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Abstract: With the rapid development of multimedia technology, personnel verification systems have
become increasingly important in the security field and identity verification. However, unimodal
verification systems have performance bottlenecks in complex scenarios, thus triggering the need
for multimodal feature fusion methods. The main problem with audio–visual multimodal feature
fusion is how to effectively integrate information from different modalities to improve the accuracy
and robustness of the system for individual identity. In this paper, we focus on how to improve
multimodal person verification systems and how to combine audio and visual features. In this
study, we use pretrained models to extract the embeddings from each modality and then perform
fusion model experiments based on these embeddings. The baseline approach in this paper involves
taking the fusion feature and passing it through a fully connected (FC) layer. Building upon this
baseline, we propose three fusion models based on attentional mechanisms: attention, gated, and
inter–attention. These fusion models are trained on the VoxCeleb1 development set and tested on
the evaluation sets of the VoxCeleb1, NIST SRE19, and CNC-AV datasets. On the VoxCeleb1 dataset,
the best system performance achieved in this study was an equal error rate (EER) of 0.23% and a
detection cost function (minDCF) of 0.011. On the evaluation set of NIST SRE19, the EER was 2.60%
and the minDCF was 0.283. On the evaluation set of the CNC-AV set, the EER was 11.30% and
the minDCF was 0.443. These experimental results strongly demonstrate that the proposed fusion
method can significantly improve the performance of multimodal character verification systems.

Keywords: face verification; speaker verification; audio–visual fusion; attention; gated; inter–
attention

1. Introduction

Person verification technology based on biometrics has been widely used in applica-
tions, such as intelligent gates, banking, and forensic investigations. Speaker verification
(SV) and face verification (FV) tasks have emerged as hot research topics. These tasks
involve studying and testing two typical biometric features: audio and face. With the recent
advancements in deep learning, SV and FV have been pushed to the forefront, resulting in
significant improvements in their performance. Over the past few years, researchers have
proposed different deep neural network architectures, including ResNet34 [1], the Time-
Delay Neural Network (TDNN) [2], and the Extended Context Aggregation-Passthrough
Time-Delay Neural Network (ECAPA-TDNN) [3]. Additionally, various loss functions,
such as marge loss [4], triplet loss [5], and AM-Softmax [6], have been explored. Some
systems have demonstrated impressive performance and can even be applied in real-life
scenarios.

Despite the significant advancements in the SV and FV systems, their performance
can deteriorate sharply under more challenging conditions. In real-world applications,
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voice-based SV systems often encounter issues, such as channel distortion or noise interfer-
ence. On the other hand, image-based FV systems face challenges related to illumination
variations, facial motion, and changes in posture, among others. Therefore, it is necessary
to incorporate audio and visual contexts to obtain a robust person recognition system.

Currently, the state-of-the-art fusion models for multimodal person recognition utilize
separate feature extraction networks to embed audio and face modalities into a deep feature
space. These features, either combined through simple concatenation with weighted fusion
or using score-level fusion, lack robustness against degradation and fail to capture feature
quality. Intuitively, an ideal audio–visual fusion recognition system should simultaneously
incorporate audio and face modalities, giving more weight to the modality with better
discriminative features. The weight allocation should be robust, enabling its applicability
to individuals with different accents and facial appearances, accounting for variations in
the audio and visual backgrounds, and compensating for missing or corrupted modalities.
The comparison of audio–visual fusion technologies is shown in Table 1:

Table 1. Comparison table of audio–visual fusion methods.

Methods Advantages Disadvantages

Early Fusion

(1) Simple, intuitive, and easy
to implement. (2) Considers
global information for audio

and visual.

(1) Localized information for
each modality is ignored.

(2) Needs to deal with size and
representation inconsistencies
between different modal data.

Late Fusion

(1) Capable of capturing
localized information for each

modality. (2) Different
network structures can be
used to handle different

modes.

(1) Cannot fully utilize the
correlation between modes.

(2) May require more
parameters and

computational resources.

Mid-level Fusion

(1) Combines the advantages
of early fusion and late fusion,

taking into account both
global and local information.
(2) Different levels of fusion

can be flexibly selected.

Higher requirements for the
design and adaptation of

network structures.

Attention-based Fusion
Capable of adaptively

capturing key information for
each modality.

(1) The training and inference
process may be more complex.
(2) Additional computational

resources are required.

Recently, an attention mechanism based on the features themselves has been used to
aggregate the features of each modality according to their quality [7]. However, training
the feature extractors aims to extract unique feature vectors specific to that modality, not
the feature quality. In the study by Rao et al. [8], they found that aggregating a set of face
images into a single image and extracting the features from it outperformed aggregating the
features from all the images. Therefore, estimating the feature quality based on higher-level
features would lead to better performance.

