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Abstract: Currently, aeroplane images captured by camera sensors are characterized by their small
size and intricate backgrounds, posing a challenge for existing deep learning algorithms in effectively
detecting small targets. This paper incorporates the RFBNet (a coordinate attention mechanism) and
the SIOU loss function into the YOLOv5 algorithm to address this issue. The result is developing the
model for aeroplane and undercarriage detection. The primary goal is to synergize camera sensors
with deep learning algorithms, improving image capture precision. YOLOv5-RSC enhances three
aspects: firstly, it introduces the receptive field block based on the backbone network, increasing
the size of the receptive field of the feature map, enhancing the connection between shallow and
deep feature maps, and further improving the model’s utilization of feature information. Secondly,
the coordinate attention mechanism is added to the feature fusion network to assist the model
in more accurately locating the targets of interest, considering attention in the channel and spatial
dimensions. This enhances the model’s attention to key information and improves detection precision.
Finally, the SIoU bounding box loss function is adopted to address the issue of IoU’s insensitivity to
scale and increase the speed of model bounding box convergence. Subsequently, the Basler camera
experimental platform was constructed for experimental verification. The results demonstrate that the
AP values of the YOLOv5-RSC detection model for aeroplane and undercarriage are 92.4% and 80.5%,
respectively. The mAP value is 86.4%, which is 2.0%, 5.4%, and 3.7% higher than the original YOLOv5
algorithm, respectively, with a detection speed reaching 89.2 FPS. These findings indicate that the
model exhibits high detection precision and speed, providing a valuable reference for aeroplane
undercarriage detection.

Keywords: small targets detection; YOLOv5; receptive field block; coordinate attention mechanism;
loss function

1. Introduction

With the gradual development of machine vision, deep learning-based target detec-
tion tasks are gaining attention, supporting various essential field applications such as
face detection, industrial anomaly detection, and gesture recognition. An image sensor,
widely used in digital cameras and other electro-optical devices, converts optical image
information into electrical signals. In image detection tasks, reliance on the camera sensor
captures image data for the corresponding task. Different types of cameras can be chosen
to obtain images with varying resolutions, color information, and other conditions. This
combination not only aids the sensor system in understanding the contents of its monitor-
ing environment more accurately, but also allows for the independent selection of different
image data for corresponding processing. Furthermore, a deep learning image detection
model, capable of identifying unusual activities, can trigger alarms or take appropriate
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measures through the sensor system. Introducing these models into the sensor system
enables faster decision-making, assists in more informed actions, and reduces energy con-
sumption, thereby extending the life of the sensor equipment. The rapid evolution of
artificial intelligence is driving the integration of machine vision and image sensor chips,
giving rise to an “intelligent image sensor” that will shape the pulse and direction of
technological development.

Aeroplanes are crucial in daily travel, cargo transportation, military surveys, and op-
erations. Ensuring aeroplane survivability for safe air travel is a recurring consideration for
engineers. Currently, many airplane crashes occur during takeoff and landing [1]. Whether
or not the undercarriage is properly deployed or folded, and whether or not the undercar-
riage is detached from the fuselage during liftoff and landing, can affect the pilot’s ability
to maneuver the aeroplane properly. As a result, real-time detection of the undercarriage’s
status is a critical consideration. However, the small size of the undercarriage results in
low detection precision and poses a challenge to existing detection algorithms. Effectively
addressing the issue of real-time undercarriage detection for small targets has become an
urgent concern.

With the maturation of computer vision, target detection algorithms are categorized
into two-stage algorithms and one-stage algorithms based on the presence or absence of a
separate candidate frame screening stage. Two-stage algorithms, including the region-based
convolutional network R-CNN [2], fast regional convolutional network Fast R-CNN [3],
faster regional convolutional network Faster R-CNN [4], and mask regional convolutional
network Mask R-CNN [5]. The two-stage algorithm improves the localization precision of
the targets. However, their multiple detection and classification operations require longer
computation times and lower detection speeds. On the other hand, one-stage algorithms,
such as RetinaNet [6], EfficientDet [7], Single-shot Multi-frame Detection (SSD) [8], and You
Only Look Once (YOLO) [9–12], directly output category probability, resulting in high
detection speed.

