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Abstract: Medical image analysis forms the basis of image-guided surgery (IGS) and many of its
fundamental tasks. Driven by the growing number of medical imaging modalities, the research
community of medical imaging has developed methods and achieved functionality breakthroughs.
However, with the overwhelming pool of information in the literature, it has become increasingly
challenging for researchers to extract context-relevant information for specific applications, especially
when many widely used methods exist in a variety of versions optimized for their respective applica-
tion domains. By being further equipped with sophisticated three-dimensional (3D) medical image
visualization and digital reality technology, medical experts could enhance their performance capabil-
ities in IGS by multiple folds. The goal of this narrative review is to organize the key components of
IGS in the aspects of medical image processing and visualization with a new perspective and insights.
The literature search was conducted using mainstream academic search engines with a combination
of keywords relevant to the field up until mid-2022. This survey systemically summarizes the basic,
mainstream, and state-of-the-art medical image processing methods as well as how visualization
technology like augmented/mixed/virtual reality (AR/MR/VR) are enhancing performance in IGS.
Further, we hope that this survey will shed some light on the future of IGS in the face of challenges
and opportunities for the research directions of medical image processing and visualization.

Keywords: image-guided surgery; medical image processing; 3D visual interface; augmented/mixed/
virtual reality; surgical navigation

1. Introduction

Image-guided surgery (IGS) is a form of computer-assisted navigation surgery that
focuses on processing image data and converting it into information for surgical systems
or for visual displaying in the surgeon’s view. This process involves the timely tracking
of targeted sites on the patient and the visualization of surgical tool motion, usually
guided by a combination of a preoperative surgical plan and model with intraoperative
imaging and sensing [1]. This innovative technology has a huge market potential, as it
is expected to reach a value of USD 5.5 billion by 2028, growing at a compound annual
growth rate of 5.4% during the forecast period [2]. The subject of IGS technology has
substantial clinical relevance and is especially paramount to the development of minimally
invasive procedures. While the continuous quest of improving surgical outcomes has led
to rapid progress in sophisticated surgical techniques, characterized by less and smaller
incisions to minimize the invasiveness of the procedures, its limited and non-direct visual
access are inevitably making the procedures harder to perform. IGS technology aims at
addressing these practical challenges by providing the surgeon with visual information
augmentation from pre- and intraoperative imaging. By using fluorescence imaging during
surgery, surgeons can see tumors and/or healthy tissues around them in real time, which
helps them to remove tumors more accurately and avoid any mistake detrimental to the
patients [3].
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Medical image processing is an essential step that obtains and manipulates digital
images of the patient body for medical diagnostic and treatment purposes. Medical image
processing includes the processes of enhancing, segmenting, and registering the medical
images using various algorithms and techniques. Image enhancement improves the quality
and contrast of the images by removing noise, artifacts, or distortions. Image segmentation
partitions the images into regions of interest, such as the organs, tissues, or lesions. Image
registration aligns and fuses multiple images from different modalities or time points.
The image processing pipeline is extremely crucial for IGS, which includes the use of
preoperative and intraoperative images to guide surgical instruments and improve surgical
outcomes. However, for the processed medical image data to be useful in IGS and translated
to treatment benefits, the data need to be well visualized by surgeons. Image visualization
displays intuitive images in two-dimensional (2D) or three-dimensional (3D) formats that
can be interacted with by the user.

Medical image visualization is the process of presenting complex and multidimen-
sional data in a clear and understandable way that can support clinical decision making
and research. One of the challenges of medical image visualization is creating realistic and
interactive representations of the data that can enhance the user’s experience and under-
standing. Immersive technology, such as augmented/mixed/virtual reality (AR/MR/VR),
is a promising solution that can provide a sense of presence and immersion in a virtual or
augmented environment. It differs in the views of the user. AR gives a view of the real
world with an overlay of digital elements. VR gives a view of a fully immersive digital
environment and the user can interact with it [4]. MR is a combination of AR and VR such
that the user, real world, and virtual reality can interact with each other in real time [5].
Immersive technology has been integrated with surgical workflows for various purposes,
such as preoperative planning, intraoperative navigation, and surgical training. However,
there are also limitations and challenges that need to be addressed, such as user interaction,
data quality, ethical issues, and technical feasibility.

Despite representative reviews and surveys in IGS being widely available, the focuses
are typically specific to the surgical procedures or the organs being operated on. Our
review focuses on analyzing navigation systems in general across a representative range of
applications. For example, Ryan et al. evaluated IGN’s value in improving surgical accuracy
and clinical outcomes specifically in spinal surgery [6]. Donovan et al. summarized current
and developing techniques in surgical navigation for head and neck surgery [7]. DeLong
et al. assessed the status of navigation in craniofacial surgery [8]. Du et al. performed
a meta-analysis on the variation in pedicle screw insertion among 3D FluoroNav, 2D
FluoroNav, and computed tomography-based navigation systems [9]. Although a few
reviews have also discussed the navigation system in general as a whole, there is an
inadequate number of reviews addressing and discussing the process methodology. Uli
Mezger et al. reviewed a short history and the evolution of surgical navigation, as well as
technical aspects and clinical benefits [10]. Arthur Randolph et al. reviewed equipment and
operative setups [1]. Unlike these reviews, our review focuses on analyzing the methods
used in image processing. It is important to note that the effectiveness and applicability of
these methods may vary depending on specific use cases. For this reason, it is not in the
scope of interest of this narrative review to compare the performance of existing methods.

