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Abstract: Human action recognition (HAR) is a rapidly growing field with numerous applications
in various domains. HAR involves the development of algorithms and techniques to automatically
identify and classify human actions from video data. Accurate recognition of human actions has
significant implications in fields such as surveillance and sports analysis and in the health care
domain. This paper presents a study on the design and development of an imitation detection system
using an HAR algorithm based on deep learning. This study explores the use of deep learning models,
such as a single-frame convolutional neural network (CNN) and pretrained VGG-16, for the accurate
classification of human actions. The proposed models were evaluated using a benchmark dataset,
KTH. The performance of these models was compared with that of classical classifiers, including
K-Nearest Neighbors, Support Vector Machine, and Random Forest. The results showed that the
VGG-16 model achieved higher accuracy than the single-frame CNN, with a 98% accuracy rate.

Keywords: human action recognition; imitation detection; deep learning; transfer learning

1. Introduction

Human action recognition (HAR) involves the identification and classification of
human actions from digital video data. It is a crucial area of research in computer vision,
machine learning (ML), and Artificial Intelligence (AI) [1,2]. It has several applications
across different domains, including sports analysis, surveillance and security, military,
health care, robotics, and human–computer interaction [3].

AI and ML have facilitated the development of HAR systems by enabling comput-
ers to learn from large datasets of human actions. Deep learning (DL) algorithms, such
as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have
been used to automatically extract features from video data and accurately classify human
actions. Recently, there have been notable advancements in deep learning approaches
within the field. For instance, Xiong et al. proposed a deeply supervised subspace learn-
ing technique for assisting robots in comprehending object characteristics without direct
contact [4]. In [5], a novel concept for learning feature interaction in cross-spectral image
patch matching was introduced, resulting in the development of a new feature interaction
learning module. Shu et al. in [6] presented the Omni-Training framework, which connects
pretraining and metatraining for effective few-shot learning with limited data. These algo-
rithms can learn complex patterns and relationships among different features of human
actions, making them more effective in recognizing and classifying actions than traditional
ML approaches [7].

In recent years, there has been a significant increase in the number of studies and
publications and in the amount of research on HAR systems. Several research method-
ologies have been used in these studies, resulting in a diverse range of outcomes. The
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results obtained depended on various factors, such as the quality of the dataset, the record-
ing protocol, data preprocessing techniques, the type of features detected, the number of
participants involved, and the intended applications of the HAR system [1,2].

Although there have been a significant number of design studies published in this
field, it is important to consider not only the technical aspects of the system but also its
design implications. Addressing the challenges associated with the development of more
accurate and effective HAR systems is crucial. These challenges include the variability and
complexity of human actions, the need for a large number of labeled data, the ability to
operate in real-world scenarios, the need to develop systems that are robust to individual
differences, and ethical considerations. By addressing these challenges, we can develop
HAR systems that are not only technically sound but also practical and ethical [3].

One specific application where HAR can be developed is in behavior recognition
for children with Autism Spectrum Disorder (ASD). The detection and understanding of
actions in children with ASD are crucial for early intervention and personalized therapy.
However, the behavior of children with ASD presents unique challenges in capturing and
interpreting, necessitating tailored solutions and specific datasets for accurate recognition.

In this study, we aimed to design and develop an imitation detection system by
implementing an HAR algorithm using DL. Imitation tasks have significant applications
in various fields, including autism therapy [8], robotics and games [9], and sports and
motor education [10]. Initially, we developed a DL model that uses a single-frame CNN.
Then, we used the transfer learning technique by implementing the pretrained VGG-16
model. We also compared their performance with that of different classical classifiers, such
as K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Random Forest (RF).
We evaluated our proposed models and compared them with those of previous studies
using the same dataset.

This paper is structured as follows: Section 2 provides the background information,
while Section 3 discusses related works. Sections 4 and 5 elaborate on the research methods
and the design considerations of the HAR framework. The experiment implementation
is presented in Section 6, followed by the discussion of the system’s performance and
evaluation in Section 7. Section 8 focuses on the results and a comparison of classical
classifiers with related studies. Lastly, Section 9 concludes the paper and highlights future
work.

2. Background

In this section, we provide the necessary a theoretical background about DL, and
neutral networks, and HAR.