Deep learning-based target detection algorithms contribute to various applications,
including remote sensing image detection [13–15], defect detection [16,17], targets track-
ing [18,19], and face recognition [20,21]. Among them, the YOLO series of algorithms is the
most widely used. In the medical field, Doniyorjon et al. [22] improved the precision of
wireless endoscope image detection by adding ResNeT to the YOLOv4 backbone network.
Liu [23] used a multiscale fusion network, bidirectional feature pyramid, and YOLOv5-
based EIOU loss function to improve the precision of pulmonary nodule detection in CT
images. In fruit detection, Ji et al. [24] introduced a lightweight network and PAN feature
pyramid in the YOLOv4 algorithm, reducing the model size and improving the speed of
detecting fruits. Xu et al. [25] enhanced the YOLOv5 algorithm by introducing the DIOU
loss function and SE attention mechanism to improve apple detection precision. For remote
sensing monitoring, Li et al. [26] improved the detection precision of small-resolution
images by incorporating an attention mechanism into YOLOv5, a bidirectional feature pyra-
mid, and a small-targets detection layer. In contrast, Su et al. [27] lightened the YOLOv5
module and optimized the loss function to enhance the network’s detection performance
for remote sensing images.

You Only Look Once (YOLO) is a one-stage object detection algorithm that prioritizes
detection speed, leading to low recall. YOLOv1 employs regression to perform direct classi-
fication and prediction tasks using first-order networks. YOLOv2 improves on YOLOv1 by
abandoning GoogleNet, adopting Darknet-19 with fewer convolutions as a feature extrac-
tion network to enhance detection performance, and introducing a priori frame to improve
the recall rate. YOLOv3 further updates the feature extraction network to Darknet-53 with
a multiscale framework, incorporating a residual structure to increase depth and output
three feature maps of different scales for object detection, thereby improving the detection
precision of small targets. YOLOv4 designs a feature extraction network based on the
Darknet53 cross-stage section (CSP) structure to form the backbone network, reducing
computation and enhancing gradient performance. It introduces a spatial pyramid pooling
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module to the last layer of the backbone network to address possible information distortion
during network propagation. Ciou-loss and Mish activation functions are introduced
to enhance detection precision further. In 2020, the Ultralytics team proposed YOLOv5,
achieving a 55.4% mAP index on the MS COCO dataset. This demonstrated stronger
detection performance than YOLOv4 and increased suitability for real-time detection of
aeroplanes and undercarriages. Therefore, this paper proposes the YOLOV5-RSC net model
based on YOLOv5s to improve the detection precision targeting airplanes and landing
gears. The main contributions of this paper are shown as follows:

1. Adding a Receptive Field Block to the backbone network to improve the feature map
receptive field and fully extract multiscale features.

2. Adding a coordinate attention mechanism to the feature fusion network to enhance
the model’s focus on key information and improve the model’s detection precision.

3. Introducing the SIOU loss function to accelerate model convergence and further
improve model detection performance.

4. Construct a dataset to validate the reliability and scientific validity of the improved
model and design multiple sets of ablation experiments to verify the validity of each
module based on the improvement points.

2. Related Work
2.1. Definition of Small Targets and Challenges

With the rapid development of target detection algorithms, their performance and
speed have significantly improved. However, due to the small proportion of objects de-
tected in some images, the lack of sufficient appearance information makes it challenging
for the network to obtain enough feature information when extracting features, ultimately
leading to unsatisfactory detection performance. Detecting small targets remains a chal-
lenging problem in the field of target detection. Currently, two ways of defining small
targets are based on absolute and relative scales. Based on the absolute scale, Torralba’s
team [28] demonstrated through research that, for most images, the pixel size of the image
that people can effectively identify is 32 × 32. It is difficult for people to identify pixels
below this size accurately; therefore, if the pixel size of the image is smaller than 32 × 32, it
is considered a small target. Chen et al. [29] started from the relative scale, arguing that
if the detection targets occupy between 0.08% and 0.58% of the whole image, it is a small
target. Considering that defining small targets based on the relative scale is prone to the
interference of data preprocessing, which has a certain impact on evaluating the detection
performance of the model, this paper starts from the absolute scale and defines image pixels
smaller than 32 × 32 as small targets.

Currently, the problems and challenges faced by target detection algorithms in small
targets detection mainly include the following three points: mainstream detection algo-
rithms are usually for targets above the mesoscale, with less optimization for small targets,
resulting in poor detection performance; the low percentage of small targets pixels makes
it difficult for the network to extract feature information from small target fully; and the
existing dataset has very few small targets, making it difficult to uniformly distribute them
in the dataset, thus affecting the network detection performance.

