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Abstract: In this work, a lightweight compliant glove that detects scratching using data from mi-
crotubular stretchable sensors on each finger and an inertial measurement unit (IMU) on the palm
through a machine learning model is presented: the SensorIsed Glove for Monitoring Atopic Der-
matitis (SIGMA). SIGMA provides the user and clinicians with a quantifiable way of assaying scratch
as a proxy to itch. With the quantitative information detailing scratching frequency and duration,
the clinicians would be able to better classify the severity of itch and scratching caused by atopic
dermatitis (AD) more objectively to optimise treatment for the patients, as opposed to the current
subjective methods of assessments that are currently in use in hospitals and research settings. The
validation data demonstrated an accuracy of 83% of the scratch prediction algorithm, while a separate
30 min validation trial had an accuracy of 99% in a controlled environment. In a pilot study with
children (n = 6), SIGMA accurately detected 94.4% of scratching when the glove was donned. We
believe that this simple device will empower dermatologists to more effectively measure and quantify
itching and scratching in AD, and guide personalised treatment decisions.

Keywords: atopic dermatitis; dermatology; scratching; wearable sensors; medical device; neural
network

1. Introduction

Atopic dermatitis (AD), also known as eczema, is a recurrent, itchy skin condition
that commonly affects children [1]. Around 15–20% of children and 6–10% of adults are
affected by AD worldwide [2]. It is a chronic condition that is associated with family
genetics, although it can improve or even clear completely when a child gets older [3].
AD symptoms include itching, redness, small bumps, and dry flaky and scaly skin on
small patches or over a large area of the body. People with AD have periods where their
symptoms are more severe—a flare-up—and other times when it is less noticeable [4].
A flare-up can be caused by environmental factors, such as contact with allergens, or it
could be triggered internally [5]. It is defined as an “Acute, clinically significant worsening
of signs and symptoms of AD requiring therapeutic intervention” by the European Task
Force of Atopic Dermatitis (ETFAD) [6]. The most common methods used currently for
assessing the severity of AD are Severity Scoring of Atopic Dermatitis (SCORAD) [7], the
Eczema Area and Severity Index (EASI) [8], and the Peak Pruritus Numerical Rating Scale
(PP-NRS) [9]. These methods are similar and qualitative by nature, classifying the patient
into different categories of AD severity by observing clinical signs present through the
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review of patient history or examining the patients. SCORAD requires every patient to be
assessed by observing the intensity and extent of the dryness on different parts of their
body and a subjective rating of the symptoms that they are experiencing and how it affects
their sleep [7]. EASI requires examining the patient’s body visually and assigning scores
based on the clinician’s examinations in order to determine the severity of their AD [8].
PP-NRS requires patients to rate the worst itch they have experienced over the past 24 h [9].
All three described methods can be very subjective in scoring with different patients and
clinicians [10]. The clinician or patient may overrate or underrate the severity in different
sections of SCORAD, EASI, or PP-NRS due to subjective elements or systemic errors such
as recall bias causing results to skew either way. This may lead to suboptimal treatment, as
clinicians rely on these scores for treatment [11].

Recently, scratching is monitored as a way to evaluate the degree of itch, and itch is an
indication the severity of skin diseases like AD [12,13]. Devices such as the ADAM sensor [14]
or the MetaMotionR-based fabric wristband [15] are aiming to quantify scratching as an
assessment of the severity of skin diseases. Using this method removes the problems
associated with qualitative assessments like SCORAD, PP-NRS, and EASI, which are
widely used in the clinical setting.

To address this clinical need, a SensorIsed Glove for Monitoring Atopic dermati-
tis (SIGMA) was developed as a low-cost, convenient, and acceptable way of assaying
scratches [16] as a proxy to itch. This allows for an objective method of quantifying scratches
in patients with moderate-to-severe AD at the comfort of one’s home, without requiring
camera surveillance. SIGMA aims to provide subjects an alternative to the intrusiveness
and discomfort by forgoing the use of cameras, instead using a combination of electronic
sensors and machine learning to predict scratching. It could also be used as a complemen-
tary device to video recordings by reducing the time-consuming process of observing the
video for scratch bouts.