2.1. Human Action Recognition

In the last decade, HAR has emerged as an active research area in computer vision [1].
Herath et al. [11] define action as “the most elementary human-surrounding interaction
with a meaning.” HAR is the process of labeling human actions within a given sequence
of images, which becomes the classification of a human agent’s goals in a series of image
frames [2]. Typically, the goal of action recognition is to discover the class of short, seg-
mented, atomic actions [2]. In general, HAR is a hierarchical process, with lower levels
focusing on human detection and segmentation.

The goal of those levels is to identify the regions of interest in a video that corresponds
to static or moving humans. At the next level, visual information about actions is extracted
and represented by features. Then, these features are used to recognize actions. As a result,
recognizing an action based on features can be viewed as a classification problem [7].

Human action categorization remains a difficult task in computer vision. According to
Vrigkas et al. in [12], HAR methods are categorized into two main categories, unimodal and
multimodal, according to the nature of the sensor data they use. Methods for identifying
human activities from the data of a single modality are known as unimodal human activity
recognition methods. Most current models represent human actions as a set of visual
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features extracted from video streams or still images, and several classification models
are used to recognize the underlying action. On the other hand, multimodal methods
combine features collected from different sources. An event can be described using various
features that provide additional and useful information. Several multimodal methods in
this context are based on feature fusion, which can be expressed in two ways: early and
late. The simplest way to take advantage of multiple features is to combine them in a larger
feature vector and then learn the underlying action.

2.2. Deep Learning and Neural Networks

DL is a class of ML techniques that use many layers of information processing stages in
hierarchical architectures for unsupervised feature learning and pattern classification. It is
at the crossroads of neural network, graphical modeling, optimization, pattern recognition,
and signal processing research [13]. DL has been demonstrated to be successful in various
applications, such as computer vision, phonetic recognition, speech and image feature
coding, handwriting recognition, and robotics, since 2006 [13].

DL networks are artificial neural networks with more than one hidden layer; therefore,
DL networks are also known as deep neural networks [14]. The architecture of biological
neurons, such as those of the human brain, inspired the design of an artificial neural
network. The human brain consists of a massive network of interconnected neurons. Each
neuron is a single cell that performs a specific task, such as responding to an input signal.
Furthermore, when neurons are connected in a network, they can perform complex tasks,
like speech and image recognition, with incredible speed and accuracy [15].

An artificial neural network is an interconnected group of nodes, with each circular
node representing an artificial neuron and an arrow representing a connection from the
output of one neuron to the input of another. An artificial neural network is made up of
three layers: input, hidden, and output layers. The hidden layer connects the input and
output layers [13].

The most established algorithm among various DL models is CNN, a type of artificial
neural network that has been a powerful method in computer vision tasks [16]. The
CNN is a type of multilayer neural network that is specifically designed to work with
two-dimensional data, such as images and videos. The CNN is a mathematical construct
composed of three types of layers (or components): convolutional, pooling, and fully
connected layers. The first two layers, convolution and pooling, extract features, whereas
the third layer, a fully connected layer, maps the extracted features to final output, such as
classification [13].

3. Related Work

This section presents the related research that has been conducted in HAR. Table 1
shows a summary of HAR-related work.

Table 1. Summary of HAR-related work.

Ref. Year Dataset Accuracy Algorithm Type of Motion

[17] 2020 UCF Sports, UCF101,
and KTH 96.3%—KTH Combined (GRNN,

GMM, and KF) Full body

[18] 2021 UT-interaction 90.64% Single CNN and
VGG-16 Full body

[19] 2021 Pamap2 98% LSTM RNN Full body

[1] 2022 KTH, IXMAS, WVU,
and Hollywood 99.9%—Hollywood DL-based design Full body

[20] 2021 LSP, LIP, and MPII 95%—LIP and MPII SHN Full body
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Jaouedi et al. [17] proposed a novel method for using motion tracking, as well as
human tracking, to extract spatial features from a video sequence. They used the Gaussian
mixture model and Kalman filter methods to identify and extract moving people, and a
gated RNN (GRNN) to collect features in each frame and predict human action. They
evaluated the method on the University of Central Florida (UCF) Sports Action, UCF101,
and KTH human action datasets, where they discovered several actions in various contexts.
The experimental findings show that the proposed method is a good algorithm for HAR
problems, with an average of 96.3% when tested on the KTH dataset, 89.1% on UCF Sports,
and 89.30% on UCF101.