In this study, we extract the unimodal feature vectors separately using a pretrained
model and then output the fused feature vectors using a fusion network. We introduce the
attention mechanism in the audio–visual feature fusion process, which effectively fuses
the multimodal data and focuses on the most informative region to improve recognition
accuracy. The attention mechanisms used in this paper are all self-attentive, meaning they
utilize their information to calculate attention weights. We mainly propose four generalized
audio–visual multimodal architectures with deep neural networks, in order: Concat Feature
Fusion, Attention Feature Fusion, Gated Feature Fusion, and Inter–Attention Feature Fusion.
Therefore, the main contributions and novelty of our work are listed as follows:
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• We propose a gated-based multimodal feature fusion model that provides a flexible
and effective way to control the flow of information between different modalities
in audio–visual fusion. By using this method, we can better fuse speech and facial
features, thus improving the recognition system’s performance.

• We propose a multimodal feature fusion model based on interactive attention. This
model fosters a greater interaction between the two modalities than traditional atten-
tion mechanisms when calculating attention scores. After processing the unimodal and
concatenated features using interactive attention, we add the unimodal feature vectors
transformed by a fully connected layer to the feature vectors computed through inter-
active attention. The advantage of this approach lies in its ability to better preserve
the original information, avoiding the loss of important features during the feature
fusion process.

• The proposed models have the advantage of being easy to implement and optimize
quickly, as all operations are performed in the feature vector space. For example, in
this study, we utilize preprepared feature vectors to train the fusion network, which
greatly reduces the experimental time.

• The fusion models we propose are decoupled from the front-end extractors, allowing
them to be generalized to various feature vectors extracted by pretrained models.
Because they are decoupled from the front end, our method can be applied to different
modalities and pretrained models. For instance, when extracting feature vectors from
other modalities, we only need to ensure consistency in the data format with the
subsequent stage, allowing us to train other fusion modality experiments using this
fusion model or to extract feature vectors we require using better pretrained models,
further improving our experimental performance.

The remainder of this paper is as follows: The second section describes the related
work on single-mode verification tasks and multi-mode fusion verification. The third
section focuses on the fusion system, explaining its design and implementation. The fourth
section presents the experimental results and analysis conducted. The fifth and final section
discusses the conclusion drawn from the study and the prospect of future work.

2. Related Work
2.1. Face Verification

Put simply, face verification involves using a feature extractor to extract image infor-
mation and comparing it with pre-registered image data. When the comparison exceeds a
certain threshold, the images belong to the same person; otherwise, they are considered
different individuals. In recent years, the development of FV has seen significant advance-
ments. Notably, AlexNet [9], designed by Geoffrey Hinton, the winner of the 2012 ImageNet
competition, and his student Alex Krizhevsky, achieved remarkable success. Methods
based on deep convolutional neural networks (DCNNs) have become the mainstream
for FV tasks. For instance, Facebook’s DeepFace [10] in 2016 demonstrated the highest
performance, as evaluated on the challenging LFW dataset [11]. Furthermore, researchers
have explored various DCNN-based architectures for FV, resulting in substantial improve-
ments. Notable examples include the DeepID series [12,13], VGGFace [14], FaceNet [15],
and Google’s 2018 arcface [4]. Our work, uses FaceNet [15] as the feature extractor to obtain
the feature vectors from the images.

2.2. Speaker Verification

Similar to face verification discussed earlier, speaker verification involves inputting a
voice, extracting voice information, and comparing it with previously registered voice data.
If the comparison exceeds a certain threshold, it is determined that the input and registered
voices belong to the same person; otherwise, they are considered different individuals.
With the advancement of deep neural networks (DNNs), speaker verification modeling
has transitioned from traditional approaches like the Gaussian mixture model–universal
background model (GMM-UBM) [16] and i-vector [17] to deep speaker-embedding rep-
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resentation learning. A commonly used method for speaker-embedding learning is the
d-vector [18], where a fully connected DNN is employed to extract depth features at the
frame level, which are then averaged to obtain a speaker representation at the utterance
level. Another popular method for speaker-embedding learning is the x-vector [19], based
on the time-delay deep neural network (TDNN), which has demonstrated state-of-the-art
performance [1] on various datasets. More recently, advanced neural architectures like
ResNet and ECAPA-TDNN have further improved speaker verification performance. Our
work, uses the ECAPA-TDNN model as a feature extractor to obtain speaker-embedding
vectors from audio streams.