2.2. Small Targets Detection Methods

For small targets detection, one can start from the input data and use data enhancement
operations, which can increase the number of small and medium targets detected, mainly
including scaling [30], random cropping [31], mosaic enhancement [12] and other methods.
With the help of instance segmentation, Chen et al. [32] proposed a segmentation network
to replicate the target region in context to solve the problem of scale mismatch in the
replication process to improve the data enhancement effect.

Multiscale learning can enhance the network’s ability to link between shallow and deep
information. The FPN feature pyramid network proposed by T. Y. Lin’s team [33] takes into
account that different feature maps correspond to different perceptual fields and express
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varying information. Fusing feature maps of different levels can enhance the network’s
ability to mine features and improve the model’s performance detecting small targets.
In 2014, Goodfellow et al. [34] introduced the generative adversarial network (GAN),
consisting of two mutually adversarial sub-networks: the generator and discriminator
networks. In small target detection, GAN reduces the feature differences between small
and other targets by converting low-resolution targets into corresponding high-resolution
features. This process helps express the feature information of small targets more clearly,
thereby improving the effectiveness of small target detection.

Additionally, due to the design of the anchor frame in the target detection task, the sam-
ples of small and large targets are extremely imbalanced. This imbalance causes the network
to pay too much attention to large targets, neglecting small target detection. Therefore,
the anchor frame-free mechanism has recently become a research hotspot. Yang et al. [35]
proposed a detection method called Representative Points (RepPoints), allowing the net-
work to learn spatial and semantic information automatically, improving the precision of
small target detection. Kong et al. [36] introduced a method to directly predict the probabil-
ity of target existence and the bounding box coordinates. The network gains robustness
and generalization ability for small targets by removing the anchor box’s restriction.

2.3. Problems with Undercarriage Inspection Systems

In aeroplane take-off and landing, its speed dynamically changes, impacting the state
of the undercarriage. If undercarriage information is not timely feedback, the system’s
impact on detection precision will be significant. Hence, the detection system must meet
real-time requirements to deliver prompt information. Different aeroplane types have
distinct rollers, and the structure and size of the aeroplane rollers will affect undercarriage
detection precision, potentially leading to system misjudgment. In addition, the distance
between the camera sensor and the undercarriage is a critical factor influencing detection
precision. As the shooting distance increases, the resolution of the targets of interest in the
image decreases. The lighting changes in the environment become more drastic, reducing
the visibility of the undercarriage in the image. This reduction in visibility prevents the
detection system from accurately capturing the important details of the undercarriage, thus
affecting detection precision. Therefore, a real-time detection system for small targets is
necessary to meet the real-time monitoring requirements of the undercarriage status.

2.4. Research Object

Because no aeroplane type comes into contact with people more often in their daily
lives than passenger aeroplane, this paper mainly focuses on the acquisition of the dataset
and detection of the category of the passenger aeroplane. In this category, the undercarriage
mostly follows a three-point structure, with a length of about 14 m, a width of about 4 m,
and roller diameters of about 400 mm.

3. Methodology
3.1. YOLOV5-RSC Model Structure

The YOLOv5-RSC model consists of the backbone network, feature extraction network,
and detection head. The backbone network includes a convolutional layer, CSP1-X residual
network, and Receptive Field Block, which are responsible for extracting input data features
and increasing network depth. The feature extraction network comprises a convolutional
layer, CSP2-X network, concat module, and Coordinate Attention Mechanism, aiming to
fuse features from the trunk network and enhance network detection performance. The de-
tection head includes three convolutional modules of different sizes designed to output
detection results. Previous efforts in optimizing the YOLO algorithm have focused on
lightweight design, introducing attention mechanisms, and modifying loss functions to
enhance detection precision. However, these optimizations have not significantly improved
the detection of small targets. To address this, this article proposes the YOLOv5-RSC net-
work model specifically to enhance the detection performance of small targets, particularly
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in detecting aeroplane undercarriages. The proposed model introduces a Receptive Field
Block module, utilizing different rates to represent convolutional layer parameters. This
module concatenates outputs of convolutional layers with different sizes and rates to fuse
features and strengthen contextual connections. The coordinate attention mechanism is also
incorporated to improve the network’s focus on key information and suppress irrelevant
details, thereby enhancing detection precision. Ablation experiments are conducted to
determine the optimal insertion position of the coordinate attention mechanism. Finally,
the original bounding box loss function CIOU in the YOLOv5-RSC network is replaced
with SIOU to expedite model convergence and improve precision. The framework of the
improved YOLOv5-RSC model is illustrated in Figure 1.