Visualization techniques are drawing much attention for their intuitive interpretation
of and including interaction with visual information. The focus of our review is not
to summarize the technology or details of specific techniques; rather, we focused on
the benefits of intuitive 3D information and the new visualization interfaces. Interested
readers can refer to Preim’s review [11] for perceptually motivated 3D medical image data
visualization and to Zhou’s review [12] for different types of visualization techniques based
on data types, modalities, and applications.

Clinicians are typically interested in the kind of equipment and the methods that
contribute to the setting up and realization of an effective navigation system. Available
resources in the literature typically focus on the technical details of the imaging mechanism
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and principles which are often not well streamlined towards information retrieval for
readers in the medical domain. In addition, there are promising technologies that have
not yet been well introduced to medical communities like the AR/MR/VR technologies,
which enrich the effects of existing image modalities and methods of viewing in IGS.
This narrative review aims to fill the gap between the current system and MIA methods
including a timely discussion of frontier technologies like the AR/MR/VR interface in the
application of IGS.

The whole pipeline for the navigation system follows the processing of medical image
data streams. Figure 1 shows the workflows that the image data stream goes through and
how these workflows relate to each other in a navigation system. We also divided the
surgical navigation system into five parts: tracking, visualization, intervention (subjects
and the environment), operation (medical team and robotic systems), and imaging (medical
image modalities), as shown in Figure 2. It provides an abstract image of a surgical
navigation system, and we will use cases to show what methods they used and how they
set up a surgical navigation system in the following sections. Methods of image data
processes used in navigation systems will be introduced in Section 3.1. Methods and
interfaces of visualization will be introduced in Section 3.2.
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2. Materials and Methods

This narrative review was performed on publications between 2013 and 2023 using the
databases Web of Science™, Scopus, and the IEEE Xplore® Digital Library. The search string
and number of papers are listed in Table 1. For IEEE Xplore®, the filters of “2013–2023”,
“Conferences” and “Journals” were used. These papers were further filtered by exclusion
criteria: (1) no English version; (2) duplicated; (3) irrelevant; and (4) unavailable. We
also applied a snowballing search methodology using the references cited in the articles
identified in the literature search. There were 39 representative papers with a complete
navigation system between 2019 and 2022, as summarized in Section 3.2. Additional papers
on classical image processing techniques like segmentation and 3D reconstruction before
2013 were also included.

Table 1. List of Search Strings and Databases.

Database Search String Number

Web of Science™

(TS = (surgical navigation)) AND ((KP = (surgical
navigation system)) OR (KP = (image guided surgery))

OR (KP = (computer assisted surgery)) OR
(KP = (virtual reality)) OR (KP = (augmented reality))

OR (KP = (mixed reality))OR (KP = (3D))) and
Preprint Citation Index (Exclude—Database)

597

Scopus

((TITLE-ABS-KEY(“surgical navigation”)) AND
((KEY(“surgical navigation system”)) OR

(KEY(“image guided surgery”)) OR (KEY(“computer
assisted surgery”)) OR (KEY(“virtual reality”)) OR

(KEY(“augmented reality”)) OR (KEY(“mixed
reality”)) OR (KEY(“3D”))) AND PUBYEAR > 2012

AND PUBYEAR < 2024 AND (LIMIT-TO
(SUBJAREA,”MEDI”) OR LIMIT-TO
(SUBJAREA,”COMP”) OR LIMIT-TO

(SUBJAREA,”ENGI”)) AND (LIMIT-TO
(DOCTYPE,”ar”) OR LIMIT-TO (DOCTYPE,”cp”)))

1594

IEEE Xplore®

((“surgical navigation”) AND ((“surgical navigation
system”) OR (“image guided surgery”) OR

(“computer assisted surgery”) OR (“virtual reality) OR
(“augmented reality) OR (“mixed reality”) OR (“3D”)))

146

3. Results
3.1. Medical Image Processing

Table 2 shows the summary of methods used in the segmentation, tracking, and
registration part of surgical navigation systems. For segmentation, traditional methods and
learning-based methods are both widely used while some auto-segmentation frameworks
are becoming popular. For tracking, an electromagnetic tracker (EMT) and optical tracking
system (OTS) are mostly used while some researchers have tried learning-based methods
or SLAM-based methods. For registration, extrinsic methods like fiducial markers or
landmarks and intrinsic methods like iterative closest point (ICP) or coherent point drift
(CPD) are the main methods.

Table 2. Summary of Categorized Methods in Surgical Navigation Systems.

Paper Segmentation Tracking Registration

[13] No EMT 1 Rigid landmark
[14] 3D Slicer 6 EMT PDM 2

[15] Threshold EMT ICP 3/B-Spline
[16–20] No OTS 4 Fiducial markers

[21] 3D Slicer No Fiducial markers
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Table 2. Cont.