2.3. Audio–Visual Person Verification

Although SV and FV have made significant progress in recent years, their performance
has significantly declined under more challenging conditions. For instance, SV is not
robust against background noise, changes in acoustic characteristics caused by human
emotion, recording device distance, and other factors. Similarly, FV is also susceptible to
factors, such as illumination, posture, emotion, and distance. Due to the varying degrees
of disturbances in these two verification methods, researchers have turned to the fusion
of the two modalities. The initial work in this direction adopts the strategy of feature-
level fusion [20–22], where the scores obtained from separately trained unimodal models
are combined. Recent research has explored attention-based fusion techniques [7,23–26],
which intelligently combine salient features from input patterns. In general, multimodal
systems [27] have been more accurate and robust than unimodal verification systems,
especially in noisy conditions. Several modal fusion techniques have been well developed
in various domains in recent years. For example, multimodal emotion recognition [28–30],
multimodal interaction [31], and lip-sync fusion [32–35] have seen significant advancements.
In 2023, Qin et al. [36] provided a comprehensive review of identification techniques and
applications in unimodal identity recognition. The review starts by discussing the concepts
and limitations of unimodal identity recognition and the motivation and advantages of
multi-channel identity recognition. The authors then examine identification technology
and applications from four key aspects: the feature level, matching level, decision level,
and hierarchical level. Additionally, they discuss security issues and outline future research
directions in learning-based identity recognition. In 2013, the framework proposed by
John and Kawanishi [37] enhanced the robustness of audio–visual individual recognition
by utilizing audio-based individual attributes and a multi-head attention transformer-
based network, termed the CNN Transformer Network (CTNet), which achieves excellent
performance even in the absence of visual modalities. To facilitate research in audio–
visual verification, several multimedia datasets have been introduced. These include the
VAST dataset [38], JANUS dataset [20], VoxCeleb1 dataset [39], VoxCeleb2 dataset [40],
SpeakingFaces dataset [41], and CN-Celeb-AV dataset [42]. These datasets provide valuable
resources for training and evaluating audio–visual verification systems. Furthermore,
the 2019 NIST Speaker Identification Assessment (SRE) Challenge [43] has introduced
multimodal racing tracks and organized speaker verification challenges. This initiative
aims to provide a platform for multimodal person verification research to learn from each
other and foster advancements in the field. Based on the above methods and datasets of
audio–visual fusion models, this paper proposes to introduce two methods, gated and
inter–attention, in audio–visual fusion models. The proposed model shows the advantages
in personnel verification and generates high-quality fusion features under the respective
characteristics in the case of one modality missing or poor quality, and the generalization
of the model is discussed through the comparison of different datasets.

3. System

This section will describe the proposed multimodal fusion approach and its audio
and visual representation subsystems. Our method utilizes a feature-level fusion approach
based on neural network models. Given the discriminative face and speaker representations
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extracted from each subsystem, our attention layer evaluates the contributions of each
representation. We combine them according to the estimated contributions, resulting in
a joint representation. During the testing phase, we compute the similarity of the joint
representations between the enrollment and test the samples to verify the identities. The
overall network structure of this paper is illustrated in Figure 1.

Figure 1. The overall network structure of this paper consists of two parts. The diagram depicts the
left part, which extracts the embeddings using the pretraining model. The right part represents the
fusion model training phase, where the left part’s output serves as the right part’s input.

3.1. Feature Extractor
3.1.1. Face Feature Extractor

FaceNet [15], presented by Google at CVPR in 2015, proposes a unified framework for
solving problems, such as face recognition, verification, and clustering. In this framework,
all these tasks can be treated as feature-based problems, where the main focus is effectively
mapping faces to a feature space. The fundamental idea is to learn a mapping from
face images to a 512-dimensional Euclidean space using convolutional neural networks
(CNNs) [44]. This mapping enables face images to be represented as 512-dimensional
feature vectors.

Inspired by the concept of a correlation coefficient in two-dimensional space, the
similarity between face images is characterized by the inverse distance between their
feature vectors. For instance, feature vectors of different images of the same individual
have smaller distances, while feature vectors of images belonging to different individuals
have larger distances. By leveraging the similarity measures between the feature vectors,
FaceNet addresses the problems of face recognition, verification, and clustering.

3.1.2. Speaker Feature Extractor

ECAPA-TDNN was proposed by Desplanques et al. [3] at the University of Gothic,
Belgium, in 2020. The scheme achieved first place in the International Voice Recognition
Competition by introducing the squeeze–excitation (SE) module and the channel attention
mechanism (VoxSRC2020). The ECAPA-TDNN model consists of the following main
modules:

• SE-Res2Block: Res2Net Block + SE block;
• Multi-layer feature aggregation and summation;
• Attentive statistic pooling.
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3.1.3. Extractor Parameters

To obtain audio (ea) and visual (ev) embeddings, we extracted the audio and visual
embeddings for training and testing using the unimodal system described in Section 3.1.

