2D loss (Lorth-2D). The addition of multi-view posture loss to the semi-supervised
framework without camera parameters further decreased the MPJPE by −6.1 mm (8%) on
average. We observed that the effect of our proposed posture loss was more prominent
in scarce-supervised-data scenarios, where fewer than 2% of the training data were fully
supervised (i.e., 0.1%S1 to 10%S1). We recorded a substantial −15.6 mm (17%) decrease in
the MPJPE and −10.4 mm (16%) decrease in the P-MPJPE for 0.1%S1. With just multi-view
posture consistency loss as the supporting loss term in the weakly supervised branch,
our models were still capable of predicting accurate non-trivial 3D poses. This shows the
significance of 3D posture correctness in 3D pose estimation when posture loss is optimized.

4.2.3. Ablation of Supervision with Little to No 3D Pose Annotations

There have been several promising works on weakly, self-, and unsupervised 3D hu-
man pose estimation in recent years. These works have proposed learning schemes that
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do not rely on 3D pose annotations or paired image-to-3D or 2D-to-3D pose supervision.
Although our work proposes a semi-supervised scheme, we compared a specific case where
0.1% of the poses of S1 were fully supervised and the poses of the other four subjects (S5–8)
were weakly supervised. This resulted in only 244 fully supervised training examples
with 3D pose annotations and over 1.3 M weakly supervised training examples without
3D pose annotations. To offset the benefits of full supervision, we did not train on the
remaining 99.9% of poses from S1, effectively discarding over 248 k training examples. In
contrast, the weakly/self-/unsupervised methods in Table 3 were trained on all 1.5 M poses
of the H36M training set (poses from S1 and S5–8). Table 3 shows the superiority of our
pose models to other weakly supervised methods when trained with very little 2D-to-3D
paired supervision on 0.02% of the training data. The accuracy of our single-frame model
trained with 2D GT poses (Ours–MvP&P ?) matched that of the single-frame TriPose model.
Like our framework, TriPose [38] is a monocular weakly-supervised training scheme that
leverages multi-view 2D poses during training. Unlike our framework, TriPose estimates
relative camera orientations, which are combined with input 2D poses from multiple views
to triangulate a 3D pose. The triangulated 3D pose is then used as pseudo-annotations
to supervise the 2D-to-3D lifting network. Our temporal model trained with HR-Net-
detected 2D poses (Ours–MvP&P) significantly outperformed the TriPose temporal pose
estimator trained with AlphaPose-estimated 2D poses, achieving a 10% reduction in the
MPJPE (−6.1 mm). Note that RepNet estimates trivial oriented 3D poses—hence the lower
reported MPJPE and P-MPJPE values.

Table 3. Pose and posture errors of SOTA weakly supervised methods on H36M. GT denotes methods
that use 2D pose ground truths for training and inference, while † denotes methods that use GT
2D poses only during training. FT denotes methods that use a pretrained 2D detector fine-tuned
on H36M. AP and HR denote methods that use AlphaPose [54] and HR-Net [53] 2D poses. The NF
column represents the number of frames: 1 for a single frame, and 27 for a temporal sequence of
27 2D pose inputs. IM indicates methods that leverage additional image or video data to estimate
3D poses. MV indicates methods that use multi-view information during training. ‡ indicates the
models that are trained with extra data. ? denotes our models trained with ground-truth 2D poses.

Unpaired 2D–3D Supervision or Weakly/Self-/Unsupervised Methods on S15–8

Method NF IM 2D MV MPJPE ↓ P-MPJPE ↓ J-MPBOE ↓
Tung et al. [28] ICCV’17 2 GT 79.0 - -
Zhou et al. [33] ICCV’17 1 X † 64.9 - -
Dabral et al. [47] ECCV’18 ‡ 20 X † 52.1 36.3 -
Wang et al. [44] ICCV’19 ‡ 1 X † 83.0 57.5 -
RepNet [32] CVPR’19 1 GT 50.9 38.2 -
EpipolarPose [39] CVPR’19 1 X † X 55.1 47.9 -
EpipolarPose [39] CVPR’19 1 X FT X 76.6 67.5 -
Iqbal et al. [36] CVPR’20 1 X † X 69.1 55.9 -
TriPose [38] CoRR’21 1 GT X 56.7 43.8 -
TriPose [38] CoRR’21 27 AP X 62.9 47.0 -
CanonPose [37] CVPR’21 1 AP X 74.3 53.0 -
ElePose [55] CVPR’21 1 GT 64.0 36.7 -

Ours–MvP&P 1 HR X 59.7 46.2 53.4
Ours–MvP&P ? 1 GT X 52.2 39.6 46.0
Ours–MvP&P 27 HR X 56.8 43.8 51.7
Ours–MvP&P ? 27 GT X 48.6 37.2 44.4