Figure 1. YOLOv5-RSC structure.

3.2. Receptive Field Block

In order to allow the network to improve the receptive field of each layer of the feature
map while maintaining the same number of parameters and generating a larger resolution
feature map, and to improve the ability of the network to mine fine features of small targets
while also avoiding the confusion of contextual information, Liu et al. [37] proposed the
Receptive Field Block (RFB). The starting point of this paper is to simulate the receptive
field of human vision in order to build a spatial array, and Figure 2 shows the schematic
diagram of RFB.

Figure 2. Receive Field Block schematic diagram.

RFB references the Inception structure; the first layer of each branch is composed of
1 × 1, 3 × 3, 5 × 5 convolutional kernels, and the convolutional layers of different sizes
of convolutional kernels are combined to splice into a multi-branch structure to obtain
different receptive fields and make the network have a multiscale perception of the input
data, which makes it easier to grasp information at different scales; in addition, the Deeplab
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algorithm’s Dilated Convolution is introduced to expand the network’s acceptance domain
while maintaining image resolution, enabling accurate targets positioning while acquiring
multiscale features. After the Dilated convolution processes the data, all branches are
Concated together in the channel dimension and subjected to 1 × 1 convolution. Then,
the data are merged with that of another branch, and finally, output by the RELU activation
layer, and the final output of RFB is concatenated with feature maps of different sizes to
achieve the purpose of feature fusion.

Based on the principle of RFBNet, we introduced it into the YOLOv5-RSC model
proposed in this article, changing the original spatial pyramid pooling module SPPF
to BasicRFB.

3.3. SIOU Loss Function

The loss function measures the difference between the actual variable values and the
predicted values. The SIOU loss function proposed by Rezatofighi et al. [38] takes into
account the vector angle relationship between the prediction frame and the true frame,
and adding an angle penalty term to the loss function allows the prediction frame to deviate
to the nearest axis at a faster rate, thus reducing the inference time and the number of
degrees of freedom. SIOU consists of angle loss, distance loss, shape loss, and IoU loss in
four basic loss functions.

3.3.1. Angle Loss

The angle loss function reduces the number of variables in the distance-related “won-
der” by first pulling the prediction to the closest axis (X/Y axis) and then extrapolating
along this axis to approximate the true frame, as shown in Figure 3.

Figure 3. Angle loss schematic diagram.

When α ≤ π
4 , try to minimize α, otherwise minimize β = π

4 − α; see Equations (1)–(3)
for the calculation.

∧ = 1− 2 sin2
(

arcsin
( ch

σ

)
− π

4

)
(1)

σ =

√(
bgt

cx − bcx

)2
+
(

bgt
cy − bcx

)2
(2)

ch = max
(

bgt
cy, bcy

)
−min

(
bgt

cy, bcy

)
(3)

where σ is the distance between the center point of the real box and the center point of
the predicted box, and ch is the height difference between the center point of the real box
and the center point of the predicted box. bcx and bcy is the center point coordinate of the
prediction box. bgt

cx and bgt
cy is the center point coordinate of the real box.
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3.3.2. Distance Loss

Redefining distance loss on the basis of angular loss.

4 = ∑
t=x,y

(
1− e−γρt) = 2− e−γρx − e−γρy (4)

ρx =

(
bgt

cx − bcx

cw

)2

, ρy =

(
bgt

cy − bcy

ch

)2

, γ = 2−∧ (5)

cw and ch represent the width and height of the minimum outer rectangle of the
real box and the predicted box, respectively. When α → 0, the smaller the weight of ∆,
and when α→ π

4 , the larger the weight of ∆, the greater the angle will make the problem
more difficult, so assign γ a time-limited distance value and the scheme to calculate the
distance between the real frame and its prediction is shown in Figure 4.

Figure 4. Distance loss schematic diagram.

3.3.3. Shape Loss

Ω = ∑
t=w,h

(
1− e−vt)θ

=
(
1− e−vw

)θ(1− e−vh
)θ (6)

vw =
|w− wgt|

max(w, wgt)
, vh =

|h− wgt|
min(h, hgt)

(7)

where w, h, wgt, and hgt are the predicted box’s width and height, respectively. θ controls
the level of attention to shape loss. In order to avoid paying too much attention to shape
loss and impacting the prediction frame’s action, the authors use the genetic algorithm to
give the range of θ parameters as [2, 6].