For face feature extraction, we utilize the FaceNet model [15], which was trained on
the CASIA-WebFace [45] datasets. We used the multitask convolutional neural network
(MTCNN) face detector to align and crop the faces. We set certain parameters to ensure
consistent results when performing alignment and cropping. We set the input image size to
160× 160 pixels, as the FaceNet model requires for fixed-size inputs. Additionally, we set the
margin to 0, indicating no extra padding around the detected face. This margin parameter
can be used to expand or shrink the facial region for better alignment or subsequent
processing. To control the MTCNN face detector, we also set the minimum face size to
20 × 20 pixels. This parameter defines the smallest face size that can be detected. Any
face region smaller than this size will not be detected. Threshold parameters control the
thresholds for different stages of detection in the MTCNN. Here, we set the thresholds to
0.6, 0.7, and 0.7, affecting the results of the face detection and keypoint detection. Adjusting
these thresholds allows us to balance the trade-off between accuracy and recall. The scaling
factor is a parameter used in creating a multi-scale image pyramid. We set the scaling
factor to 0.709, which is the recommended default value for MTCNN. The post_process
parameter controls whether post-processing operations are performed. Post-processing
is used to further process the results obtained from the face and keypoint detectors, such
as face alignment or pose estimation. Here, we set post_process to True, indicating that
post-processing operations are performed to obtain more accurate face alignment results.
Then, we input the aligned and cropped face frames into the FaceNet model to obtain a
512-dimensional embedding vector for each face. These embedding vectors can calculate
the similarity between faces or for tasks, such as face recognition.

For speaker feature extraction, we utilize the ECAPA-TDNN model [3]. The procedure
is as follows: we randomly extract a 2-s audio segment from the original audio. If the
extracted segment is shorter than 2 s, we repeat the preceding audio to make it reach the
2-s mark. The input features comprise frames with a length of 25ms and a frame shift of
10ms, resulting in 80-dimensional Fbanks. We apply SpecAugment feature enhancement
techniques. Subsequently, the audio features pass through the standard ECAPA-TDNN,
which includes three SE-Res2Block modules. The channel size is set to 1024. The features
then undergo attentive statistics pooling (ASP) through a pooling layer, followed by a
fully connected layer to yield embeddings of a dimensionality of 192. We employ the
AAM-Softmax loss function [4], with a margin of 0.2 and a scale of 30.

3.2. Fusion Method

For the fusion module, the model inputs the speaker and face embeddings obtained
from the SV and FV pretraining model extractors. The embedded fusion network is
constructed and optimized using these speaker and face embeddings to generate the output
of the two-mode fusion embedding. Before concatenating the embeddings, it is necessary
to L2-normalize both embeddings obtained from the pretraining models. This step ensures
that the transformed embeddings reside in a co-embedded space, which is more suitable
for subsequent combinations. The models presented in this paper are free for researchers
to use and can be downloaded from https://github.com/jingxuebin20/AVF#avf, accessed
on 10 October 2023.

3.2.1. Concat Feature Fusion

The Concat Feature Fusion model is a simple fusion method that utilizes a unimodal
system model to extract and process feature vectors. The feature vectors from the two
modalities are concatenated to form a feature vector with a dimension of 704 (192 + 512).
To train the model similarly to other fused features, a fully connected layer with 512 hidden
nodes is used, followed by a dropout layer to prevent overfitting, and a ReLU activation
function is applied. The model’s structure is depicted in Figure 2a.

https://github.com/jingxuebin20/AVF#avf
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The advantage of this method lies in its simplicity and suitability for achieving rapid
modality fusion, leading to good results in certain scenarios. It is commonly used as a
baseline benchmark for fusion models. In this study, it is also employed as a baseline for a
performance comparison with several other fusion methods. However, the limitation of
this approach is that, although it employs a fully connected layer to learn the relationship
between the two modalities after feature concatenation, it still exhibits a relatively weak
interaction between the two modalities.

Figure 2. Framework diagram of the fusion model. (a) Concat Feature Fusion, (b) Attention Feature
Fusion, (c) Gated Feature Fusion, and (d) Inter–Attention Feature Fusion.

3.2.2. Attention Feature Fusion

We have developed a multimodal attention model to focus on the salient modalities in
the input while generating a robust fusion representation suitable for person verification
tasks. This model draws inspiration from the multisensory capabilities of humans. In
the human multisensory system, selective attention exists [46] to enable individuals to
prioritize and select key information from complex sensory inputs. The human attentional
mechanism dynamically extracts salient features as needed, without collapsing the overall
information into vague generalizations. This process is known as Attention Feature Fusion
(AFF). Our model is depicted in Figure 2b.