4.2.4. Cross-Dataset Evaluation on 3DHP

To test how well our semi-supervised models generalized to unseen data from a
different domain, we trained the backbone VPose3D network on the training subset of
H36M and evaluated its performance on the test set of both H36M and 3DHP. We directly
compared our semi-supervised models to the baseline VPose3D network proposed by
Pavllo et al. and those of PoseAug [25], which were evaluated in the same setup. Note
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that our networks were trained with our proposed semi-supervised learning scheme, that
is, with full supervision on S1 and S1 + S5 and weak supervision on S5–8 and S6–8. In
contrast, the baseline and PoseAug models were fully supervised on S1 and S1 + S5, and
PoseAug generated additional 2D–3D paired poses from the training subset to supervise
its 3D pose lifting network. Figure 8 shows that the superior performance of our methods
on H36M carried over to 3DHP. Our semi-supervised framework with multi-view posture
loss (Ours–MvP ?) significantly reduced the 3DHP pose estimation error of the baseline
network by 25% (−29.1 mm MPJPE) and 18% (−17.1 mm MPJPE) when trained with fully
supervised subsets of S1 and S1 + S5, respectively. This shows that our models can learn
robust features that generalize well to unseen poses from a different domain. Compared to
PoseAug, our models trained with multi-view pose and posture loss further decreased the
3DHP pose estimation error by 7% (−6.2 mm MPJPE) and 5% (−4.2 mm MPJPE) for S1 and
S1 + S5, respectively. We also noticed that the effect of our semi-supervised framework was
reduced as the weakly supervised subset decreased. This behavior was consistent for both
the H36M and 3DHP datasets and our observations in Figures 6 and 7. We can say that the
resulting pose estimation accuracy of our proposed semi-supervised learning scheme was
directly proportional to the amount of unlabeled data used in weak supervision.
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Figure 8. Cross-dataset evaluation (in MPJPE) of single-frame VPose3D network trained on poses
from H36M subjects (S1 and S1+S5) and evaluated on the test sets of H36M (left) and 3DHP (right).
Our models trained VPose3D with our proposed semi-supervised scheme, that is, full supervision on
the indicated subject(s) (S1 or S1 + S5) and weak supervision on the remaining subjects of the H36M
training set (i.e., S5–8 or S6–8); Pavllo et al. [41]; PoseAug [25].

4.2.5. 3D Posture Protocol Assessment

We show the per-joint pose and posture errors of our 3D pose model evaluated on
the H36M test set in Figure 9 to highlight the unique properties of our proposed posture
evaluation metrics. The MPJPE and scale-normalized MPJPE (N-MPJPE) are established
3D pose evaluation protocols, whereas the P-MPJPE and proposed MPBOE and J-MPBOE
are evaluation protocols that assess the 3D posture quality of a 3D pose. Recall that the
J-MPBOE is derived by propagating the bone orientation error of a bone to its culprit,
neighboring joints. In a sense, the J-MPBOE is an interpretation of the MPBOE at the
joint level. Hence, we present the J-MPBOE for easier comparison with the other joint-
based protocols in Figure 9. We focus primarily on the differences between the established
P-MPJPE and our proposed J-MPBOE.

Figure 8. Cross-dataset evaluation (in MPJPE) of single-frame VPose3D network trained on poses
from H36M subjects (S1 and S1 + S5) and evaluated on the test sets of H36M (left) and 3DHP (right).
Our models trained VPose3D with our proposed semi-supervised scheme, that is, full supervision on
the indicated subject(s) (S1 or S1 + S5) and weak supervision on the remaining subjects of the H36M
training set (i.e., S5–8 or S6–8); Pavllo et al. [41]; PoseAug [25].

4.2.5. 3D Posture Protocol Assessment

We show the per-joint pose and posture errors of our 3D pose model evaluated on
the H36M test set in Figure 9 to highlight the unique properties of our proposed posture
evaluation metrics. The MPJPE and scale-normalized MPJPE (N-MPJPE) are established
3D pose evaluation protocols, whereas the P-MPJPE and proposed MPBOE and J-MPBOE
are evaluation protocols that assess the 3D posture quality of a 3D pose. Recall that the
J-MPBOE is derived by propagating the bone orientation error of a bone to its culprit,
neighboring joints. In a sense, the J-MPBOE is an interpretation of the MPBOE at the
joint level. Hence, we present the J-MPBOE for easier comparison with the other joint-
based protocols in Figure 9. We focus primarily on the differences between the established
P-MPJPE and our proposed J-MPBOE.
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Figure 9. Per-joint assessment of 3D pose (MPJPE and N-MPJPE) and posture (P-MPJPE and
J-MPBOE) evaluation protocols. Results were derived from evaluating our semi-supervised VPose3D
network (with full supervision on 10%S1) on the H36M test set with inference-time augmentation. We
computed the mean error of all poses per joint. Observe that of the two posture protocols, J-MPBOE
was better at concentrating errors on hard-to-estimate joints.