Yeole et al. [18] presented a method for automatically recognizing human activities in
video sequences captured in outdoor areas using a single large-view camera. The CNN-
VGG-16 and single-frame CNN models were used. They demonstrated the techniques
using real-world video data to automatically distinguish normal behaviors from suspicious
ones in a playground setting from films of continuous performances of six different types
of human–human interactions: handshakes, pointing, hugging, pushing, kicking, and
punching. According to their results, the single-frame CNN model outperforms CNN-
VGG-16. Extensive experiments on the UT-interaction dataset were conducted to evaluate
the performance of the proposed technique. The experimental results demonstrate that the
average accuracy achieved by the VGG-16 approach was 60%, while the CNN approach
achieved an accuracy rate of 90.46%. These findings indicate that VGG-16 performed poorly
when applied to raw video graphic datasets.

Li [19] proposed a recognition information processing system based on DL, specifically
utilizing an LSTM RNN, for gathering and identifying human motion data. The system in-
cludes three layers and enables the collection, processing, recognition, storage, and display
of human motion data. By incorporating the LSTM RNN, the system achieves improved
recognition efficiency, simplifies the recognition process, and reduces data missing rates
caused by dimension reduction. The authors trained the model using the Pamap2 dataset
and evaluated its performance and application effectiveness with real motion state analysis.
The results demonstrate that the LSTM RNN outperformed traditional algorithms in terms
of accuracy (98%).

Khan et al. [1] proposed a DL-based design for HAR. The proposed design includes
several steps, such as feature mapping, fusion, and selection. Two pretrained models,
DenseNet201 and InceptionV3, are considered for the initial feature mapping step. Then,
the extracted deep features are fused using the Serial-based Extended method. Then, the
best features are chosen using Kurtosis-controlled Weighted KNN. Several supervised
learning algorithms are used to classify the selected features. The authors used several
datasets, including KTH, IXMAS, WVU, and Hollywood, to demonstrate the efficacy of
the proposed design. The proposed design achieved accuracy rates of 99.3%, 97.4%, 99.8%,
and 99.9% on these datasets, respectively, according to experimental results. Furthermore,
when compared with the state of the art, the feature selection step performed better in
terms of computational time.

Ma et al. [20] suggested a novel deep convolutional generation confrontation net-
work to recognize human motion poses. This method uses a deep convolutional stacked
hourglass network to precisely extract the location of key joint points on the image. The net-
work’s generation and identification components are intended to encode the first (parent)
and second (child) hierarchies and to show the spatial relationship of human body parts.
The generator and discriminator are designed as two network parts that are linked to en-
code the possible relationship of appearance, the possibility of the existence of human body
parts, and the relationship between each part of the body and its parental part coding. The
key nodes of the human body model and general body posture can be identified more pre-
cisely in the image. The method was evaluated on various datasets, LSP, LIP, and MPII. In
most cases, the proposed method produced better results than other comparison methods.
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4. Imitation Detection System Design Consideration

We aim to design and develop an imitation detection system by implementing an
HAR algorithm using a DL approach. DL has recently shown promising results in the field
of computer vision; it creates models by simulating human brain processing at multiple
layers [1].

One of the widely used models in HAR is CNN. A CNN is a type of neural network
that can recognize and classify features from frames. A CNN consists of three layers,
convolutional, pooling, and fully connected layers [18]. The convolutional layer serves
as a local feature extractor, and the pooling layer combines semantically similar features
into one feature. The last layer is a standard neural network working as a classifier (or
a standard classifier, such as SVM) that identifies the output from feature extraction and
predicts the class of the frames based on the features extracted in the earlier steps [18]. As a
result, the network picks up a collection of useful attributes for a classifier [7].

Our system is based on a deep neural network to detect successful imitation in children.
The algorithm employed is illustrated in Figure 1. Recordings serve as input, which
undergoes video preprocessing to generate video frames. The CNN is then utilized to
extract features from these frames, followed by classification. The CNN has emerged
as a key algorithm for gesture detection in image classification due to its fast and stable
classification capabilities. It can learn features without the need for manual extraction and
train on raw images to generate feature extraction classifiers [21].
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Figure 1. HAR algorithm.