Implementations of this attention mechanism in deep neural networks have proven
successful in various machine learning applications. The attention network we utilize is
similar to a differentiable soft attention network. While previous studies have predom-



Sensors 2023, 23, 9845 8 of 16

inantly focused on spatial or temporal attention, we extend the attention mechanism to
concentrate on the relationship between different modalities. Given the face and speaker
feature vectors ea and ev extracted from the pretrained system, we define the relationship
between different modalities using the attention layer fatt(.) to determine the attention
fraction â{a,v}:

â{a,v} = fatt ([ea, ev]) = W⊤[ea, ev] + b (1)

where W ∈ Rm×d and b ∈ Rm are the learnable parameters of the attention layer, m and
d represent the number of fusion modes and the input dimensions of the attention layer,
respectively, and ea and ev are the embedding of the speaker and the face. Then, the fusion
Embeddingout embedding is obtained from the weighted sum:

Embeddingout = ∑
i∈{a,v}

αi ẽi, where αi =
exp(âi)

∑k∈{a,v} exp(âk)
, i ∈ {a, v} (2)

where ẽ indicates that the projection is embedded into a co-embedded space compatible
with the linear combination. To map ẽ{a,v} from e{a,v}, we used an FC layer with 512 hidden
nodes, that is, ẽ ∈ R512. We do not use nonlinearity in the FC layer. We train the attention
network by jointly embedding Embeddingout ∈ R512 using loss functions.

Introducing the attention network enables us to handle damaged or missing data
from any modality more naturally. In traditional multimodal tasks, it is usually necessary
to perform integrity and quality checks and the corresponding preprocessing for each
modality’s data. However, in our framework, the attention network can automatically
assess the quality and credibility of the given multimodal data without explicit specification.
For example, when the audio signal is heavily disturbed by surrounding noise, the attention
network automatically deactivates the path for audio representation based on learned
attention weights and relies solely on the facial representation for the task. Similarly, if the
facial image has significant occlusions or a low image quality, the attention network adjusts
accordingly, primarily relying on audio representation. This adaptive attention mechanism
enables the model to adjust flexibly based on the input data’s credibility and informational
value, enhancing the system robustness and performance in complex environments.

By leveraging the attention network, our model can selectively and dependently utilize
effective inputs within multimodal data. The attention network can discover inherent
correlations and complementarity among different modalities, focusing attention on the
most beneficial modalities for the task. This attention mechanism makes our model more
robust and adaptable, effectively handling damaged, missing, or other exceptional data
conditions for person verification tasks in multimodal data.

Therefore, by incorporating the attention network, our model can automatically evalu-
ate the quality of multimodal data and allocate adaptive attention based on the credibility
and informational value of the data. This attention mechanism enables the model to handle
damaged or missing data from different modalities more naturally and to selectively rely
on effective inputs within multimodal data. This enhances the robustness and performance
of person verification tasks.

3.2.3. Gated Feature Fusion

In this section, we present a method called Gated Feature Fusion (GFF) that employs a
multiplicative gate to control the flow of information in the audio and visual modalities.
This idea is inspired by the flow control mechanism found in recurrent neural networks,
like GRU or LSTM. A similar concept has been applied to fuse information from image and
text modalities [47].

The paper above noted that the gated multimodal unit possesses an interesting prop-
erty. As a microscopic operation, it can easily integrate with other neural network structures
and can be trained using standard gradient-based optimization algorithms. In this paper,
we extend this idea to audio–visual fusion. Figure 2c depicts the gated multimodal fusion
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architecture. In this architecture, we employ the feature extractor introduced in Section 3.1
to extract the feature vectors ea and ev from a given face and voice, respectively. The
learnable parameter Wz is used to compute the gate vector z ∈ RD:

z = σ(Wz([ea, ev])) (3)

Then, we use the gate vector z to merge ẽa and ẽv into Embeddingout, where ⊙
represents the element-by-element product:

Embeddingout = z ⊙ tanh(ẽa) + (1 − z)⊙ tanh(ẽv) (4)

The gated multimodal feature fusion approach offers a flexible and effective method
to fuse audio and visual information while controlling the flow of information between
different modalities. With this approach, we can achieve improved fusion of audio and
visual features, leading to enhanced performance in recognition systems.

3.2.4. Inter–Attention Feature Fusion

In this section, we apply the inter–attention mechanism to audio–visual fusion to
efficiently extract information from ea and ev and computing the inter–attention score. We
refer to this network as Inter–Attention Feature Fusion (IAFF). Inter–attention mechanisms
are widely used in tasks, such as multimodal emotion recognition. This is because multi-
modal emotion recognition involves extracting a large number of features. However, an
increase in the number of features not only leads to an increase in training parameters and
noise generation but can also result in the loss of critical information.

Similarly, in audio–visual fusion, there may be a problem of information loss in a
certain modality or poor quality of features. Therefore, it becomes necessary to focus on
the most important features. Introducing an interactive attention mechanism is an effective
approach to address this issue. The mechanism used in this paper is the self-attention
mechanism, which utilizes information from within the modality itself to calculate atten-
tion weights. Traditional attention mechanisms usually rely on external information for
calculating attention weights. We can generate a more representative vector of the person’s
characteristics by obtaining more effective information from each modality. The structure
of the proposed interactive attentional feature fusion network is shown in Figure 2d. This
method offers the following advantages:

1. The attention scores of interactive attention, which are calculated interactively in both
modalities, are more interactive than the simple attention mechanism;

2. After processing the unimodal and multimodal information, we again add the uni-
modal information to the multimodal information through the FC. This operation has
the advantage of preventing the loss of critical information.