Observe that the errors of the J-MPBOE were much more concentrated in the limb
joints (e.g., wrists, elbows, knees, and ankles), which are more volatile in 3D poses because
of their higher freedom of movement compared to torso joints (e.g., hips, pelvis, and spine).
Therefore, they are much more challenging to estimate. In contrast, the P-MPJPE tended
to spread the posture error across all joints, effectively diluting the concentration of errors
on the joints that were harder to estimate correctly. This highlights an advantage of the
MPBOE and J-MPBOE over the P-MPJPE, which is that the MPBOE and J-MPBOE do not
disperse 3D posture errors from incorrectly oriented bones or incorrectly positioned joints.
Rather, they retain the concentration of errors on culprit bones and joints while assessing
overall posture alignment accuracy. Notice that the pattern of the J-MPBOE was more
like that of the MPJPE, which does not disperse 3D pose estimation errors. The mean
per-joint errors of the J-MPBOE varied, with a range of 85.2 mm and a standard deviation
of 30, compared to 53.8 mm and 16 for the P-MPJPE and 101.8 mm and 29.6 for the MPJPE,
respectively. The corresponding statistics for the MPBOE (not shown in Figure 9) were
a range of 85.6 mm and a standard deviation of 31.1. This property of the MPBOE and
J-MPBOE is favorable for the granular assessment of posture quality.

Also, observe that the J-MPBOE emphasized the network’s bias to the right side of the
body. Comparing the J-MPBOE of the right and left wrists, right and left elbows, right and
left shoulders, and so on, we noticed that the errors of the right joints were significantly
smaller than their left counterparts. None of the other protocols highlighted this bias to
the same degree as the J-MPBOE, although the MPJPE showed traces of it. We observed
the same pattern in the MPBOE. To further investigate this observation, we horizontally
flipped the 2D input poses and 3D ground-truth poses of the H36M test set and reran
inference. This time, we observed a significant bias to the left body parts. Considering that
the bias moved from the right to the left side after flipping the poses, we could rule out our
initial suspicion that the bias originated from the network. This suggested that perhaps
there is a right-side bias in the 3D pose annotations of the H36M test set.

Figure 9. Per-joint assessment of 3D pose (MPJPE and N-MPJPE) and posture (P-MPJPE and
J-MPBOE) evaluation protocols. Results were derived from evaluating our semi-supervised VPose3D
network (with full supervision on 10%S1) on the H36M test set with inference-time augmentation. We
computed the mean error of all poses per joint. Observe that of the two posture protocols, J-MPBOE
was better at concentrating errors on hard-to-estimate joints.

Observe that the errors of the J-MPBOE were much more concentrated in the limb
joints (e.g., wrists, elbows, knees, and ankles), which are more volatile in 3D poses because
of their higher freedom of movement compared to torso joints (e.g., hips, pelvis, and spine).
Therefore, they are much more challenging to estimate. In contrast, the P-MPJPE tended
to spread the posture error across all joints, effectively diluting the concentration of errors
on the joints that were harder to estimate correctly. This highlights an advantage of the
MPBOE and J-MPBOE over the P-MPJPE, which is that the MPBOE and J-MPBOE do not
disperse 3D posture errors from incorrectly oriented bones or incorrectly positioned joints.
Rather, they retain the concentration of errors on culprit bones and joints while assessing
overall posture alignment accuracy. Notice that the pattern of the J-MPBOE was more
like that of the MPJPE, which does not disperse 3D pose estimation errors. The mean
per-joint errors of the J-MPBOE varied, with a range of 85.2 mm and a standard deviation
of 30, compared to 53.8 mm and 16 for the P-MPJPE and 101.8 mm and 29.6 for the MPJPE,
respectively. The corresponding statistics for the MPBOE (not shown in Figure 9) were
a range of 85.6 mm and a standard deviation of 31.1. This property of the MPBOE and
J-MPBOE is favorable for the granular assessment of posture quality.

Also, observe that the J-MPBOE emphasized the network’s bias to the right side of the
body. Comparing the J-MPBOE of the right and left wrists, right and left elbows, right and
left shoulders, and so on, we noticed that the errors of the right joints were significantly
smaller than their left counterparts. None of the other protocols highlighted this bias to
the same degree as the J-MPBOE, although the MPJPE showed traces of it. We observed
the same pattern in the MPBOE. To further investigate this observation, we horizontally
flipped the 2D input poses and 3D ground-truth poses of the H36M test set and reran
inference. This time, we observed a significant bias to the left body parts. Considering that
the bias moved from the right to the left side after flipping the poses, we could rule out our
initial suspicion that the bias originated from the network. This suggested that perhaps
there is a right-side bias in the 3D pose annotations of the H36M test set.
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5. Conclusions