Paper Segmentation Tracking Registration

[22] Yes No ICP
[23] 3D Slicer OTS Surface-matching
[24] Learning-based No ICP
[25] No Learning-based Learning-based
[26] Learning-based No No

[27,28] Yes OTS Fiducial markers
[29] Threshold/Region growing OTS ICP
[30] Region growing Visual–inertial stereo slam ICP
[31] Threshold Learning-based Super4PCS [32]
[33] Yes OTS ICP
[34] 3D Slicer EMT Fiducial markers
[35] Mimics 6 OTS Anatomical landmark
[36] Manual No ICP
[37] No Depth estimation Learning-based [38]
[39] EndoSize 6 No Rigid intensity-based
[40] Yes EMT ICP
[41] Threshold OTS ICP
[42] 3D Slicer/Learning-based No ICP and CPD 5

[43] Yes Visual SLAM Visual SLAM
1 EMT: electromagnetic tracker. 2 PDM: Philips Disease Management. 3 ICP: iterative closest point. 4 OTS: optical
tracking system. 5 CPD: coherent point drift. 6 Public software: 3D Slicer, Mimics, EndoSize.

3.1.1. Segmentation

Medical image segmentation is a process of dividing medical images into regions or
objects of interest, such as the organs, bones, tumors, etc. It has many applications in clinical
quantification, therapy, and surgical planning. Various methods have been proposed for
medical image segmentation, including traditional methods based on boundary extraction,
thresholding, and region growing [44–46], which are still popular among researchers.
However, medical image segmentation faces some unique challenges:

• A lack of annotated data: Medical images are often scarce and expensive to label by
experts, which limits the availability of training data for supervised learning methods.

• Inhomogeneous intensity: Medical images may have different contrast, brightness,
noise, and artifacts depending on the imaging modality, device, and settings, which
make it hard to apply a single threshold or feature extraction method across differ-
ent images.

• Vast memory usage: Medical images are often high-resolution and 3D, which requires
a large amount of memory and computational resources to process and store.

To address the above listed challenges, some researchers have proposed a multi-
agent system (MAS). By forming a collection of individual agents that use the appropriate
methods for different targets, MAS can handle complex segmentation problems. For
example, Chitsaz et al. proposed a MAS composed of a moderator agent and several local
agents that handle thresholding methods to segment CT images [47]. Bennai et al. proposed
two organizations of agents to carry out region growing and refinement to segment tumor-
in-brain MR images [48]. Moreover, due to the locality and stochasticity of local agents
and the cooperation among them, the MAS approach is generally more robust than single-
method approaches. The potential of handling a large number of images allows for fast
segmentation. However, MAS usually requires prior knowledge and parameter estimation
to initialize the agents. Some improved approaches can avoid prior knowledge [49–52] or
parameters estimation [53,54]. Moreover, some research groups have also combined the
MAS idea with reinforcement learning (RL). Liao et al. modeled the dynamic process of
iterative interactive image segmentation as a Markov decision process and solved it with a
multi-agent RL, achieving state-of-the-art results with the advantages of less interactions
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and a faster convergence [55]. Allinoui et al. proposed a mask extraction method based on
multi-agent deep reinforcement learning and showed convincing results on CT images [56].

In recent years, thanks to the fast development of machine learning, most researchers
have focused on learning-based methods that use deep neural networks to automatically
learn features and segmentations from data [57–62]. Among these methods, U-Net is one
of the most popular and widely used architectures for medical image segmentation due to
its flexibility, optimized modular design, and success in all medical image modalities [57].
Several extensions and variants of U-Net have been developed to improve its performance
and adaptability for different tasks and modalities [63,64]. Other networks, such as graph
convolutional networks (GCNs) [58], variational autoencoders (VAEs) [59], recurrent neural
networks (RNNs) [60,61], class activation maps (CAMs) [62], and so on are also used due
to their advantages and applicability. In general, learning-based methods have certain
advantages in segmentation accuracy and speed but also face limitations due to the scarcity
of existing medical image datasets [65].

Moreover, some open-source frameworks have been proposed to facilitate the imple-
mentation and application of medical image segmentation methods for researchers and
clinicians who lack experience in this field. For example, NiftyNet [66] is a TensorFlow-
based framework that can perform segmentation on CT images; MIScnn [67] is a Python--
based framework that supports state-of-the-art deep learning models for medical image
segmentation; and 3DSlicer [34,35,68] is a software platform that can deal with 3D data or
render 2D data into 3D.

3.1.2. Object Tracking

Object tracking is essential for IGS that involves spatial localization of preoperative
and intraoperative image data temporally. It can help locate the relative positions of
surgeons, surgical tools, patients, and objects of interest, such as the diseased area and
the surgical instruments, during IGS. External tracker tools, such as OTS for ex vivo
tracking and electromagnetic tracking systems for in vivo tracking, are commonly used
for this purpose. Optical tracking tools use an illuminator and passive marker spheres
with unique retro-reflective surfaces that can be attached to any target and detected by
the illuminator. Typically, the OTS will assign a frame of reference to facilitate calibration
between devices’ coordinates and perform image-to-target registration [27,29,31,69]. By
generating a defined EM field in which EM micro-sensors are tracked, rigid, and flexible,
medical instruments embedded within these sensors can be tracked without obstruction.
Researchers have usually used EMT for deep in vivo organ tracking and movement of
the transducer [40,70–73]. By using external tracker tools, object tracking can achieve
millimeter or sub-millimeter accuracy, but additional tools could mean limitations in
medical use or incur extra expenses.