2. Materials and Methods
2.1. SensorIsed Glove for Monitoring Atopic Dermatitis (SIGMA)

SIGMA (Figure 1) is fabricated using an off-the-shelf biking glove of 92% polyester,
8% elastane. Microtubular stretch sensors [17] were mounted onto the superior side of
the glove over each finger with Velcro for ease of repositioning them for different subjects.
The whole device, including its control unit, is considerably light, weighing 45 g in total.
The customised microtubular sensors are silicone microtubes filled with Eutectic gallium
indium (eGaIn) liquid metal and manufactured by Microtube Technologies Private Limited.
Each microtube sensor is flexible, stretchable, robust, and washable [18], and weighs around
2 g. The 0.16 mm microchannels in the microtubular sensor contract and expand as the
sensor is stretched or relaxed, respectively, causing a change in the electrical continuity of
eGaIN at a rate of 3.27± 0.08 MS/m, up to 220% in length [17].

2.2. Controller Unit

These microtube sensors were connected by wires to a 3D-printed case housing a
controller unit consisting of a 370 mAh 3.7 V lithium-ion battery, a single printed circuit
board integrating a microcontroller (MCU), a Bluetooth Low-Energy (BLE) transmitter,
an inertial measurement unit (IMU), and a 24-bit analogue-to-digital converter (ADC).
The ADC translates the change in resistance from the stretch sensors on each finger to
data readable by the MCU, along with the accelerometer data (x, y, and z axes) from the
integrated IMU, which were packaged and transmitted via BLE to a computer and read
with a dedicated Windows 10 companion application. The companion application written
in Unity3D allowed for basic visualisation of the live raw data in a chart, and saved the
raw data onto the computer for further processing. The data for the stretch sensors, as well
as the accelerometer data, were sampled at 20 Hz. The controller unit is 5 × 3.5 × 1 cm in
dimensions and weighs in at 25 g. The casing serves to protect the circuitry and the subjects
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from coming into contact to mitigate the risk of an electric shock, and it is adhered onto the
dorsal side of the glove using Velcro.

Figure 1. The schematic (I) and an image of SIGMA (II), and raw data (III) collected from SIGMA
from opening and closing the hand in the air.

2.3. Experiment Design for Model Training

A machine learning model was developed for SIGMA to detect scratching; an exper-
iment was designed to collect raw data from SIGMA to train this model. A total of five
subjects were recruited for this study. They were healthy adults aged between 21 and 60
with no major chronic illnesses or pre-existing conditions that would prevent them from
wearing gloves or understanding instructions required in the conduct of the experiment.
The study was approved by National University of Singapore Institutional Review Board
(NUS-IRB). The subjects donned SIGMA on their right hand, and the microtube sensors
were positioned to stretch from the subject’s distal interphalangeal (DIP) joint across the
dorsal side of their fingers past the metacarpophalangeal (MCP) joint.

The experiment focused on the collection of data from 100 different types of scratch-
ing and non-scratching actions for training and verifying the model, as proposed by
Chun et al. [14]. Each action, scratching or non-scratching, would be performed for 10 s
from resting state to resting state for the training. The non-scratching actions were to sit idly,
perform different types of waving, type on a mobile phone and on a keyboard, and tap on
desks in multiple different ways. Additional actions from domestic activities of daily living,
such as picking up and moving objects, capping a bottle, turning a key, etc. (Figure 2A),
were also included. These are common actions that a person would perform throughout
the day [19], and including them in the training would allow the model to identify these
actions. The scratching actions consisted of two types: arm-dominant scratching and finger-
dominant scratching; additionally, each of the two types were further split into “scratching
normally” and “scratching intensively”. It was thought that the change in intensity may
affect how the subject would approach the action. An additional type of action, rubbing,
had been added and split into “rubbing normally” and “rubbing intensively” as with
finger or arm dominant scratching. Rubbing is a common replacement for scratching as
it could also trigger the neurological pathways that relieve itching [20]. It was thought to
be crucial that rubbing should be included in case the model was unable to distinguish
between rubbing and scratching actions [13]. Each of these three types of actions would be
performed on multiple areas of the body, such as the calves, the stomach, and the top of the
head. By collecting rubbing, along with the two types of scratching in different intensities,
the model could effectively differentiate these actions from the sensor and accelerometer
data, making it more robust. The list the actions collected to train the model can be found
in the Supplementary Material.
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A B C

Figure 2. Examples of actions performed: (A) Moving a small object, (B) Finger-dominant scratching,
(C) Arm-dominant scratching.