We presented a semi-supervised scheme for training 3D pose estimators with few
labeled data. Our proposed framework includes our novel posture loss and multi-view
pose consistency loss which enable the weak supervision of poses captured from differ-
ent viewpoints. We presented two variants of our semi-supervised framework—one for
training pose models with camera parameters and the other for training without camera
parameters. The results showed that both frameworks are very effective at boosting the
performance of a pose model trained with many unlabeled data. However, we obtained
optimal performance when our semi-supervised pose networks were optimized with the
non-linear perspective reprojected 2D loss, biomechanical pose prior regularizers, and the
proposed multi-view pose and posture loss terms that leverage available camera param-
eters. The effectiveness of our posture loss was more notable in the second framework
when camera parameters were withheld and the network was trained with an orthographic
reprojected 2D loss and multi-view posture loss. The ablation studies and experiments
showed that our proposed multi-view pose and posture loss consistently improved the
accuracy of the backbone pose estimation network evaluated on different datasets. The
semi-supervised frameworks proposed in this paper offer a solution to the problem of
limited labeled 3D pose training examples for 3D human pose estimation, as they effectively
leverage unlabeled data to train more accurate pose estimators.

We also proposed novel posture evaluation metrics that have the unique property of
concentrating 3D posture reconstruction errors on incorrectly oriented bones and incorrectly
positioned joints, irrespective of the overall 3D pose orientation. This standout attribute
of the MPBOE and J-MPBOE makes them quite unlike the P-MPJPE, which distributes
3D posture reconstruction errors fairly equally among all the joints in a 3D pose. Thus,
it is difficult to pinpoint the most critical out-of-position joints that cause the posture
of an estimated 3D pose to deviate from the expected posture of its ground-truth 3D
pose. Our proposed posture metrics isolate errors to incorrectly estimated bones and
joints much better than existing evaluation protocols, making them the posture evaluation
protocol of choice for the granular assessment of 3D posture correctness. Our source
code implementation of the methods proposed in this work will be made available at
github.com/lawrenceamadi/PoseReg.
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Abbreviations
The following abbreviations are used in this manuscript:

HPE Human pose estimation
3D-HPE Three-dimensional human pose estimation
GAN Generative adversarial network
PDF Probability density function
MPJPE Mean per-joint position error
N-MPJPE Scale-normalized mean per-joint position error
P-MPJPE Procrustes-aligned mean per-joint position error
MPBOE Mean per-bone orientation error
J-MPBOE Joint-propagated mean per-bone orientation error
H36M Human3.6M 3D Pose Dataset
3DHP MPII 3D Human Pose Estimation Dataset
VPose3D VideoPose3D Pose Estimation Network
HR-Net High-Resolution 2D Pose Estimation Network

Appendix A. Error Concentration Property of MPBOE and J-MPBOE Illustrated

To demonstrate MPBOE and J-MPBOE concentration of posture errors compared to
P-MPJPE dispersion, we refer to the same example poses as Figure 5 in Section 3. Figure A1
contains a target 3D pose (in black) and an altered 3D pose (in green) that is derived from
shrinking and translating the target pose. Then, the upper body joints are slightly rotated
about the pelvis joint. Notice that the target and altered pose have similar postures except
for the relative orientation between the upper and lower body. The target pose has a slightly
bent posture, while the altered pose has an upright posture. The illustrations of Figure A1
visualize the relative positioning of the altered and target pose without alignment (MPJE),
after pelvis alignment (MPJPE) and scale normalization (N-MPJPE). 3D pose scale, position,
and orientation alignment are done for P-MPJPE, and our proposed bone orientation
alignment was performed for the MPBOE and J-MPBOE. The resulting reconstruction
errors for each joint and bone are detailed in Table A1.

Figure A1. A visual representation of 3D pose and posture reconstruction error protocols. The black
figure is the target 3D pose. For illustration, we constructed an altered 3D pose (in green) by enlarging
the target pose, translating it, and slightly rotating the upper body at the pelvis joint to change
the posture. Observe that, unlike the P-MPJPE, our proposed MPBOE and J-MPBOE highlight the
defaulting bones and joints (in red) in the altered pose that cause the change in posture.
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Table A1. The resulting 3D pose and posture reconstruction errors (in millimeters) between target
and altered example poses of Figure A1. Notice that the errors are sparse for most joints and bones of
the J-MPBOE and MPBOE but concentrated at the few out-of-position joints and bones.
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MPJPE 0.19 0.23 0.20 0.24 0.28 0.27 0.31 0.34 0.27 0.20 0.15 0.17 0.13 0.16 0.13 0.20 0.23
N-MPJPE 0.13 0.20 0.10 0.20 0.18 0.20 0.23 0.25 0.20 0.14 0.11 0.10 0.12 0.13 0.14 0.15 0.15
P-MPJPE 0.03 0.08 0.05 0.05 0.04 0.03 0.06 0.06 0.03 0.02 0.07 0.08 0.06 0.04 0.02 0.08 0.08
J-MPBOE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.03 0.08 0.11 0.00 0.00

Protocol R.R
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MPBOE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.11 0.00 0.00

Observe that the MPBOE correctly registered the most errors in the orientation of the
thigh (femur) bones that changed the posture, whereas the P-MPJPE dispersed the errors
that should have been concentrated in the torso region (i.e., bones and joints closest to the
pelvis) to all the joints. Similarly, for the J-MPBOE, the errors were sparse for joints except
those close to the pelvis keypoint that captured the change in posture.