Image-based object tracking is another approach that is widely used. It involves detect-
ing and tracking objects in a sequence of images over time. Many features, strategies and
state-of-the-art camera-based visual tracking methods have been reviewed and surveyed
in [74–79]. In the medical domain, vision-based and marker-less surgical tool detection
and tracking methods were reviewed in [80–82]. Other object tracking methods based
on intraoperative imaging modalities include fluoroscopy-based [83,84], ultrasonography-
based [85,86], and hybrid multimodalities [87,88], which combine ultrasound and endo-
scopic vision-based tracking as shown in Figure 3. In [88], the more accurate ultrasound-
based localization is used for less frequent initialization and reinitialization while endo-
scopic camera-based tracking is used for more timely motion tracking. This hybrid form of
motion tracking overcomes the inevitable cumulative error associated with vision-based
pose estimation of a moving endoscope camera by triggering 3D ultrasound reinitialization,
which can be conducted at less frequent intervals due to slower but cumulative error-free
localization.
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However, image-based object tracking still faces challenges such as low image quality,
object motion, and occlusion. High distortion or artifacts of medical images pose greater
challenges in object recognition, especially, for medical purposes where requirements for
accuracy, reliability, and effectiveness are highly demanding. Some examples of these
methods have used deep learning to detect and segment surgical tools in endoscopic im-
ages [89], convolutional neural networks (ConvNets) to track surgical tools in laparoscopic
videos [90], or a combination of a particle filter and embedded deformation to track surgical
tools in stereo endoscopic images [91]. Although there is room for improvement in terms of
accuracy and real-time performance, the application of state-of-the-art image-based object
tracking methods in surgical navigation is still an open research problem.

3.1.3. Registration and Fusion

Registration is a key process in medical image analysis that involves aligning different
coordinate systems that may arise from different perspectives, modalities, or techniques
of data acquisition. Depending on whether the alignment can be achieved by a simple
transformation matrix or not, registration can be classified into rigid or non-rigid types.
Whereas rigid transformation can only handle rotation, scaling, and translation, non-
rigid transformation allows for local warping and deformation of the images to achieve
alignment. The image registration procedure involves finding relevant features in both
volumes, measuring their alignment with a similarity metric, and searching for the optimal
transformation to bring them into spatial alignment. And that is where deep learning comes
in. Refs. [92,93] surveyed the recent advances and challenges of deep learning methods for
medical image registration. Despite the lack of large datasets and a robust similarity metric
for multimodal applications, researchers have recently used deep learning as a powerful
and convenient tool for fast and automatic registration. For example, Balakrishnan et al.
proposed VoxelMorph, a fast and accurate deep learning method for deformable image
registration that learns a function to map image pairs to deformation fields, and can be
trained in an unsupervised or semi-supervised way on large datasets and rich deformation
models [94]. Vos et al. introduced the Deep Learning Image Registration (DLIR) framework,
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a novel method for unsupervised training of ConvNets for affine and deformable image
registration using image similarity as the objective function. The DLIR framework can
perform coarse-to-fine registration of unseen image pairs with high speed and accuracy, as
demonstrated on cardiac cine MRI and chest CT data [95].

The main goal of registration is to find correspondences between features that represent
the same anatomical or functional structures in different coordinate systems. Fusion is
a related process that involves displaying data from different coordinate systems in a
common one for visualization or analysis purposes. Often, registration and fusion are
performed simultaneously to facilitate the integration of multimodal data. For example,
Chen et al. used a unified variational model to fuse a high-resolution panchromatic image
and a low-resolution multispectral image into the same geographical location [96].

In a surgical navigation system, surgeons require high accuracy, high confidence, and
fast and robust registration methods. And one of the challenges of registration in surgery
is to deal with non-rigid deformations that may occur during surgery or due to patient
movement. To overcome this difficulty, researchers often use landmarks as salient features
that can be easily identified and matched in different images. For instance, Jasper et al.
proposed a navigation system that used landmark registration between a preoperative 3D
model and an intraoperative ultrasound image to achieve active liver compensation with
an accuracy below 10 mm [70]. Another example of using landmarks is the OTS, described
in Section 3.1.2, which can also provide the landmark function. As shown in Figure 4, rigid
point-based registration is performed between the physical space and the image space by
using the OTS to track the surgical tool and measure the points in the physical space, and
by using software to segment the points in the image space. For example, Sugino et al. used
the NDI system and 3D Slicer to set up a surgical navigation system that collected data [18].
However, landmarks are hard to place in some conditions, such as the brain or the lung.
Non-rigid registration between intraoperative images is required and also a challenging
problem in medical image analysis, especially for organs that undergo large deformations
during surgery.
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3.1.4. Planning

One of the essential tasks for surgeons, especially in craniofacial procedures, is to
obtain high-quality information on the patient’s preoperative anatomy that can help them
strategize and plan the surgical procedure accurately [97]. For instance, in tumor surgery, it
is crucial to view the structure and morphology of the hepatic vessels and their relation
to the tumors [98]. This 3D information can be derived from direct clinical measurements
taken from physical models [99] or from digital models reconstructed from volumetric
images such as CT or MR. In order to achieve this, segmentation, tracking, and registration
techniques are employed to enable surgeons to see the surgical tools overlaid on the
patient’s anatomy and even to see through obstructions and locate the targets. Based on
this information, surgeons can plan the optimal route for surgery preoperatively and guide
the surgical tool intraoperatively with the assistance of computer software. For example,
Han et al. presented a method to automatically plan and guide screw placement in pelvic
surgery using shape models and augmented fluoroscopy [100]. Li et al. presented a method
to automatically plan screw placement in shoulder joint replacement using cone space and
bone density criteria [101]. Surgical planning can improve the accuracy, safety, efficiency,
and quality of surgery, especially for complex or minimally invasive cases. However, it can
be time-consuming, costly, and technically challenging to produce accurate and reliable
surgical plans because it usually requires a physical model to simulate the surgery. For
example, Sternheim et al. used a Sawbones tumor model to simulate the resection of a
primary bone sarcoma and reduced the risk of a positive margin resection [102].