Finally, a separate single sequence of actions was taken for validation. The sequence is
in the following order: scratching intensively, scratching normally on the back of the hand;
scratching intensively, scratching normally again on the forearm, and finally, opening and
closing the hand in the air rapidly then normally. This was the validation set that is used
to verify the trained model, which includes an unknown action, opening and closing the
hand in the air, to test the robustness of the training. The validation set was also labelled by
a two-digit subject identification number, followed by the action number.

2.4. Data Processing for Model Training

The data were processed to extract the relevant features for training the model; the
features of note were quick oscillations on one or multiple microtube sensors for finger-
dominated scratching, and curled fingers and quick oscillations on the IMU accelerometer
for arm-dominant scratching. The raw data—microtube sensor data of each of the fingers;
acceleration data in the x, y, and z-axis from the IMU—were processed using a 0.5 Hz,
4th-order high-pass Butterworth filter (Figure 3, in blue). The intention was to remove
low-frequency features, such as drift in the accelerometer, or noise due to unintentional
movement in the fingers flexing or extending when the subject repositions their upper
limb. Deliberate scratching movements of the fingers were observed to vary between
3–8 Hz for both intensive and normal scratching (Figure 4, also in Blue). Similar frequency
ranges were observed in the accelerometer for arm-dominant scratching. A second process
(Figure 3, in red) parsed the 5 microtube sensor data through a 0.03 Hz high-pass filter to
remove sensor drift, followed by a moving average filter: a window of 30 samples at a
20-sample period to smooth out signals that have had rapid changes such as scratching.

Dropout

Re
LU

32 64 64 16
L
S
T
M

Dense Dense

3High 
Pass 

High Pass

Moving 
Average Threshold 

Raw Data

Windowing

1: Scratching

0: Not Scratching

D1-D5
AX,AY,AZ

Training Set Validation Set

* Max 
Pooling
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LU*

Customised CNN-LSTM Model

64
Data Processing

Figure 3. Data process flowchart. The 5 microtube sensor data and the data from the 3 axes of the
accelerometer were processed with a 4th-order, 0.5 Hz high-pass Butterworth filter (data in blue). A
second data process parses only the 5 microtube sensor data though a 4th-order, 0.5 Hz high-pass
Butterworth filter, then a moving-average filter of 30 samples at a step of 20 samples, and finally a
threshold of 10milliOhms (data in red). The customised CNN-LSTM model consists of a 32-filter
convolution layer (demarcated by a *) with drop-out and ReLU, another 64-filter convolution layer
with drop-out and ReLU, a 64-filter pooling layer, a 16-filter LSTM layer, a 64-filter dense layer, and
finally, a 3-filter dense layer. The training data will be fed through the model to train and saved
separately, and the validation data will use the saved model to predict scratching.
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Finally, the processed data were placed on a 10 mΩ threshold in magnitude post-
filtering. This allows us to detect if each of the fingers were in the “bent” or “extended”
state (Figure 4, also in Red). It is known that when one scratches, their fingers curl with
the fingernails at an approximate angle of 80 degrees with reference to the palm [21].
Altogether, the data processing generates 13 sets of processed data using 8 sets of raw data,
which will be fed into the model for training and verification.