Appendix B. Configuration of Bone Orientation Alignment Procedure

Here, we reveal important implementation details of our proposed bone orienta-
tion alignment procedure in Table A2 and show the outcome illustrated by the 3D pose
transformation for each bone in Figure A2.

Table A2. Free-Bone alignment configuration. This table details the configuration we used to align
each bone of a typical 17-keypoint 3D pose skeleton. The notations are consistent with the explanation
of our bone alignment procedure discussed in Section 3.2, which involved the careful selection of Pivot,
Axis, Anchor, and Free keypoints and the description of how they are computationally combined to
align each bone. The notations R. and L. are for Right and Left, respectively.

Bone or Quadruplet Keypoints Superscripts Axis-Bone

Body Part Free (j
′
f ) Pivot (j

′
p) Axis (j

′
a) Anchor (j

′
c) δa

f δc
f ~vk

f ~vc
f (a, c) Aligned to

Face Nose Skull Neck R. Shoulder −1 −1 j′c × j′a j′a ×~vk
f (j, i) Y-Axis

Head Skull Neck Spine L. Shoulder −1 1 j′a × j′c ~vk
f × j′a (j, i) Y-Axis

Thoracic Vertebrae Neck Spine Pelvis L. Hip −1 1 j′a × j′c ~vk
f × j′a (j, i) Y-Axis

Lumbar Vertebrae Spine Pelvis Neck R. Hip 1 −1 j′a × j′c ~vk
f × j′a (j, i) Y-Axis

R. Waist R. Hip Pelvis Spine L. Hip 1 1 j′c × j′a j′a ×~vk
f (j, i) Y-Axis

L. Waist L. Hip Pelvis Spine R. Hip 1 −1 j′a × j′c ~vk
f × j′a (j, i) Y-Axis

R. Femur (Thigh) R. Knee R. Hip Pelvis Spine 1 1 j′a × j′c ~vk
f × j′a (i, j) X-Axis

L. Femur (Thigh) L. Knee L. Hip Pelvis Spine −1 1 j′c × j′a j′a ×~vk
f (i, j) X-Axis

R. Tibia (Foreleg) R. Ankle R. Knee R. Hip Pelvis 1 1 j′c × j′a j′a ×~vk
f (j, i) Y-Axis

L. Tibia (Foreleg) L. Ankle L. Knee L. Hip Pelvis 1 1 j′a × j′c j′a ×~vk
f (j, i) Y-Axis

R. Clavicle R. Shoulder Neck Spine L. Shoulder −1 1 j′a × j′c ~vk
f × j′a (j, i) Y-Axis

L. Clavicle L. Shoulder Neck Spine R. Shoulder −1 −1 j′c × j′a j′a ×~vk
f (j, i) Y-Axis

R. Humerus (Bicep) R. Elbow R. Shoulder Neck Spine 1 1 j′c × j′a ~vk
f × j′a (i, j) X-Axis

L. Humerus (Bicep) L. Elbow L. Shoulder Neck Spine −1 1 j′a × j′c j′a ×~vk
f (i, j) X-Axis

R. Radius (Forearm) R. Wrist R. Elbow R. Shoulder Neck 1 1 j′c × j′a j′a ×~vk
f (j, i) Y-Axis

L. Radius (Forearm) L. Wrist L. Elbow L. Shoulder Neck 1 −1 j′a × j′c ~vk
f × j′a (j, i) Y-Axis
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Illustrating the Outcome of Bone Orientation Alignment

Figure A2. Visualization of the 3D pose transformation effect of our novel bone orientation alignment
procedure for each bone. The X-, Y-, and Z-axis are represented by the red, blue, and orange dotted
lines, respectively. The Pivot, Axis, Anchor, and Free keypoints are denoted by the gray, blue, pink,
and green circles, respectively. The right-side, central, and left-side body parts are color-coded in
lemon green, black, and purple, respectively.

References
1. Ionescu, C.; Papava, D.; Olaru, V.; Sminchisescu, C. Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human

Sensing in Natural Environments. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1325–1339. [CrossRef] [PubMed]
2. Joo, H.; Simon, T.; Li, X.; Liu, H.; Tan, L.; Gui, L.; Banerjee, S.; Godisart, T.S.; Nabbe, B.; Matthews, I.; et al. Panoptic Studio:

A Massively Multiview System for Social Interaction Capture. In Proceedings of the 2015 IEEE International Conference on
Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3334–3342.