Conversely, for the training part, we aim to train the model using the KTH dataset [22],
which is an action dataset containing six types of human actions (walking, jogging, running,
boxing, hand waving, and hand clapping).

5. Materials and Methods

In this section, we will present the various stages involved in designing and imple-
menting our clapping imitation detection system.

Section 5.1 will describe the dataset that was used for both training and testing. Then,
we will describe the concept of transfer learning and how it is leveraged in our system in
Section 5.2. Furthermore, we will provide a thorough explanation of the proposed system,
including all the preprocessing steps required to prepare the dataset. We will also outline
two different approaches to construct the model; then, we will present the evaluation of the
two approaches.

5.1. Dataset

The goal of the imitation detection system is to detect the hand clapping action. So we
used the KTH dataset [22], which is a video dataset that provides a collection of actions
performed by humans. The actions comprise six different types, namely, walking, jogging,
running, boxing, hand waving, and hand clapping.

Each action was performed multiple times by a total of 25 subjects, across four different
scenarios. The scenarios are characterized by the type of location where the actions take
place, which are outdoors (s1), outdoors with scale variation (s2), outdoors with different
clothes (s3), and indoors (s4) as illustrated in Figure 2.
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All sequences were taken with a static camera operating at a 25-fps frame rate and
against a homogenous background. The resulting sequences were uniformly downsampled
to a spatial resolution of 160 × 120 pixels and have an average duration of 4 s. The video
files are stored in AVI format, resulting in 600 video files for each combination of 25 subjects,
6 actions, and 4 scenarios.

We split the data into two categories for binary classification, where one is the “clap-
ping” category, which includes hand clapping videos, and the rest of the videos fall into
the “non-clapping” category. Table 2 shows a description summary for the KTH dataset.

Table 2. KTH dataset summary.

Number of classes 6 actions

Type of camera Static camera with 25 fps frame rate

Types of movement Walking, jogging, running, boxing, hand waving, and hand clapping

Number of clips 2391

Release date 2004

Several research articles used this dataset; for example, Paramasivam et al. [23] created
a novel solution to address the common obstacles encountered in existing approaches to
HAR, which often use computationally intensive networks like 3D CNNs and two-stream
networks. This involved developing HARNet, which is a lightweight directed acyclic
graph-based residual 2D CNN with reduced parameters. HARNet was engineered from
the ground up to overcome these challenges. The performance of the proposed method
was assessed through experimentation using the KTH dataset.

Moreover, Zhang et al. [24] introduced a new video representation technique that
improves motion recognition in videos by utilizing speeded-up robust features and two
filters. They assessed the effectiveness of this video representation in action classification
across various motion video datasets, including KTH. In comparison with existing methods,
the proposed approach demonstrated superior performance on all datasets.
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5.2. Transfer Learning

To train a new DL model from scratch, it is necessary to have a vast number of data,
powerful computational resources, and numerous hours—or days—of training. Collecting
and annotating domain-specific data can be a lengthy and costly process, making it difficult
to apply DL models in real-world scenarios [25].

To address this problem, researchers have taken inspiration from the way the human
visual system works. Humans learn multiple categories throughout their lives, from just a
few examples. It is thought that this is possible because humans accumulate knowledge
over time and use it when learning new objects. This approach can help overcome the need
for a large number of data in DL models; this concept is transfer learning [25].

Transfer learning is the process of transferring and using knowledge obtained from
a particular task to solve other related ones. The information used for transfer includes
classifier weights, features, and data instances [26,27]. New techniques in transfer learning
with DL have the objective of decreasing the amount of time and cost involved in the
training process, as well as reducing the need for large datasets, which can be difficult
to collect in certain sectors, like medical image analysis. Furthermore, developments in
transfer learning with DL are paving the way for more powerful and intuitive AI systems,
as it recognizes learning as a continuous process [28].

An untrained DL model is initialized with random weights for its nodes. Then, during
the costly training process, these weights are optimized, using an optimization algorithm
for a particular dataset, to achieve the best possible values. Interestingly, if the weights
are initialized on the basis of a pretrained network, which may have been trained on quite
different datasets, it can substantially improve the training performance in comparison
with random weight initialization [28].