In addition to traditionally used physical models in surgical planning, 3D imaging
and virtual surgical planning (VSP) have become increasingly popular in orthognathic
surgery in many regions of the world [103]. VSP requires 3D models that are usually
reconstructed from volumetric images and need rendering procedures to be displayed on a
screen. Advances in these computer-aided technologies have opened up new possibilities
for VSP in craniofacial surgery [104]. VSP can provide more anatomically based and
surgically accurate simulation of the procedure, enable a more interactive and collaborative
planning process, and improve the predictability, precision, and outcomes of surgery. A
usability study of a visual display by Regodić et al. reported that clinically experienced
users reached the targets with shorter trajectories using VSP [105]. And Mazzola et al.
showed that VSP reduced the time and maintained the cost and quality of facial skeleton
reconstruction with microvascular free flaps [106].

3.2. Visualization
3.2.1. 3D Reconstruction and Rendering

3D reconstruction in this paper means a process of generating 3D models from image
slices/sequences. Rendering is an interactive process that allows the observer to adjust the
display parameters to depict the point of interest most intuitively.

Accurate and clear 3D models for the visualization of anatomical structures of their
patients is important for radiologists and surgeons. Supported by computer vision, to-
mographic reconstruction techniques for CT and MRI have been well developed in the
past few decades and can provide high-quality visualization of human anatomy to help
medical diagnostics. Nowadays, many platforms and types of software provide automatic
reconstruction and rendering procedures, for example, ParaView, Seg3D, SynGO, Mimics,
3D Slicer, and so on. Usually, functionalities like auto-segmentation are also provided.
Radiological imaging like CT and cone beam computed tomography can provide high-
resolution and high-contrast images. However, due to their ionizing nature, they also pose
the risk of radiation exposure to patients. Using low-dose ones on the other hand causes
image quality degradation. Magnetic resonance imaging can provide non-invasive and
non-radiation images, but they are also affected by some factors, such as metal objects, gas,
bones, tissue depth, and background noise.

To address these issues, many researchers use deep neural networks to generate high-
quality or complementary data [107–109]. The impressive performance of CNN-based
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low-dose CT restoration [110,111] has stimulated more research on deep learning methods
for image reconstruction. Ref. [112] proposed a new algorithm that uses discriminative
sparse transform constraints to reconstruct low-dose CT images with better quality and
less noise by combining the advantages of image-compressed sensing reconstruction and
a differential feature representation model and avoiding the drawbacks of the classical
methods that depend on a prior image and cause registration and matching problems.
Ref. [113] proposed a new deep learning network that uses a noise estimation network and
a transfer learning scheme to adapt to different imaging scenarios and denoise low-dose
CT images with better quality. Deep learning-based MR image reconstruction methods
are plentiful, such as FA-GAN [114], FL-MRCM [115], U-Net [116], and so on. In the
meantime, 2D X-rays, which are cost-effective, widely available, and expose patients to
less radiation, can also be used to reconstruct 3D images with some methods proposed by
researchers [117]. In short, generating and viewing 3D models for diagnostic purpose is a
common phenomenon.

Apart from 3D model reconstruction from diagnostic imaging, there are also dynamic
3D image reconstruction applications based on intraoperative imaging modalities. Ultra-
sound scanning, being a common intraoperative imaging modality, can be used to carry
out 3D reconstruction [118,119]. Other than using a 3D ultrasound transducer that could
acquire a 3D surface directly, intraoperative 2D ultrasound imaging can also reconstruct 3D
models with known spatial information of the scan slice as illustrated in Figure 5 Recon-
struction can subsequently be conducted after segmentation of the 3D surface based on the
intensity of the ultrasonography, as illustrated in the same figure showcasing the 3D recon-
struction of a placenta in a fluid medium [120]. Recent work in relation to 3D ultrasound
reconstruction has also explored promising machine learning-based approaches [121,122].
Endoscopic camera-based image reconstruction is another commonly used approach for
intraoperative reconstruction of 3D structures in the scene [123,124]. Most of the papers
found applied techniques in photogrammetry for intraoperative mapping and surface
reconstruction [125–128]. While these methods are mainly passive, i.e., relying purely
on visual landmarks or interest points in the scene, there are also active camera-based
approaches that cast structured lighting to the scene for surface reconstruction [129,130].
Camera-based approaches are promising for several clinical applications, including 3D
reconstruction of the lumen in capsule endoscopy [131,132]. Some other methods involve a
hybrid combination of ultrasonography and endoscopy for 3D reconstruction [87,88,133].

Sensors 2023, 23, x FOR PEER REVIEW 12 of 26 
 

 

 
Figure 5. Using intraoperative two-dimensional (2D) ultrasound imaging with known spatial 
information to reconstruct a three-dimensional (3D) model [134]. 