3.3.4. IoU Loss

IoU is the cross-merge ratio between the real frame and the predicted frame. The prin-
ciple is shown in Figure 5, and the calculation is shown in the equation:

Figure 5. IOU calculation schematic diagram.
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IoU =
|I|
|U| (8)

I and U are the intersection and union regions of the real and predicted boxes, respec-
tively. Combining the four loss functions yields the final loss function Lsiou

box ; see Equation (9).

Lsiou
box = 1− IoU +

Ω +4
2

(9)

3.3.5. Introducing the SIOU Loss Boundary Box Loss Function

The YOLOv5 loss consists of the confidence loss Lobj classification loss Lcls and the
bounding box loss Lbox, and the weighted sum of the three constitutes the final loss; see
Equation (10).

Lall = σ1Lobj + σ2Lcls + σ3Lbox (10)

where σ1 σ2 σ3 is the weight coefficient of the corresponding loss. Where the confidence
loss is obtained from a binary cross-entropy calculation of the confidence score q0 of the
prediction frame and the iou values qiou of the prediction frame and the true frame; see
Equation (11).

Lobj(q0, qiou) = BCEsig
obj

(
q0, qiou; wobj

)
(11)

BCE is the cross entropy function. The classification loss and confidence loss are
similar. See Equation (12).

Lcls
(
ap, agt

)
= BCEsig

cls
(
ap, agt; wcls

)
(12)

YOLOv5’s bounding box loss is CIOU, which introduces the concept of bounding box
aspect ratio based on DIOU, considering the loss of length and width, making the predicted
box more in line with the true box, as calculated below.

Lciou
box = 1− CIOU = 1− IoU +

ρ2(b, bgt)
c2 + αv (13)

v =
π

4

(
arctan

wgt

hgt − arctan
w
h

)2

(14)

α =
v

(1− IoU) + v
(15)

where
ρ2(b,bgt)

c2 is a regularization term introduced from DIOU to prevent overfitting of
the model. C is the Euclidean distance between the two diagonal vertices of the smallest
rectangular frame, v is used to measure the consistency of aspect ratio, and α is the weight
function. This paper replaces the CIOU loss with SIOU loss to accelerate the network
convergence and improve the network detection performance for stronger generalization.
Equation (16) reveals the network’s final loss function.

L
′
all = σ1Lobj + σ2Lcls + σsiouLsiou

box (16)

3.4. Coordinate Attention Mechanism
3.4.1. Principle of Coordinate Attention Mechanism

The attention mechanism has been developed from human vision research and is
now widely used in computer vision. Its main role is to help the network focus on critical
information with high weight and suppress irrelevant information with low weight, which
solves the information overload problem that may occur in the model and improves the
efficiency of the network processing task. In order to solve the problem whereby the
Convolutional Block Attention Module (CBAM) [39] is weak in extracting information
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from long distances, the Coordinate Attention Mechanism (CA) proposed by Hou et al. [40]
The coordinate attention mechanism can capture the direction and coordinate information
across channels, which helps the network to locate the object of interest more accurately and
improves the network detection precision. The overall structure of CA is shown in Figure 6.

Figure 6. Coordinate attention structure diagram.

CA encodes channel relationships and long-term dependencies through the location
information of data, which can be divided into two steps: Coordinate information embed-
ding and Coordinate Attention generation. In Coordinate information embedding, global
pooling is used to globally encode spatial information, considering that global pooling
will compress global spatial information into channel descriptors and location information
cannot be preserved in order for the attention module to capture remote spatial interactions
with precise location information, CA borrows Squeeze from SE Block; see Equation (17).
Additionally, decompose global pooling to derive a pair of direction-aware feature maps,
thereby enhancing the network’s precision in pinpointing the targets of interest.

Zc =
1

HW

H

∑
i=1

W

∑
j=1

xc(i, j) (17)

For input X, first encode each channel along the horizontal and vertical coordinates
using a pooling kernel of size (H, 1) or (1, W) to obtain the feature maps in the height and
width directions, respectively. See Equations (18) and (19).