Raw Processed

Raw 0.5Hz Highpass Processed Sec�on used in Training

A

B

C

D1
D3

D2
D4

D5
AX

AY
AZ

D1
D3

D2
D4

D5
AX

AY
AZ

D1
D3

D2
D4

D5
AX

AY
AZ

Figure 4. Raw and processed data of actions: (A) transferring a small object, (B) finger-dominant
scratching, (C) arm-dominant scratching. Refer to Figure 2 for photos of the actions. Highlighted in
grey in the “Processed” column are 7 s of the data window that will be used in training.
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2.5. Artificial Neural Network Model

A convolutional neural network (CNN) is a deep learning algorithm that can take in an
input image or a matrix of data and assign importance, e.g., learnable weights and biases, to
various aspects/objects in the image to be able to differentiate one from the other [22]. Long
short-term memory (LSTM) is an architecture with an appropriate gradient-based learning
algorithm designed to overcome backflow issues [23]. LSTM can remember the preceding
states for both short times (short-term), as well as preceding states for longer times or
terms [24]. A combined CNN-LSTM proved to be a highly accurate and reliable model with
high accuracy [25,26] that could perform timed analysis of the features extracted in CNN.
The following customised CNN-LSTM model was conceptualised and was used for training
the model. The data processing, training, and verification were performed on Python 3.9.12.
The CNN-LSTM model was built with the help of Keras 2.9.0 and Tensorflow.

2.6. Experiment Design for Pilot Clinical Study

This was a pilot single-centre study to evaluate SIGMA’s detection of scratching,
compared with direct visualisation recorded using a mobile device in a group of children
with moderate-to-severe AD according to the Hanifin–Rajka criteria [27]. Inclusion criteria
are children aged 4 to 12 years old with an EASI score of 8 or more. The subjects donned
the SIGMA glove for up to 30 min and were filmed for the duration. Children having active
eczema with secondary infection or impetiginisation, other skin conditions that may also
cause itch, neurodevelopmental impairment or neurobehavioural issues, or allergies to
synthetic fibres were excluded from the study. Should they exhibit allergic reaction at any
point of time during the study, they will immediately have SIGMA removed and treated
and subsequently be dropped out. Subjects were identified by the paediatric dermatology
clinic of the KK Women’s and Children’s Hospital and consent was sought with their
parents or legal guardians. The subjects’ medical information such as their EASI score,
PP-NRS, age of onset, treatment, and treatment responses were recorded. The subject and
their caregivers were instructed on the use of SIGMA. Upon the subject donning SIGMA
on their dominant hand, the subject was provided with books or videos. After 30 min,
SIGMA was removed from the subject and the data and video recording were collected for
post-analysis.

After each session, the electronics were removed and disinfected with 70% isopropyl
alcohol, and the glove was washed in mild soap and warm water and air-dried before
another subject would don the glove, in the hope of mitigating potential flare-ups. Multiple
pairs of gloves were available to facilitate the trial in case it would not dry in time.

3. Results
3.1. Model Training

Data windows of 7 s for the 13 processed data matrices for each action, justified from
the centre (Figure 4, processed data highlighted in grey) were extracted to account for
transition to and from resting during the experiment; they were then individually sectioned
into 30-sample windows at 20 samples or 1 s intervals for every action, which coincided
with the sampling rate of SIGMA. Each window consisted of the sample at the point of
sampling and 29 samples before it, and any window that was less than 30 samples was
discarded. Every window was then labelled as either 0: non-scratching or 1: scratching
for the type of action it belonged to, with all scratching and rubbing actions being 1, and
0 for all other actions. The windows from all the actions were then stacked together into an
array in preparation to train the model. The customised CNN-LSTM model (Figure 3) was
then trained using the array and saved for validation.

3.2. Post-Training Validation Test

The validation dataset, a separate data set was manually labelled with 0: non-scratching
or 1: scratching at each data point by observing the data in relation to the sequence of
actions. The validation include four scratching actions, and two non-scratching actions
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that were not part of the actions used for training: the opening and closing of hands.
They were then sectioned into the same 30-sample windows at 20-sample periods and
then stacked as an array, windows of fewer than 30 samples were discarded, as with the
training set. Each window was labelled (0 or 1), which was derived from the median of all
labels in the window. This accounts for windows in transition between non-scratching and
scratching in the validation set, as it was a sequence of actions that has both scratching and
non-scratching actions.

The validation data window was then fed through the trained model, which output
either 0: not scratching or 1: scratching for every window (Figure 5). Comparing the model
output against the label, the model attained a test accuracy of 83.6%, with sensitivity and
specificity of 83 and 84%, respectively, using the validation data (Figure 6).