This converged network is calculated as follows:

Ua = DP(ẽa + so f tmax(
ẽa

⊤aa√
da

)aa) (5)

Uv = DP(ẽv + so f tmax(
ẽv

⊤aa√
da

)av) (6)

Embeddingout = DP(Ua + Uv) (7)

4. Experimental Setup

This section describes the details of the lab settings for the system. We use cosine
similarity in the scoring stages of all the experiments in this work, and the evaluation
indicators are the equal error rate (EER) and minimum detection cost function (minDCF).
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4.1. Dataset

In our experiment, we utilized audio and visual data from three datasets, which are all
publicly available standard audio–visual datasets, namely, VoxCeleb1 [39], the NIST SRE19
multimedia dataset [48], and CN-Celeb-AV (CNC-AV) [42]. We used the development
part of the VoxCeleb1 dataset for the training set, which comprises 1211 speakers and
148,642 utterances. In the test set, we employed the test set of VoxCeleb1, the NIST SRE19
multimedia dataset, and the CNC-AV-Eval-F dataset.

The NIST SRE19 dataset provides two multimedia datasets for the audio and visual
tracks: the JANUS Multimedia Dataset (LDC2019E55) and the 2019 NIST Speaker Recogni-
tion Evaluation Audio-Visual Development Set (LDC2019E56). We specifically used the
LDC2019E55 dataset for this experiment, which served as the evaluation set. LDC2019E55
is a JANUS Multimedia Dataset extracted from the IARPA JANUS Benchmark-B (IJB-B)
dataset [48], as described in detail in the article [20]. The purpose of the CNC-AV dataset is
to evaluate the real performance of audio–visual speaker recognition (AVPR) technology
under unconstrained conditions and to provide a standard benchmark for AVPR research.
All the data are collected from Bilibili (https://www.bilibili.com/, accessed on 1 September
2023), a popular Chinese public medium. Overall, it contains more than 419k video clips
(669 h) from 1136 people (mainly Chinese celebrities) covering 11 types in CN-Celeb [42].
CNC-AV-Eval-F is a subset of the CNC-AV dataset, which contains 197 speakers. Most
of the data in this dataset contain both audio and visual information. It is a standard
evaluation set for ‘full-modality’ person recognition systems. The statistical tables of the
datasets can be found in Tables 2–4.

Table 2. Statistics for the VoxCeleb1 dataset.

Dev Test

# of speakers 1211 40
# of videos 21,819 677
# of utterances 128,642 4708
# of images 1,167,721 39,085

Table 3. Statistics for the NIST SRE19 multimedia dataset.

Condition Split #Enroll
Videos

#Test
Videos #Target #Nontarget

SRE19 DEV 102 319 244 32,294
EVAL 258 914 681 235,131

Table 4. Statistics for the CNC-AV dataset.

CNC-AV-Dev-F CNC-AV-Eval-F CNC-AV-Eval-P

# of Genres 11 11 11
# of Persons 689 197 250
# of Segments 93,973 17,717 307,973
# of Hours 199,70 41,96 427,74

Experimental Parameters

The audio and visual embeddings, mentioned previously, are used in the training
process. The combined spliced embedding has a dimension of 704 (192 + 512). All the
embeddings undergo L2 normalization as a preprocessing step. Regarding the attention-
based fusion systems described in Section 3.2, the transformation layer consists of an FC
layer with 512 units, and the output embedding dimension is set to 512.

During training, the batch size is 64, and the learning rate is 0.0001. The experiments
are conducted using the Adam [49] and SGD optimizers separately to compare their
differences in model convergence speed and performance. Adam performs better than

https://www.bilibili.com/
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SGD and does not require manual tuning of the learning rate. By using four loss functions,
Cross-entropy [50], Center loss [51], AM-Softmax [6], and AAM-Softmax [4], and evaluating
their performance, AM-Softmax was the best performer in the experiment, with a margin
of 0.2 and a scale of 30. Loss functions calculate the distance between the embeddings
(fused feature vectors) and the label. The final output is obtained by fusing the embeddings
and selecting the output of the fully connected layer. In constructing the training pairs,
the speaker and face embeddings are randomly selected from the same individual. All the
systems undergo 60 epochs of training. The training is performed on one NVIDIA GeForce
RTX 3090 GPU.

4.2. Experimental Results and Analysis

The section provides a comprehensive evaluation, comparison, and analysis of the
newly proposed approaches for person verification.

4.2.1. Analysis of Unimodal Experimental Results

The experimental results of the audio–visual unimodal speaker verification system,
using the AM-Softmax loss function, are presented in Table 5. The table presents the results
obtained using the ECAPA-TDNN audio feature extractor and the FaceNet and Resnet50
visual feature extractors. The evaluation sets include VoxCeleb1 and the NIST SRE19 and
CNC-AV multimedia datasets.