3. Sigal, L.; Balan, A.O.; Black, M.J. HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for
Evaluation of Articulated Human Motion. Int. J. Comput. Vis. 2009, 87, 4. [CrossRef]

http://doi.org/10.1109/TPAMI.2013.248
http://www.ncbi.nlm.nih.gov/pubmed/26353306
http://dx.doi.org/10.1007/s11263-009-0273-6


Sensors 2023, 23, 9749 23 of 25

4. Mehta, D.; Rhodin, H.; Casas, D.; Fua, P.; Sotnychenko, O.; Xu, W.; Theobalt, C. Monocular 3D Human Pose Estimation in the
Wild Using Improved CNN Supervision. In Proceedings of the 3D Vision (3DV), 2017 Fifth International Conference, Qingdao,
China, 10–12 October 2017. [CrossRef]

5. Von Marcard, T.; Henschel, R.; Black, M.J.; Rosenhahn, B.; Pons-Moll, G. Recovering Accurate 3D Human Pose in the Wild Using
IMUs and a Moving Camera. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14
September 2018.

6. Amadi, L.; Agam, G. Boosting the Performance of Weakly-Supervised 3D Human Pose Estimators with Pose Prior Regularizers.
In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022.

7. Iskakov, K.; Burkov, E.; Lempitsky, V.S.; Malkov, Y. Learnable Triangulation of Human Pose. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7717–7726.

8. Reddy, N.; Guigues, L.; Pischulini, L.; Eledath, J.; Narasimhan, S.G. TesseTrack: End-to-End Learnable Multi-Person Articulated
3D Pose Tracking. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Nashville, TN, USA, 20–25 June 2021; pp. 15185–15195.

9. He, Y.; Yan, R.; Fragkiadaki, K.; Yu, S.I. Epipolar Transformers. In Proceedings of the 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 7776–7785.

10. Zhang, Z.; Wang, C.; Qiu, W.; Qin, W.; Zeng, W. AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in
the Wild. Int. J. Comput. Vis. 2021, 129, 703–718. [CrossRef]

11. Remelli, E.; Han, S.; Honari, S.; Fua, P.; Wang, R.Y. Lightweight Multi-View 3D Pose Estimation Through Camera-Disentangled
Representation. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle,
WA, USA, 13–19 June 2020; pp. 6039–6048.

12. Chun, S.; Park, S.; Chang, J.Y. Learnable Human Mesh Triangulation for 3D Human Pose and Shape Estimation. In Proceedings
of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2022;
pp. 2849–2858.

13. Zhang, J.; Tu, Z.; Yang, J.; Chen, Y.; Yuan, J. MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose Estimation
in Video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
19–20 June 2022; pp. 13222–13232. [CrossRef]

14. Xu, J.; Yu, Z.; Ni, B.; Yang, J.; Yang, X.; Zhang, W. Deep Kinematics Analysis for Monocular 3D Human Pose Estimation.
In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
19–20 June 2020; pp. 896–905.

15. Shan, W.; Lu, H.; Wang, S.; Zhang, X.; Gao, W. Improving Robustness and Accuracy via Relative Information Encoding in 3D
Human Pose Estimation. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual, 20–24 October 2021.

16. Hu, W.; Zhang, C.; Zhan, F.; Zhang, L.; Wong, T.T. Conditional Directed Graph Convolution for 3D Human Pose Estimation.
In Proceedings of the 29th ACM International Conference on Multimedia (MM ’21), New York, NY, USA, 20–24 October 2021;
pp. 602–611. [CrossRef]

17. Liu, R.; Shen, J.; Wang, H.; Chen, C.; Cheung, S.C.S.; Asari, V.K. Attention Mechanism Exploits Temporal Contexts: Real-Time 3D
Human Pose Reconstruction. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 5063–5072.

18. Qiu, H.; Wang, C.; Wang, J.; Wang, N.; Zeng, W. Cross View Fusion for 3D Human Pose Estimation. In Proceedings of the
2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 4341–4350. [CrossRef]

19. Rogez, G.; Schmid, C. MoCap-guided Data Augmentation for 3D Pose Estimation in the Wild. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NeurIPS), Barcelona, Spain, 5–10 December 2016.

20. Zhang, J.; Yu, D.; Liew, J.H.; Nie, X.; Feng, J. Body Meshes as Points. In Proceedings of the 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 546–556.