Usually, surgeons and researchers visualize images or volumes on a screen and 
operate using keyboards. However, with the help of AR/MR/VR technology, researchers 
can also augment real surgical scenes with the rendering of 3D models. Reconstruction 
and rendering are integral to IGS, consisting of sophisticated modern user interfaces and 
visual media. 

3.2.2. User Interface and Medium of Visualization 
While reconstruction and rendering provide plentiful 3D spatial image data, 

visualizing image-based navigational information through a 2D screen imposes problems 
in hand–eye coordination and depth perception [135]. Merging real scenes and virtual 
images is one of the solutions. Several display technologies, including half-mirror, 
projection-based image overlay, and integral videography (IV), can show fused real and 
virtual data in real time, as shown in Figure 6. Half-mirror is a technique that uses a half-
silvered mirror or a transparent monitor to reflect a virtual image onto the viewer’s eyes, 
while allowing them to see through the mirror or monitor to observe the real environment. 
With the advantages of being realistic, immersive, versatile, and energy-efficient, half-
mirror is widely used in surgical navigation [136–138]. IV is a technique that uses, 
captures, and reproduces a light field using a 2D array of micro-lenses to create 
autostereoscopic images. With the advantages of being autostereoscopic, natural, and 
parallax-rich, IV is widely used in displaying 3D anatomical structures or surgical plans 
inside the patient [139–141]. Projection-based image overlay is a technique that uses a 
projector to display a virtual image onto a screen or a real object, such as a wall or a table. 
With the advantages of being simple, scalable, and adaptable, projection-based image 
overlay is widely used in projecting guidance information or registration markers on the 
patient [142,143]. 

Figure 5. Using intraoperative two-dimensional (2D) ultrasound imaging with known spatial infor-
mation to reconstruct a three-dimensional (3D) model [134].



Sensors 2023, 23, 9872 12 of 25

Usually, surgeons and researchers visualize images or volumes on a screen and operate
using keyboards. However, with the help of AR/MR/VR technology, researchers can
also augment real surgical scenes with the rendering of 3D models. Reconstruction and
rendering are integral to IGS, consisting of sophisticated modern user interfaces and
visual media.

3.2.2. User Interface and Medium of Visualization

While reconstruction and rendering provide plentiful 3D spatial image data, visu-
alizing image-based navigational information through a 2D screen imposes problems in
hand–eye coordination and depth perception [135]. Merging real scenes and virtual images
is one of the solutions. Several display technologies, including half-mirror, projection-based
image overlay, and integral videography (IV), can show fused real and virtual data in real
time, as shown in Figure 6. Half-mirror is a technique that uses a half-silvered mirror or
a transparent monitor to reflect a virtual image onto the viewer’s eyes, while allowing
them to see through the mirror or monitor to observe the real environment. With the
advantages of being realistic, immersive, versatile, and energy-efficient, half-mirror is
widely used in surgical navigation [136–138]. IV is a technique that uses, captures, and
reproduces a light field using a 2D array of micro-lenses to create autostereoscopic images.
With the advantages of being autostereoscopic, natural, and parallax-rich, IV is widely
used in displaying 3D anatomical structures or surgical plans inside the patient [139–141].
Projection-based image overlay is a technique that uses a projector to display a virtual
image onto a screen or a real object, such as a wall or a table. With the advantages of
being simple, scalable, and adaptable, projection-based image overlay is widely used in
projecting guidance information or registration markers on the patient [142,143].
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In contrast to these techniques, which rely on external devices to create the AR effect,
another approach is to use wearable devices that can directly display the virtual images
in the user’s view. Head-mounted displays (HMDs) like HoloLens are innovative devices
that can augment many kinds of surgery. They can not only display images and 3D models
on the user’s view, as shown in Figure 7 [144], but also use the HMD’s image as an image
source for various purposes. All tasks of surgical navigation, such as segmentation, object
tracking, registration, fusion, and planning, can be performed on HMDs. For example,
Teatini et al. used HoloLens to provide surgeons with the illusion of possessing “X-ray”
vision to visualize bones in orthopedics [27], as shown in Figure 8. Teatini used Polaris
Spectra and NDI as a means of optical tracking and optical markers to conduct rigid
registration. By conducting an evaluation study on two phantoms, Teatini demonstrated
that the MR navigation tool has the potential to improve diagnostic accuracy and provide
better training conditions. Furthermore, HMDs like HoloLens have other functions that can
be utilized in the surgical condition including gesture recognition and audio control. These
functions can enhance the convenience for and efficiency of the surgeon. Nishihori et al.
accessed a contactless operating interface for 3D image-guided navigation and showed
some benefits [145]. However, Nishihori needed additional devices like Kinect to perform
gesture recognition and use voice recognition software. HMDs like HoloLens are an
integrated interface that incorporate these functions and similar systems can be developed
based on them. Therefore, HMDs are a promising technology that can revolutionize surgical
practices and outcomes.
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3.2.3. Media of Visualization: VR/AR/MR