In concordance with ac�ons
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Back of Hand 
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Figure 5. Figure of the processed data and labels of a post-training validation set from one of the
subjects. The 10 processed data from the 5 microtube sensors in red and blue lines: D1 = thumb,
D2 =index, D3 = middle, D4 = ring, D5 = little; the processed accelerometer data: AX = X-axis,
AY = Y-axis, AZ = Z-axis; as well as the labels: red dots = prediction by ML model, blue Lines
= Manually labelled. Highlighted in grey are where both ML prediction and manually labelled
scratching occur, while red highlights are not in concordance.
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Figure 6. Confusion matrix of post-training validation test.

3.3. Thirty-Minute Validation Test

An additional validation test, where a healthy adult subject was asked to don SIGMA
and play a smartphone game for 30 min. The subject was prompted to scratch momen-
tarily at 4 min intervals by the conductor. This validation test sets up the future scenario
that the glove was envisioned to be used in. Children with AD would don SIGMA in
a controlled environment, such as a consultation room in a hospital, to quantify their
scratching. Consideration was made, and it was decided that some form of interaction with
smartphones [28,29] was the most likely scenario in the environment that was envisioned.

The dataset was labelled manually and was processed similarly to the post-training
validation dataset (Figure 7). In this scenario, the model could predict with 99% accuracy
and specificity, with a sensitivity of 74%. A single prediction error happened at around
the 16 min mark (Figure 8). This validates the effectiveness of this model for detecting
scratching patterns.

3.4. Pilot Clinical Study

A total of 8 children (8.6 ± 1.9 years old) were enrolled for the pilot study. Seven
subjects completed the trial, with one subject opting to drop out 10 min into the trial. One
subject’s data were incompletely recorded due to the hardware problem during the trial. A
total of six subjects’ data were analysed.

The data collected from SIGMA were analysed by feeding them through the model
as described in the 30 min validation; the video recordings were viewed to find exact
time points where the subject scratched and cross-correlated with each other (Figure 9).
Using the data to form a confusion matrix, the sensitivity, specificity, precision, negative
prediction value (NPV), and accuracy could be derived by comparing the labels from the
model against the time points of the accompanying video recording (Table 1).

Specificity and NPV were the highest, largely due to large numbers of true negatives,
which also contributed to high accuracy value. Precision and sensitivity were lower due to
large numbers of false positives caused by non-scratching movements. Two subjects, S5
and S8, had NULL for their sensitivity. This was due to them scratching exclusively with
their non-dominant hand, which SIGMA was not worn on. One subject, S7, scratched with
both hands and SIGMA could detected only the scratches made by the donned hand. S7
also made many actions that the model classified as scratching, contributing to the high
scratching time.



Sensors 2023, 23, 9782 9 of 14

Scratching

Not Scratching

In concordance with ac�ons
Not in concordance

La
be

l
AZ

D5
AY

AX
D4

D3
D2

D1

Minutes
0 5 10 15 20 25 30

Figure 7. Processed data and labels for the 30 min validation test. The processed data from the
5 microtube sensors in red and blue lines: D1 = thumb, D2 = index, D3 = middle, D4 = ring,
D5 = little; the processed accelerometer data: AX = X-axis, AY = Y-axis, AZ = Z-axis; as well as the
labels: red dots = prediction by ML model, blue Lines = manually labelled. Highlighted in grey are
periods where both ML prediction and manually labelled scratching occurs, while red highlights are
not in concordance.
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Figure 8. Confusion matrix of 30 min validation test.
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Figure 9. Processed data and labels for Subject S4 in the pilot clinical study. The processed data from
the 5 microtube sensors in red and blue lines: D1 = thumb, D2 = index, D3 = middle, D4 = ring,
D5 = little; the processed accelerometer data: AX = X-axis, AY = Y-axis, AZ = Z-axis; as well as the
labels: red dots = prediction by ML model, blue lines = manually labelled.
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Table 1. Parameters from the subjects in pilot clinical study.