21. Mehta, D.; Sridhar, S.; Sotnychenko, O.; Rhodin, H.; Shafiei, M.; Seidel, H.P.; Xu, W.; Casas, D.; Theobalt, C. VNect: Real-Time 3D
Human Pose Estimation with a Single RGB Camera. ACM Trans. Graph. 2017, 36, 1–14. [CrossRef]

22. Li, S.; Ke, L.; Pratama, K.; Tai, Y.W.; Tang, C.K.; Cheng, K.T. Cascaded Deep Monocular 3D Human Pose Estimation With
Evolutionary Training Data. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 6172–6182.

23. Varol, G.; Romero, J.; Martin, X.; Mahmood, N.; Black, M.J.; Laptev, I.; Schmid, C. Learning from Synthetic Humans. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 4627–4635.

24. Chen, W.; Wang, H.; Li, Y.; Su, H.; Wang, Z.; Tu, C.; Lischinski, D.; Cohen-Or, D.; Chen, B. Synthesizing Training Images for
Boosting Human 3D Pose Estimation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford,
CA, USA, 25–28 October 2016; pp. 479–488.

25. Gong, K.; Zhang, J.; Feng, J. PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation. In
Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25
June 2021; pp. 8571–8580.

http://dx.doi.org/10.1109/3dv.2017.00064
http://dx.doi.org/10.1007/s11263-020-01398-9
http://dx.doi.org/10.1109/CVPR52688.2022.01288
http://dx.doi.org/10.1145/3474085.3475219
http://dx.doi.org/10.1109/ICCV.2019.00444
http://dx.doi.org/10.1145/3072959.3073596


Sensors 2023, 23, 9749 24 of 25

26. Gholami, M.; Wandt, B.; Rhodin, H.; Ward, R.; Wang, Z.J. AdaptPose: Cross-Dataset Adaptation for 3D Human Pose Estimation
by Learnable Motion Generation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 13065–13075.

27. Yang, C.Y.; Luo, J.; Xia, L.; Sun, Y.; Qiao, N.; Zhang, K.; Jiang, Z.; Hwang, J.N. CameraPose: Weakly-Supervised Monocular 3D
Human Pose Estimation by Leveraging In-the-wild 2D Annotations. In Proceedings of the 2023 IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–7 January 2023; pp. 2923–2932.

28. Tung, H.Y.F.; Harley, A.W.; Seto, W.; Fragkiadaki, K. Adversarial Inverse Graphics Networks: Learning 2D-to-3D Lifting and
Image-to-Image Translation from Unpaired Supervision. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4364–4372.

29. Sun, X.; Xiao, B.; Liang, S.; Wei, Y. Integral Human Pose Regression. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018.

30. Deng, Y.; Sun, C.; Zhu, J.; Sun, Y.C. SVMAC: Unsupervised 3D Human Pose Estimation from a Single Image with Single-view-
multi-angle Consistency. In Proceedings of the 2021 International Conference on 3D Vision (3DV), London, UK, 1–3 December
2021; pp. 474–483.

31. Christidis, A.; Papaioannidis, C.; Pitas, I. Monocular Weakly-Supervised Camera-Relative 3D Human Pose Estimation. In Pro-
ceedings of the 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), Nafplio, Greece, 26–29
June 2022; pp. 1–5. [CrossRef]

32. Wandt, B.; Rosenhahn, B. RepNet: Weakly Supervised Training of an Adversarial Reprojection Network for 3D Human Pose
Estimation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, 15–20 June 2019; pp. 7774–7783.

33. Zhou, X.; Huang, Q.; Sun, X.; Xue, X.; Wei, Y. Towards 3D Human Pose Estimation in the Wild: A Weakly-Supervised
Approach. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October
2017; pp. 398–407.

34. Bouazizi, A.; Wiederer, J.; Kressel, U.; Belagiannis, V. Self-Supervised 3D Human Pose Estimation with Multiple-View Geometry.
In Proceedings of the 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), Jodhpur,
India, 15–18 December 2021; pp. 1–8.

35. Hua, G.; Liu, H.; Li, W.; Zhang, Q.; Ding, R.; Xu, X. Weakly-Supervised 3D Human Pose Estimation With Cross-View U-Shaped
Graph Convolutional Network. IEEE Trans. Multimed. 2022, 25, 1832–1843. [CrossRef]

36. Iqbal, U.; Molchanov, P.; Kautz, J. Weakly-Supervised 3D Human Pose Learning via Multi-View Images in the Wild. In Proceedings
of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 5242–5251.

37. Wandt, B.; Rudolph, M.; Zell, P.; Rhodin, H.; Rosenhahn, B. CanonPose: Self-Supervised Monocular 3D Human Pose Estimation
in the Wild. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville,
TN, USA, 20–25 June 2021; pp. 13289–13299.

38. Gholami, M.; Rezaei, A.; Rhodin, H.; Ward, R.; Wang, Z.J. TriPose: A Weakly-Supervised 3D Human Pose Estimation via
Triangulation from Video. arXiv 2021, arXiv:2105.06599. https://doi.org/10.48550/arXiv.2105.06599.