VR/AR/MR technologies are emerging fields that have attracted a lot of interest and
attention in modern medicine. Many research groups have applied such technology in
various domains, such as treatment, education, rehabilitation, surgery, training, and so
on [146]. VR/AR/MR technologies differ in their degree of immersion and interaction, but
they all aim to enhance the user’s experience by creating realistic and engaging environ-
ments [147]. One of the earliest applications of AR was to solve a simple problem: how to
see the surgical monitor while instruments are inside patients. Yamaguchi et al. built a
retinal projection HMD in 2009 to overlay the image and verify its accuracy [148]. Since
then, AR technology has advanced significantly and has been used for more complex and
challenging tasks. For example, Burström et al. demonstrated the feasibility, accuracy, and
radiation-free navigation of AR surgical navigation with instrument tracking in minimally
invasive spinal surgery (MISS) [149]. In Figure 9, Sun et al. proposed a fast online cali-
bration procedure for an optical see-through head-mounted display (OST-HMD) with the
aid of an OTS [29]. In this system, the whole procedure consisted of three steps: (1) image
segmentation and reconstruction, as shown in Figure 9 (A); (2) point-based registration or
an ICP-based surface matching algorithm, as shown in Figure 9 (B); and (3) calibration of
the OST-HMD, as shown in Figure 9 (C). These examples show how AR technology can
improve the accuracy and efficiency of surgical procedures.
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A VR simulator is a powerful tool that can be used for teaching or training purposes in
medicine. Researchers have explored the use of VR simulators since the early 2000s, when
they developed and evaluated various laparoscopic VR systems [150]. Khalifa et al. foresaw
that VR has the ability to streamline and enhance the learning experience of residents by
working synergistically with curriculum modalities [151]. Jaramaz and Eckman presented
an example of a VR system using fluoroscopic navigation [152]. Nowadays, VR has been
widely used in the education, training, and planning areas for different surgical specialties.
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For instance, in oral and maxillofacial surgery, VR has been utilized to improve the delivery
of education and the quality of training by creating a virtual environment of the surgical
procedure [153], as shown in Figure 10. Haluck et al. built a VR surgical trainer for
navigation in laparoscopic surgery [154]. Barber et al. simulated sinus endoscopy using
a VR simulator that combines 3D-printed models. They provided evidence that such a
VR simulator is feasible and may prove useful as a low-cost and customizable educational
tool [155]. These examples show how VR simulators can offer realistic and interactive
scenarios for surgical education and training.
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MR technology has several features that make it ideal for image-guided navigation,
such as a see-through view, spatial mapping, and an interactive interface. Several studies
have evaluated and validated MR navigation systems for different surgical procedures
and have shown positive results. For example, Martel et al. evaluated an MR naviga-
tion system in ventriculostomy and showed a 35% accuracy improvement [156]. Zhou
et al. validated an MR navigation system for seed brachytherapy and showed clinically
acceptable accuracy [157], as shown in Figure 11. Mehralivand et al. tested the feasibility
of a VR-assisted surgical navigation system for radical prostatectomy and showed great
usability [158]. Frangi et al. validated an MR navigation system for laparoscopic surgery
and showed significant time saving [159]. Incekara et al. provided proof of concept for the
clinical feasibility of the HoloLens for the surgical planning of brain tumors and provided
quantitative outcome measures [160]. McJunkin et al. showed the significant promise of
MR in improving surgical navigation by helping surgical trainees to develop mental 3D
anatomical maps more effectively [161]. MR surgical navigation (MRSN) can aid doctors
in performing surgery based on a visualized plan and achieving clinically acceptable ac-
curacy [162]. MRSN is feasible, safe, and accurate for lumbar fracture surgery, providing
satisfactory assistance for spine surgeons [163]. Therefore, MR technology is a promising
tool that can enhance surgical performance and outcomes.
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4. Discussion

In this narrative review, we have outlined the tasks of IGS and how they are related
to the image data stream. We have followed the image data stream to illustrate how
image data are used in each workflow: segmentation, tracking, registration, and planning.
Image processing in each workflow is in-series but research groups in each workflow are
independent from each other. Moreover, there are many research groups who are focused
on setting up IGS systems using various methods and technologies. Nowadays, advanced
methods are still being proposed in these areas and, in particular, methods based on AI
are taking a prominent place. However, these methods are only focused on their own area
and are hard to be applied to the IGS system. Finding out how to fill the gap between
these methods and the system has led to a number of interesting research challenges
related to satisfying the high accuracy, reliability, and effectiveness requirements of surgery.
VR/AR/MR as a new type of visualization method show benefits and are an extension to
IGS. They can provide realistic and interactive scenarios for surgical education, training,
and planning. Some applications have been proposed but they are still in a primary state.
As a solution, some software has been proposed to provide integrated functionality. For
example, the 3D Slicer can automatically perform segmentation and reconstruction. But,
state-of-the-art machine learning-based methods were not included because of customized
models and databases. Therefore, there is a need for more research on how to integrate
these methods into the software and the system.

Medical images have always been accompanied by security concerns because they
carry private patient information. Currently, there exist various image security techniques
like encryption, watermarking, steganography, etc. [164,165]. Since the image streams in
the IGS system are only transmitted internally, security issues are not often involved.