Zh
c (h) =

1
W ∑

0≤i≤W
xc(h, j) (18)

Zw
c (w) =

1
H ∑

0≤j≤H
xc(j, w) (19)

where Zc indicates the output associated with the cth channel. For the Coordinate Attention
generation operation, the two feature maps from the previous step are first concatenated
according to Equation (20). Their size is reduced to C/r using a 1 × 1 size convolution
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kernel. After batch normalization, the feature map F1 is fed into the activation function to
obtain a 1× (W + H)× C/r size feature map.

f = δ
(

F1

([
zh, zw

]))
(20)

where f ∈ RC/r(H+W) denotes the feature mapping, r represents the shrinkage rate, δ is the
activation function, and [. . . , . . . ] denotes the concatenation along the spatial dimension. f is
then decomposed into two tensors f h and f w by spatial orientation. Two 1 × 1 convolutions
FH and FW are used to act on f h and f w, respectively, to obtain a tensor with the same
number of channels as the input X, which is transported to Sigmoid activation function to
obtain the attention weights of height and width; see Equations (21) and (22).

gh = σ
(

Fh

(
f h
))

(21)

gw = σ(Fw( f w)) (22)

Finally, the feature map Y with height and width attention weights is obtained by
multiplying and weighting Equation (23).

yc(i, j) = xc(i, j)gh
c (i)gw

c (j) (23)

3.4.2. Adding Coordinate Attention

The coordinate attention is introduced into the feature fusion module in the YOLOv5
algorithm to improve the network’s attention to the object of interest and reduce the weight
of irrelevant factors in the image to improve the model detection performance, combined
with the study of coordinate attention insertion positions by Guo et al. [41] In order to
mitigate the overfitting phenomenon arising from insufficient information generalization
by the model’s channel weights and spatial weights, the insertion positions have been
stratified into three distinct groups for comprehensive examination in this study. Figure 7
illustrates the insertion positions, while Table 1 presents the experimental results.

Figure 7. Map of the insertion position of the coordinates attention. (a): Insert at the front of the
network; (b): Insert in the middle of the network; (c): Insert at the end of the network.
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Table 1. Experimental results of ablation of coordinate attention.

Experimental Group Precision Recall mAP@0.5

86.9% 80.0% 82.7%
a 86.7% 79.5% 82.7%
b 87.7% 80.5% 84.8%
c 86.5% 80.3% 84.4%

Based on the experimental results, we opted for group b as the insertion location for
Coordinate Attention, given its substantial enhancement in the model’s detection precision.

4. Experiments and Results
4.1. Dataset

The image data used in this paper is sourced from various aeroplane categories within
the COCO128 and VOC datasets, along with images captured at airports, amounting to
3000 images. Through data augmentation, the dataset was expanded to include 10,000 im-
ages. We utilized the image annotation tool LabelImg to annotate the aeroplane and
undercarriage data. The annotated data were divided into training, validation, and test
sets at 6:2:2.

4.2. Experimental Environment and Parameter Configuration

This paper implemented the YOLOv5-RSC model using the PyTorch 1.12.0 framework,
leveraging CUDA version 10.2 for accelerated training. The programming language utilized
was Python-3.7, and the experiments were executed on Ubuntu 18.04, employing a CPU
model of Core i7 6850 K and a GPU configuration consisting of two GeForce GTX 1080Ti
with 11 GB of video memory. In the experiment, YOLOv5s.pt was selected as the pre-
training weight, hyperparameter evolution was enabled, and the input image size was set
to 640 × 640. The initial learning rate, momentum, epoch, and batch size were configured
as 0.01, 0.937, 300, and 32, respectively. After conducting 300 training rounds, we acquired
the training results for the YOLOv5-RSC model, with the corresponding metrics depicted
in Figure 8.

Figure 8. Training results’ performance metrics.

4.3. Evaluation Indicators

The evaluation metrics in this paper include four categories: Precision (Pr), Recall
(Re), Average Precision (AP), and Mean Average Precision (mAP). Before introducing the
metrics, the following concepts are given according to the confusion matrix (see Table 2):
true positive (TP) is the number of correctly assigned positive samples by the classifier,
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true negative (TN) is the number of correctly assigned negative samples, false positive (FP)
is the number of misclassified positive samples, and false negative (FN) is the number of
misclassified negative samples.

Table 2. Confusion matrix.

True False

Positive TP FP
Negative TN FN

Precision represents the proportion of samples with positive outcomes that are true
positive cases, and recall represents the proportion of samples with true positive outcomes
that are predicted positive cases, both defined according to the following formula.

Pr =
TP

FP + TP
(24)

Re =
TP

FN + TP
(25)

Considering that precision and recall have an interactive relationship and cannot be
directly involved in the evaluation, the concepts of Average Precision (AP) and Mean
Average Precision (mAP) are introduced, and the higher the two indicators are, the better
the detection is; see Equations (26) and (27).