Table 5. Performance comparison of unimodal systems on different test datasets.

Datasets Modality System EER (%) minDCF

VoxCeleb1
Audio ECAPA-TDNN 0.98 0.068

Visual FaceNet 3.96 0.263
Resnet50 5.26 0.276

NIST SRE19
Audio ECAPA-TDNN 7.93 0.484

Visual FaceNet 9.28 0.25
Resnet50 13.85 0.358

CNC-AV
Audio ECAPA-TDNN 17.04 0.764

Visual FaceNet 27.49 0.743
Resnet50 29.89 0.776

Based on the data in Table 5, it is evident that in the domain of face verification models,
the FaceNet model outperforms the Resnet50 model. This superiority can be attributed
to several key factors. The outstanding performance of FaceNet in face verification tasks
primarily stems from its purpose-built architecture, the utilization of the triplet loss function,
the distance measurement in the embedding space, and the implementation of more
rigorous training strategies. These elements collectively establish FaceNet as a robust facial
verification model. Compared to general-purpose deep learning models such as Resnet50,
FaceNet is better suited for tasks related to facial analysis.

In the analysis of the three datasets, we can observe that our model performs best
on the VoxCeleb1 dataset, followed by the NIST SRE19 multimedia dataset, and exhibits
the lowest performance on the CNC-AV dataset. This outcome may be attributed to the
following reasons:

• Language Discrepancy in Datasets: Our model was trained using the development
set from the VoxCeleb1 dataset, primarily comprising English audio data. In contrast,
the CNC-AV dataset mainly consists of Chinese audio data. This linguistic distinction
could lead to performance variations, as language features play a significant role in
speech recognition.

• Limitations in Model Generalization: Another potential factor is that the chosen
model may exhibit limited generalization across different datasets. If the model’s
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generalization performance across various languages and data types is subpar, it
may underperform on specific datasets, especially when pronounced differences exist
between them.

4.2.2. Analysis of Experimental Results of Audio–Visual Fusion

The experimental results of the audio–visual multimodal fusion person verification
system under several models are shown in Table 6.

Table 6. Performance comparison using different models and datasets.

Dataset System EER(%) minDCF

VoxCeleb1

CFF 0.32 0.023
AFF 0.30 0.020

AFF [24] 0.718 -
GFF 0.23 0.011

GFF [24] 0.744 -
Multi-scale attention [23] 0.64 0.076

IAFF 0.25 0.018

NIST SRE19

CFF 3.10 0.233
AFF 2.91 0.286
GFF 2.64 0.245
IAFF 2.60 0.283

CNC-AV

CFF 11.30 0.443
AFF 13.06 0.566
GFF 12.18 0.532
IAFF 11.72 0.541

Score Fusion [42] 8.64 0.271

Performance Analysis under Different Models

Compared to single-modal approaches, the experimental results from the testing phase
on the three datasets demonstrate that utilizing fusion models can significantly enhance
verification performance. Our experiments indicate that even employing the simplest
fusion method, such as CFF, we can achieve better results than single-channel systems. This
implies that the fusion of audio and visual cues can effectively improve identity verification
performance.

On the VoxCeleb1 dataset, it can be observed that GFF performs the best in terms of
performance, it is shown in bold in the Table 6, followed by IAFF, AFF, and CFF. Theo-
retically, this result is reasonable because fusion methods based on AFF are theoretically
superior to those based on CFF. The attention mechanism can generate more expressive
fusion feature vectors, focusing on crucial channels from multiple inputs. By prioritizing
important information in the data, the attention mechanism can better capture key de-
tails, thereby enhancing system performance. GFF outperforms AFF because this gating
multimodal feature fusion method provides a flexible and effective way for audio–visual
fusion, controlling the flow of information between different modalities. By employing this
method, we can better integrate speech and facial features, thus improving the recognition
system’s performance. IAFF outperforms the basic AFF because there is a stronger inter-
action between these two modalities when computing the attention scores for interactive
attention. Compared to traditional attention mechanisms, this can more accurately capture
the correlated information between modalities.

We observe that IAFF exhibits the best performance on the NIST dataset, it is shown
in bold in the Table 6, followed by GFF, AFF, and CFF. This result is theoretically sound,
and its reasoning is similar to the analysis in the VoxCeleb1 dataset.

Observing the experimental results of the CNC-AV dataset, we noticed that the perfor-
mance of our proposed fusion model on this dataset was not significant. It even lagged
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behind the baseline model slightly. This indicates that our model might be sensitive to
different languages, and its generalization ability is relatively poor, especially on Chinese
datasets. Through this round of experiments, we have once again confirmed the limitation
of our model in terms of generalization performance. Therefore, our next step will focus on
training a fusion model with a stronger generalization ability.