S3 S4 S5 S6 S7 S8 Mean

PP-NRS [0–10] 2 5 8 3 5 5 5 ± 2
EASI 8 16.4 23.5 8.2 8.2 14.4 13.1 ± 6.2

Total Scratch Time (Video) [s] 77 72 92 31 20 20 52 ± 32
Total Scratch Time (Video) [%] 0.04 0.04 0.05 0.02 0.01 0.01 0.03 ± 0.02

Total Scratch Time (SIGMA) [s] 262 186 184 ? 270 815 ∧ 104 ? 303 ± 258
Total Scratch Time (SIGMA) [%] 0.14 0.9 0.1 0.15 0.45 0.05 0.16 ± 0.14

Sensitivity 0.21 0.52 NA 0.41 0.47 NA 0.4 ± 0.14
Specificity 0.86 0.92 0.9 0.86 0.55 0.94 0.84 ± 0.14
Accuracy 0.82 0.91 0.9 0.85 0.55 0.94 0.83 ± 0.14
Precision 0.09 0.23 0 0.06 0.01 0 0.06 ± 0.08

Negative Predictive Value (NPV) 0.98 0.98 1 0.99 1 1 0.99 ± 0.01
%True Positives Detected (SIGMA) 0.89 1 0 ? 0.94 0.5 ∧ 0 ? 0.56 ± 0.46

? Values consist only of false positives as subject only scratches with the hand without SIGMA. ∧ Values are
mostly false-positive as the subject was scratching with both hands.

4. Discussion

In both the post-training validation test and the 30 min validation test, the model was
able to predict actions of scratching with high accuracy. We found that the post-training
accuracy decreased to 83% due to the unknown action of opening and closing the hand
in the air, which was included to test the robustness of the model. The model detected
opening and closing the hand quickly as scratching, which was false-positive, while opening
and closing slowly was correctly labelled as non-scratching (Figure 5). This phenomenon
is not consistent between the subjects, with some having opening and closing their hands
normally being predicted as scratching. The deduction is that performing the action quickly is
analogous to finger-dominant scratching in the profile, in which the speed, or rate of change,
matters between it being classified as scratching or not. This problem, however, is not seen
in the 30 min validation test, as all the actions are known; therefore, the accuracy was high:
99%. Another observation was that there were discrepancies between labelling manually
versus model prediction (Figure 5). Manual labelling depended on visual inspection of the
data, while the model depended on the windowing function (Figure 4). It was inconclusive
whether manually labelling or the model prediction were closer, as no video recordings
were taken. However, both methods were largely in concordance with the unknown actions
as exceptions.

The data process with the threshold (Figure 4, in red) was a retroactive addition, and
was due the model predicting known hand-waving data as scratching. Examination of the
data showed that the two data profiles were similar, as they both consisted of the subject
moving their arm rapidly side-to-side. Okuyama et al. [21] presented absolute angles
of the index finger when a single subject was scratching, and the team initially wanted
to incorporate angles of all the fingers. However, due to having multiple subjects with
varying finger lengths, it would be tedious to derive absolute angles of every finger for
every subject. Therefore, a simple threshold of 10 mΩ or 3 mm of extension after processing
was used instead to split the fingers between “bent” and “extended”. The model could then
effectively separate hand waving from arm-dominant scratching, largely without issues.
The 30 min validation test (Figure 7) also showed multiple instances of the subject having
“bent” fingers, but it was not detected as scratching. Scratching intensively and normally
on the same part of the body did not have visually observable changes in the pattern other
than having higher frequency during intensive scratching. It showed that the subjects did
not change their scratching method despite the difference in instruction. As the study was
focussed on training a model to detect scratching, it should help in future if subjects exhibit
different types of scratching or rubbing due to an intensity change.

Rubbing was also found to be similar to scratching in when presented data profile.
Subjects rubbing with the tips of their fingers had profiles akin to finger-dominant scratch-
ing, while rubbing with their arms mimicked arm-dominant scratching. One benefit of
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including rubbing was that in some of the rubbing data collected, there were ones with
high x-axis accelerometer activity, which none of the normal or high-intensity scratching
exhibited. We believe this is due to the larger variation in rubbing as opposed to scratching
where limited by requiring fingernails to be in contact with the skin, thus limiting the axes
of movements. As rubbing exhibited a very similar profile to scratching, and performs
the same role as scratching, it could therefore be considered as scratching, and has been
grouped together with scratching.