AP =
∫ 1

0
Pr(Re)d(Re) (26)

MAP =
1
N

N

∑
i=1

APi (27)

where N is the number of detection categories. Frames Per Second, (FPS) indicates the
number of image frames that a system can process and display in one second and is a
common measure of real-time performance in areas such as graphics rendering and video
processing. A higher FPS means the system can process images faster, thus providing a
smoother visual experience.

4.4. Comparison Experiments

To validate the reliability of the model proposed in this paper, the YOLOv5-RSC
model was compared with several target detection algorithms on the same dataset. These
algorithms include SSD, Faster R-CNN, RetinaNet, YOLOv4, and YOLOv5, using evalu-
ation metrics such as AP values for aeroplane and undercarriage, mAP values, and FPS.
The experimental results are presented in Table 3.

Table 3. Performance comparison of different models.

Model Aeroplane
/AP

Undercarriage
/AP mAP@0.5 FPS/

(Frame/s)

Faster R-CNN 60.8% 58.6% 59.7% 7.3
SSD 64.4% 59.8% 62.1% 20.6
RetinaNet 68.1% 60.4% 64.3% 25.4
YOLOv4 76.7% 62.3% 69.5% 76.3
YOLOv5s 90.4% 75.1% 82.7% 100.0
YOLOv5-RSC 92.4% 80.5% 86.4% 89.2
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Based on the data results, it is evident that the YOLO series algorithms outperform
other algorithms in terms of detection precision and computational speed. The mAP of the
YOLOv5s model is 13.2% higher than that of the YOLOv4 algorithm, and the detection
speed is increased by 30.0%. With the addition of the coordinate attention mechanism,
perceptual wild block, and SIOU loss function, aeroplane and undercarriage precision
are enhanced. Particularly noteworthy is the 5.4% improvement in the AP value of the
undercarriage compared to the original YOLOv5 algorithm, indicating that the YOLOv5-
RSC model exhibits improved performance in small target detection. Considering the
Persistence of Vision effect experienced by the human eye, films are typically presented at
24 frames per second, a rate considered adequate for human visual perception. However,
the YOLOv5-RSC model proposed in this article achieves FPS values close to 90 during
detection, and is unaffected by computational delays in daily use. Therefore, it can meet
the real-time requirements of the detection system. We compared the data of the improved
model with the undercarriage detection model proposed by Gao et al. [42]. It is evident
from the experimental results that our proposed model surpasses Gao’s model in terms
of AP, mAP, and FPS metrics, demonstrating the effectiveness of YOLOv5-RSC. Table 4
presents the comparative data.

Table 4. Comparison results with other undercarriage detection model.

Model Aeroplane
/AP

Undercarriage
/AP mAP@0.5 FPS/

(Frame/s)

Gao’s model 76.0% 68.0% 71.9% 20.0
Our model 92.4% 80.5% 86.4% 89.2

4.5. Ablation Experiments

The model in this paper performs ablation experiments on the dataset to verify the
effectiveness of each module and module combination on the model, and the specific
experimental data are shown in Table 5.

Table 5. Results of ablation experiments.

Model Precision Recall mAP@0.5 FPS/(Frame/s)

YOLOv5s 86.9% 80.0% 82.7% 100.0
YOLOv5 + BasicRFB 87.7% 80.9% 85.0% 93.1
YOLOv5 + SIOU 87.5% 81.1% 84.7% 100.0
YOLOv5 + CA 87.7% 80.5% 84.8% 94.3
YOLOv5 + BasicRFB + CA 89.2% 80.5% 86.1% 90.0
YOLOv5 + BasicRFB + SIOU 88.6% 81.5% 86.0% 92.8
YOLOv5-RSC 89.5% 82.1% 86.4% 89.2

The table shows that the original YOLOv5 model achieved a detection Precision
of 86.9%, recall of 80.0%, mAP of 82.7%, and FPS of 100 frames/s. After incorporat-
ing BasicRFB to enhance the global sensory field size of the network, the model’s Preci-
sion improved by 0.8%, recall by 0.9%, mAP by 2.3%, and detection speed decreased by
6.9 frames/s. The addition of the SIOU loss function and coordinate attention mechanism
individually enhanced the model’s Precision by 0.6% and 0.8%, recall by 1.1% and 0.5%,
and mAP by 2% and 2.1%, indicating that each improvement point contributed to the
enhancement of the model’s detection performance. Subsequent ablation experiments
reveal that the combination of the improved model enhances all model metrics, with a
slight decrease in FPS. Ultimately, the Precision of the YOLOv5-RSC model proposed in this
article was 89.5%, the recall rate was 82.1%, and the mAP was 86.4%. Compared with the
original YOLOv5s model, each indicator improved by 2.6%, 2.1%, and 3.7%, respectively.
Although the FPS is reduced by 10.8 frames/s, it can still meet the real-time targeting
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requirements for aeroplane and undercarriage. The detection performance of YOLOv5-RSC
surpasses the original YOLOv5 algorithm when considering all metrics together.