This research stems from the initial idea of a lab project to explore the application of
audio–visual fusion methods for person verification and speech classification in the short
video domain. The background of this project is to solve the problem of person verification
and speech classification on short video platforms to improve the user experience and
platform functionality. By combining audio and visual fusion techniques, we are promoting
more efficient, accurate, and real-time people verification in the short video domain.

In our research, we are actively involved and integrated in this lab project. By employ-
ing the audio–visual fusion model proposed in this paper, we explored the prospects for a
wide range of applications of this approach in the short video domain. The project aims
to successfully integrate the research results into short video platforms to provide a more
realistic, interesting, and safe user experience while addressing the challenges of real-world
applications.

Performance Comparisons with Other Algorithms

In our study, we compared systems that used different loss functions and fusion
models and compared the results with previous studies. Table 6 presents the specific
comparison results, indicating that our fusion model outperformed the previous study on
the VoxCeleb1 test set.

This difference can be attributed to several factors, including variations in the training
set and differences in the experimental setup. As mentioned earlier, we used a different
training set, and our experimental setup may have differed from the previous study. These
factors might have contributed to the superior performance of our fusion model.

Furthermore, our fusion model may have more accurately captured critical features
when dealing with multimodal data. The design of the fusion model might have better
modeled the relationships between different modalities, resulting in improved performance.
For example, we may have employed a more powerful network architecture or more
effective training strategies to handle audio and visual data fusion.

However, under the CNC-AV dataset, by comparing with the score fusion method in
paper [42], it can be seen that the method proposed in this paper does not perform as well
as the other methods. As mentioned before, the generalization performance of the model
used in this paper is not very good under this dataset. Secondly, the unimodal feature
extractor used in [42] is not the same as in this paper.

Overall, our research findings indicate that our fusion model exhibits better perfor-
mance on the VoxCeleb1 test set within systems utilizing different loss functions and fusion
models. This advantage could be attributed to a combination of factors, including the
choice of training set, optimization of the experimental setup, and the superiority of the
fusion model in handling multimodal data. However, the results are not satisfactory under
the CNC-AV dataset, reflecting that the generalization performance of the model in this
paper needs to be improved.

5. Conclusions

In this work, we have developed various architectures and strategies to explore audio–
visual multimodal fusion for person validation. Building upon the baseline system, we
designed three fusion networks based on attention: Attention Feature Fusion, Gated Feature
Fusion, and Inter–Attention Feature Fusion. The attention mechanisms used in this paper
are all self-attentive, meaning they utilize their information to calculate attention weights.
This is a departure from traditional attention mechanisms, which often rely on external
information for calculating attention weights.
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Through experimental verification, we found that these fusion architectures effec-
tively combine the features from the two modalities and significantly enhance the system
performance for person verification. While interactive attention is commonly employed
in multimodal emotion recognition tasks, this paper represents the first application of
interactive attention to the multimodal audio–visual fusion verification task.

We can draw the following conclusions based on the analysis and comparison of the
experimental results. All four fusion models proposed in this study significantly improve
the performance of multimodal person verification tasks. Our fusion models are decoupled
from the front-end feature extractors, allowing for the extraction of modality-specific feature
vectors using various pretrained models. Therefore, our fusion models can be generalized
to other modalities.

There are two limitations to this study. Firstly, our fusion system requires the pre-
extraction of feature vectors for each modality. While pre-extracting features significantly
reduces the training time of the fusion model, and the decoupled fusion model allows
the use of various pretrained models, in our daily lives, end-to-end models are needed to
facilitate the interaction between the two modalities during the front-end feature extrac-
tion. Secondly, our model is not well suited for Chinese datasets, and its generalization
performance needs improvement.

Future work will develop an end-to-end audio–visual fusion model with better gener-
alization performance and high quality fusion features. First, to improve the generalization
performance of the model, we may need more training data across languages and data
types and perform data cleaning and preprocessing and data enhancement operations in
the data processing and preparation phase. Second, we consider adapting the model archi-
tecture to adapt to the diversity of different languages and data types, and third, we adopt
early stopping, integrated learning, or adversarial training in the model training strategy
to improve the generalization performance and robustness of the model. Finally, using
multiple datasets and cross-validation in model evaluation and validation, through these
methods, it is believed that an end-to-end model with better generalization performance
will be developed. In addition, to generate high-quality fusion features, we plan to use an
approach based on the joint training of an interactive attention mechanism and self-encoder
network for enhanced audio and visual feature fusion. After interactive attention module
feature fusion, a fusion feature loss is generated; this fusion feature is reconstructed into
the original speech and face features by the self-encoder, where the process generates a
reconstructed audio feature loss and a reconstructed face feature loss. It is suggested to use
a multilingual dataset for the joint training of these three loss functions. The system can
learn more representative and informative audio and visual fusion features while retaining
the original information, which ultimately improves the performance and robustness of the
overall personnel verification system.
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