The experiment to train SIGMA had no plans of having any video recordings, as it was
a controlled experiment with distinct intervals where subjects performed predefined actions
and rested their SIGMA-donned hand in between; therefore, labelling could be performed
solely by observing the data. One noticeable downside was that through SIGMA data, it
could not determine where the subjects had scratched themselves unless it was known
beforehand. It was also observed that some subjects would perform scratching from using
only one finger rather than using all five fingers for different parts of the body. The setup
of having microtube sensors on each finger allowed for such observations. The fidelity of
being able to detect each finger movement individually could have other purposes beyond
the scope of this study.

The pilot study with child subjects exposes SIGMA and its ML model to the real world,
where unlike the 30 min validation test, they were subjected to predicting an inexhaustive
variation of actions that the subject could perform as scratching or not scratching while
awake. This could be seen in low sensitivity (40.4%) and precision (6.3%), where the values
were lowest. While the accuracy of all the subjects was overall high (82.8%), this could
be due to the large numbers of true negatives that contributed to it, as seen by the high
specificity (84%) and NPV (99.1%) values (Table 1).

However, SIGMA was able to detect the video-recorded scratches, which were true
positives, to a high degree of accuracy, provided they were scratching exclusively with
the hand with SIGMA donned. Omitting subjects S5, S7, and S8, where S5 and S8 had
performed all their scratches with their non-dominant hand while S7 had scratched with
both hands, the glove was able to detect scratching (true positives) at 94.4%. Once again,
discrepancies between labelling manually versus model prediction could be attributed to a
loss in concordance, but this did not have an impact in finding true positives. Although
the trained ML model was observed to be able to reject a multitude of actions, it was
also capturing a lot of non-scratching actions as scratching (false positives). As seen in
the 30 min validation test, the unknown action of opening and closing hands, read as
false-positive, was also observed here; other actions, such as pinching the book corner and
flipping it, gripping the edges of the chair or table, and many more actions, were falsely
captured as scratching. The model could be further trained to differentiate these actions
and reject them as scratches, but it would be impractical to train for the many actions
and their variations that would make the model practical to assay scratching during the
daytime, where the subject is actively using their hands for all sorts of activities.

This is the probably a reason why most of the reviewed studies of devices that try to
objectively measure scratching gravitate towards nocturnal studies, where voluntary use of
the hands is minimised. Sleeping subjects would also be less self-conscious, as well as not
preoccupied with activities that could prevent them from scratching.

Comparing scratching time with PP-NRS and EASI scores, correlation between scratch-
ing captured by video recording or SIGMA were unfounded. The short trial duration of
30 min and the preoccupation of the subjects that may also have contributed to this finding.

5. Conclusions

The development of SIGMA to detect scratching with a machine learning model
has demonstrated good results. Its shortcomings were also apparent: that it would not
supersede video recording as a gold standard in assaying scratches. SIGMA can instead
be used as a complement to video recordings, especially if the experiment time is long,
to help pinpoint time(s) when a subject is scratching, and researchers can advance to the
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time(s) and observe where the user is scratching. It can also possibly cover gaps in camera
angles when the subject seems to be scratching but concise observations of scratching at
the instance are not possible. SIGMA could facilitate this by assisting clinicians to capture
scratches for them to use in enhancing the understanding of itch-causing conditions, as
well as monitoring treatment response and drug development.

This study also gave light to the issues of performing scratch studies during the
daytime with conscious subjects. While SIGMA was able to detect true scratching events
that are confirmed by video to a very high degree, it was also characterising a lot of other
activities and hand movements as scratching, leading to low sensitivity and precision when
compared with video. Therefore, it infers that work to make non-video-recording-based
scratch detection devices needs to be more elaborate in sensing and processing in order for
it to be able to perform during daytime with a large variety of actions that a person may
perform. The issue of conscious subjects preferring to endure the itch and not scratch is
also present.

The team also considered having the ML model separate scratch prediction into
intensive scratching/rubbing and normal scratching/rubbing in the future to investigate if
there would be a difference in the scratching intensities for subjects of different severities in
clinical assessments.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/s23249782/s1, The supplementary file contains all the actions collected in order
to train the model.
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