6. Proposed System

For detecting clapping imitation, we attempted two different approaches to implement
our system. Initially, we developed a DL model that uses a single-frame CNN, which
was given by Aruna et al. [29]. Moreover, we used the transfer learning technique by
implementing the pretrained VGG-16 model. These methods are explained next.

6.1. Single-Frame CNN

The single-frame CNN approach is designed to perform image classification on every
single frame of a video to recognize the action being performed, as shown in Figure 3 [29]. In
our case, it identifies if a frame contains a “clapping” or “non-clapping” action. The model
generates a probability vector for each input video frame, which denotes the probability of
the action being presented in that frame. Then, we average all the individual probabilities
to obtain the final output probability vector [29]. The implementation of our approach
involves three main steps, namely, preprocessing, feature extraction, and classification.

Preprocessing: First, we split the videos in the dataset into two sections; create two
folders for each one, “clapping” and “non-clapping”; then store all the videos in these
folders before reading each file individually; and extract the frames. To extract video
frames from the class directories of the dataset, an iterative approach is followed. The
first step is to loop through all the video files present in the dataset’s class directories,
reading each video file using the OpenCV (“OpenCV is an open-source computer vision
and machine learning software library” [30]) library, extracting the video frames, and then
iterating through each video frame to resize it to a fixed size (64 × 64 pixels) and normalize
the pixel values. The last step in this stage is to create the final preprocessed dataset by
returning the preprocessed frames and their associated labels as NumPy (“NumPy is a
Python library that provides a multidimensional array object and other mathematical
computations” [31]) arrays.
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Figure 3. Single-frame CNN.

Feature extraction and classification: As shown in Figure 4, the CNN classification
model is structured with (1) two convolutional layers, (2) two batch normalization layers,
(3) one max-pooling layer, (4) one global average pooling layer, and (5) two fully connected
(dense) layers.
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Figure 4. CNN classification model structurer.

The first two convolutional layers apply 64 filters of size 3 × 3 each to the input image.
These filters, also known as kernels, play a crucial role in creating a feature map for the
subsequent layer [32]. Both layers use the rectified linear unit (ReLU) activation function,
which is a piecewise linear function that returns the input if it is positive; otherwise, it
outputs zero [32]. A batch normalization layer is included after the second convolutional
layer, which contributes to the stabilization of the learning process by normalizing the
output of the previous layer [33].

The max-pooling layer reduces the spatial dimensions of the output, and the global
average pooling layer further reduces the dimensions by averaging the values in each
feature map. A dense layer with 256 units and ReLU activation is added, followed by
another batch normalization layer. The final dense layer uses the Sigmoid activation
function to convert the output into a probability distribution ranging from 0 to 1.

After building the model, we define the function make_average_predictions(), which
takes the video path and n frames. This function produces a singular prediction from an
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entire video. This function operates by selecting n frames from the entire video and making
predictions based on those frames. Subsequently, the predictions of those n frames are
averaged to determine the final action class name for the entire video. This process using
the moving average formula is shown as follows [29]:

Pf =
∑0

i=n+1 Pi

n

where n is the number of frames to be averaged; Pf is the final predicted probability; P is
the probability predicted for the current frame; P − 1 is the probability predicted for the
last frame; P − 2 is the probability predicted for the second-last frame; and P − n + 1 is the
probability predicted for the (n − 1) last frame.

Finally, we run the single-frame CNN image classification model on each frame in a
particular video and send the list of predictions to the moving average function to return the
average of all class (clapping and non-clapping) probabilities to obtain a final probability
vector. Then, the highest probability class is the predicted class for the entire video.