Evaluating surgical navigation systems is an important and challenging task that
requires appropriate performance metrics. The current performance metrics can be divided
into three categories: outcome, efficiency, and errors [166]. Outcome metrics measure the
quality and effectiveness of the surgical procedure, such as the accuracy of tumor removal
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or the preservation of healthy tissue. These metrics usually require the help of medical
experts to mimic the metrics used to measure expertise. Efficiency metrics measure the
speed and ease of the surgical procedure, such as the time consumed and the path length.
These metrics can reflect the usability and convenience of the surgical navigation system.
Error metrics measure the deviation and uncertainty of the surgical procedure, such as
the percentage of error, deviation from target, or accuracy. These metrics can indicate
the reliability and robustness of the surgical navigation system. For an IGS system, it is
intrinsic to evaluate the registration and tracking part, which are essential for aligning and
updating the image data with the surgical scene. According to [167], factors that contribute
to the final evaluation of the whole system include the fiducial registration error (FRE),
fiducial localization error (FLE), target registration error (TRE), overlay error (OR), and
tool error (TE). These factors can quantify the accuracy and precision of the IGS system.
Moreover, some qualitative evaluations have been proposed and usually given by surgeons
to describe their subjective opinion on aspects such as comfort, confidence, satisfaction,
and preference [168]. These evaluations can capture the user experience and feedback on
the IGS system.

Choosing appropriate evaluation metrics is crucial for assessing the performance and
validity of surgical navigation systems. The evaluation metrics should be aligned with the
purpose and objectives of the research. For example, in [158], Mehralivand et al. wanted to
evaluate the feasibility of interactive 3D visualization of prostate MRI data during in vivo
robot-assisted radical prostatectomy (RARP). They chose outcome metrics such as blood
loss, Gleason score, postoperative prostate-specific antigen (PSA), Sexual Health Inventory
for Men (SHIM) score, and International Prostate Symptom Score (IPSS) as evaluation
metrics to show the oncological and functional results of their system. In [159], Frangi
et al. wanted to show the improvement in their MRSN system compared with LN-CT
for laparoscopic surgery. They chose time consumption as an efficiency metric to show
the speed and ease of their system. Outcome metrics and efficiency metrics usually have
specific standards or need to be compared with other current approaches. In [156], Martel
et al. showed a 35% improvement in accuracy for tip and line distances (13.3 mm and
10.4 mm to 9.3 mm and 7.7 mm) compared with conventional methods. In [148], Yamaguchi
et al. showed 3.25% and 2.83% maximum projection error in overlaying virtual images
onto real surgical stents using their retinal projection HMD system. Error metrics are
widely used and usually required in the tracking of device tip and registration between
preoperative and intraoperative images. Using multiple evaluation metrics is also common
and can provide a more comprehensive assessment of the system. For example, Burström
et al. used the accuracy of the device tip, angular deviation, time consumption, and user
feedback to show the feasibility of an ARSN system in MISS [149]. It is plausible that
maximum errors of 1.5–2 mm are acceptable in surgical navigation system by researchers.
However, shifting from phantom or cadaver experiments to animal or human experiments
can lead to an accuracy drop due to various factors such as tissue deformation, organ
motion, and blood flow. For example, Zhou et al. reached a 0.664 mm needle location
average error and 4.74% angle error in a phantom experiment and 1.617 mm and 5.574%,
respectively, in an animal experiment [157]. Some researchers have also designed some
evaluation models [169] for a HoloLens-based MRSN system based on analytical hierarchy
process theory and ergonomics evaluation methods.

Despite not being widely used, HMD devices are attractive platforms for deploying
AR/VR/MR surgical navigation systems, as they can provide low-cost, integrated, and
immersive solutions for surgical navigation. Moreover, HMD devices can also enable
contactless interaction systems, such as gesture control and voice control, which can en-
hance convenience for and efficiency of surgeons. However, transferring existing methods
from conventional monitors to HMD devices is not a trivial task, as it requires adapting to
different hardware specifications, user interfaces, and user experiences. Therefore, research
and development on how existing methods can be better transferred to HMD devices is
an important direction. It is envisioned that immersive technology will transform the way
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surgeons visualize patient information and interact with the future technologies in the
operating room during IGS.

5. Conclusions

IGS is an evolving discipline that aims to provide surgeons with accurate and compre-
hensive information during surgical procedures. Traditional intervention requires surgeons
to collect various types of image information from different modalities, such as CT, MRI,
US, and so on. However, these modalities have limitations in terms of resolution, contrast,
invasiveness, and cost. Moreover, integrating and visualizing these image data in a mean-
ingful and intuitive way is a challenging task. IGS systems can overcome these limitations
by enriching the information presented to the surgeons using advanced image processing
and visualization techniques. However, the update of these systems has been limited by
issues such as immersive accuracy and non-intuitive user interface. Integrated systems
in the form of HMD have the potential to bridge these technology gaps, providing the
surgeon with intuitive visualization and control. It is clear from this review that IGS sys-
tems have not yet reached maturity as technology and engineering develop further. While
progress has been made in segmentation, object tracking, registration, fusion, planning,
and reconstruction, combining these independent progresses into one system needs to be
addressed. Visualization technologies like VR/MR/AR interfaces provide the possibility
of an integration system to address the concerns of cost and complexity. HMD devices
can also enable contactless interaction systems, such as gesture control and voice control,
which can enhance convenience for and efficiency of surgeons. However, it is not easy to
apply existing methods using conventional monitors to HMD devices, because they need
to adjust to different hardware specifications, user interfaces, and user experiences. It is
anticipated that the achievement of these research directions will lead to the development
of IGS systems that will better support more clinical applications.
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