4.6. Analysis of Test Results

This paper tests several images with diverse backgrounds to validate the model’s
effectiveness. Figure 9 illustrates the detection of long-distance targets, from which it can be
seen that YOLOv5-RSC detects the undercarriage that is not detected by the original model,
and the confidence level of the targets is higher than that of the original model, which
improves the performance of long-distance undercarriage detection. Figure 10 shows the
comparative detection of the aeroplane during landing. Due to the influence of factors
such as lighting, the original model did not accurately detect the nose undercarriage with
higher exposure. In contrast, the improved model saw all undercarriages with better
precision location. Figure 11 shows the detection of an aeroplane during take-off, where the
optimized model detects targets not detected by the original model with higher confidence.
Figure 12 shows the detection inside the airfield, that YOLOv5-RSC did not misdetect the
tires of the tractor, and that the detection precision has been improved, proving that the
model proposed in this paper has stronger robustness and generalization ability.

(a) (b)

Figure 9. Long-range targets detection. (a) YOLOv5 detection results; (b) YOLOv5-RSC detection results.

(a) (b)

Figure 10. Aeroplane detection on landing. (a) YOLOv5 detection results; (b) YOLOv5-RSC detection results.

(a) (b)

Figure 11. Aeroplane detection at take-off. (a) YOLOv5 detection results; (b) YOLOv5-RSC detec-
tion results.
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(a) (b)

Figure 12. Detection inside the airfield. (a) YOLOv5 detection results; (b) YOLOv5-RSC detection results.

In order to verify the actual detection effect of the YOLOv5-RSC model, this paper
uses a Basler camera, SPACECOM lens, and two-axis gimbal to build an undercarriage
detection system based on the GPU mentioned above, CPU, and other hardware, as shown
in Figure 13. Utilizing this system to implement the enhanced model in real-world scenarios,
we present the experimental results in Figures 14 and 15. From the experimental results,
it can be seen that the detection precision of the improved model is higher than that
of the original model, and it can also detect that the original model can not detect the
targets. The superiority of the YOLOv5-RSC model over the original model is evident in
both evaluation indices and practical applications. It has stronger generalization ability,
robustness in detecting small and dense targets, and stronger detection performance.

Figure 13. Undercarriage detection system.

(a) (b)

Figure 14. Close range detection. (a) YOLOv5 test results; (b) YOLOv5-RSC test results.
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(a) (b)

Figure 15. Medium and long distance detection. (a) YOLOv5 test results; (b) YOLOv5-RSC test results.

5. Conclusions

This study presents an aeroplane and undercarriage detection model, YOLOv5-RSC,
which builds upon the improved YOLOv5 algorithm. We seamlessly integrate this model
with the Basler Camera Sensor Experimental Platform, aiming to tackle the challenges
inherent in detecting small target aeroplanes. Firstly, we incorporate RFBNet into the
feature extraction network to enhance the network’s ability to extract deep features and
generate more robust features. Secondly, we introduce a coordinate attention mechanism
to the feature fusion network, allowing it to extract key information from the image while
disregarding irrelevant details. Finally, the SIOU bounding box loss function is introduced
to expedite model convergence and enhance detection efficiency. To assess the model’s
effectiveness, we curate aeroplane and undercarriage datasets using the data enhancement
and annotation tool LabelImg. Subsequently, we conduct ablation experiments and com-
parison studies with other classical deep learning detection algorithms. The experimental
results reveal that the YOLOv5-RSC model proposed in this paper achieves a precision and
recall rate of 89.5% and 82.1%, respectively, an mAP of 86.4%, and an FPS of 89.2. These
metrics significantly surpass those of the SSD and Faster R-CNN algorithms in terms of per-
formance. Compared with the original YOLOv5 algorithm, the FPS has decreased by 10.8,
but the other indicators show improvement. The results affirm that the model demonstrates
robust detection capabilities and performs real-time detection tasks, signifying practical
significance. Additionally, it offers insights into integrating sensor technology with image
detection tasks to create an “intelligent image sensor”.
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