39. Kocabas, M.; Karagoz, S.; Akbas, E. Self-Supervised Learning of 3D Human Pose Using Multi-View Geometry. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 1077–1086.

40. Martinez, J.; Hossain, R.; Romero, J.; Little, J. A Simple Yet Effective Baseline for 3d Human Pose Estimation. In Proceedings of
the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2659–2668.

41. Pavllo, D.; Christoph Feichtenhofer, D.G.; Auli, M. 3D human pose estimation in video with temporal convolutions and
semi-supervised training. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20
June 2019.

42. Chu, W.T.; Pan, Z.W. Semi-Supervised 3D Human Pose Estimation by Jointly Considering Temporal and Multiview Information.
IEEE Access 2020, 8, 226974–226981. [CrossRef]

43. Rhodin, H.; Salzmann, M.; Fua, P. Unsupervised Geometry-Aware Representation for 3D Human Pose Estimation. In Proceedings
of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

44. Wang, C.; Kong, C.; Lucey, S. Distill Knowledge From NRSfM for Weakly Supervised 3D Pose Learning. In Proceedings of the
2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 743–752.

45. Yang, W.; Ouyang, W.; Wang, X.; Ren, J.S.J.; Li, H.; Wang, X. 3D Human Pose Estimation in the Wild by Adversarial Learning.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23
June 2018; pp. 5255–5264.

46. Akhter, I.; Black, M.J. Pose-conditioned joint angle limits for 3D human pose reconstruction. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1446–1455.

47. Dabral, R.; Mundhada, A.; Kusupati, U.; Afaque, S.; Sharma, A.; Jain, A. Learning 3D Human Pose from Structure and
Motion. In Proceedings of the 2018 Europian Conference on Computer Vision (ECCV), Munich, Germany, 14–18 September 2018;
pp. 679–696. [CrossRef]

http://dx.doi.org/10.1109/IVMSP54334.2022.9816196
http://dx.doi.org/10.1109/TMM.2022.3171102
https://doi.org/10.48550/arXiv.2105.06599
http://dx.doi.org/10.1109/ACCESS.2020.3045794
http://dx.doi.org/10.1007/978-3-030-01240-3_41


Sensors 2023, 23, 9749 25 of 25

48. Spurr, A.; Iqbal, U.; Molchanov, P.; Hilliges, O.; Kautz, J. Weakly Supervised 3D Hand Pose Estimation via Biomechanical
Constraints. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020.

49. Cheng, Y.F.; Yang, B.; Wang, B.; Wending, Y.; Tan, R.T. Occlusion-Aware Networks for 3D Human Pose Estimation in Video.
In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27
October–2 November 2019; pp. 723–732.

50. Rhodin, H.; Spörri, J.; Katircioglu, I.; Constantin, V.; Meyer, F.; Müller, E.; Salzmann, M.; Fua, P. Learning Monocular 3D Human
Pose Estimation from Multi-view Images. Proceedings/CVPR, IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2018, 2018, 8437–8446. [CrossRef]

51. Mitra, R.; Gundavarapu, N.B.; Sharma, A.; Jain, A. Multiview-Consistent Semi-Supervised Learning for 3D Human Pose
Estimation. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA,
USA, 13–19 June 2020; pp. 6906–6915.

52. Zhao, L.; Peng, X.; Tian, Y.; Kapadia, M.; Metaxas, D.N. Semantic Graph Convolutional Networks for 3D Human Pose Regression.
In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019; pp. 3420–3430.

53. Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep High-Resolution Representation Learning for Human Pose Estimation. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–19 June 2019;
pp. 5686–5696.

54. Fang, H.S.; Xie, S.; Tai, Y.W.; Lu, C. RMPE: Regional Multi-person Pose Estimation. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

55. Wandt, B.; Little, J.J.; Rhodin, H. ElePose: Unsupervised 3D Human Pose Estimation by Predicting Camera Elevation and
Learning Normalizing Flows on 2D Poses. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 6635–6645.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPR.2018.00880

	Introduction
	Related Work
	Method
	Biomechanical Pose Prior Regularization
	Differentiable Bone Orientation Alignment
	Bone Orientation Error for Posture Loss
	Semi-Supervision with Multi-View Posture Loss
	Semi-Supervision without Camera Parameters

	Bone Orientation Error as a Posture Metric
	Bone Orientation Error Propagated to Joints

	Experiments and Results
	Experiment Setup
	Training and Inference
	Datasets and Pose Models

	Results and Comparisons
	Semi-Supervision on H36M with Full Supervision on S1
	Ablation of Camera Parameters with Increasing Full Supervision
	Ablation of Supervision with Little to No 3D Pose Annotations
	Cross-Dataset Evaluation on 3DHP
	3D Posture Protocol Assessment


	Conclusions
	Appendix A
	Appendix B
	References