6.2. VGG-16

The VGG-16 architecture, also known as Visual Geometry Group-16, is a DL model
developed by University of Oxford researchers. VGG-16 is well known for its simplic-
ity and low computational complexity when compared with other DL models [34]. The
VGG-16 architecture is a CNN architecture broadly used for image classification. In gen-
eral, the models based on VGG-16 have achieved high accuracy [35]. It is composed of
16 weight layers in total, including 13 convolutional layers, 3 fully connected layers, and
5 max-pooling layers [34], as shown in Figure 5.
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The first layer of the network responsible for processing the input image is referred
to as the input layer. Typically, the input image data are resized to a fixed dimension,
such as 224 × 224 pixels, before being fed into the network. There are 13 convolutional
layers in the VGG-16 model, which are responsible for extracting features from the input
image using filters or kernels [34]. Notably, the VGG-16 model uses small 3 × 3 filters
in its convolutional layers to enable the network to learn complex patterns with fewer
parameters. An activation layer follows each convolutional layer and applies the ReLU
activation function [34].

Additionally, the architecture contains five pooling layers that are intended to decrease
the spatial dimensions of the feature maps to reduce computational complexity and control
overfitting. VGG-16 uses max-pooling, which keeps the highest value within each pooling
window. Finally, three fully connected layers combine the features extracted from the
preceding layers to create final predictions. The last fully connected layer has a SoftMax
activation function that produces probabilities for each class [34].
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The VGG-16 pretrained CNN model is used in this work. We chose this architecture
because it is well established and has demonstrated superior performance in the field of
image classification [36].

Preprocessing: First, we split the videos in the dataset into two sections; create two
folders for each one, “clapping” and “non-clapping”; then store all the videos in these
folders before reading each file individually; and extract the frames using the OpenCV
library. Then, each image is resized to a fixed size (224 × 224 pixels) using image interpola-
tion in the OpenCV library, which is a conversion process from a low-resolution image to
a high-resolution image by resizing and performing image zooming, enhancement, and
reduction [37].

Data augmentation is a technique for increasing the sample set using techniques such
as translation, horizontal flipping, and noise disturbance to reduce the “overfitting” of deep
CNN caused by limited training samples [38]. After splitting the data into training and
testing, we applied data augmentation on training data using the ImageDataGenerator class
from the TensorFlow (“TensorFlow is an open-source software library for high-performance
numerical computation” [39]) library.

Feature extraction and classification: We load the base model, which is VGG-16, to be
the first layer; then, we add a dropout layer, which is a technique to prevent overfitting by
randomly dropping out units in the neural network [40]. Then, we add a flatten layer to
make the multidimensional input one-dimensional, and another dropout layer is added;
finally, we add the dense layer using a sigmoid activation function to produce output values
ranging from 0 to 1, because we want binary classification. A summary of the structure is
shown in Figure 6. Furthermore, we set the VGG-16 model’s trainable parameter to False
to freeze its weights.
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7. Evaluation

Upon finishing the training process of our models and applying them to our data,
we proceeded to evaluate their performance using various metrics. These performance
measures include confusion matrix, accuracy, precision, recall, and F1. By comparing the
performance of our models, we were able to gain a comprehensive understanding of their
performance and identify the most efficient approach in generating accurate predictions.

We plotted the total loss vs. total validation loss graph and the total accuracy vs.
total validation accuracy graph for both models, as shown in Table 3. We can see that the
single-frame CNN in both graphs predicted the training set correctly, as denoted by its
smooth line. However, in the validation set, the line goes up and down randomly, so we
believe that this is an indication of overfitting.
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Table 3. Total loss vs. total accuracy for both models.

Single-Frame CNN VGG-16
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Table 4 shows the obtained confusion matrix. In a confusion matrix, there are typically
four categories: true positive, which represents positive instances that have been correctly
identified; false positive, which refers to instances that are negative but have been incor-
rectly labeled as positive; true negative, which reflects negative instances that have been
correctly identified; and finally, false negative, which indicates positive instances that have
been incorrectly predicted as negative [33].

Table 4. Confusion matrix.

Single-Frame CNN VGG-16
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Ref. Feature Extraction Classifier Accuracy 

David and Abbas, 2019 [42] Corner, blob, and ridge interest points KNN 90% 

Chakraborty and Mukhopadhyay, 

2023 [43] 
Spatiotemporal HRSNN 94.32% 

Guo and Wang, 2021 [44] Spatiotemporal features DBN 90% 

Liu et al., 2022 [45] LSM 86.3% 
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The single-frame CNN and VGG-16 models correctly classified 98% and 96% of the
true-positive class, respectively, and for the true-negative class, the single-frame CNN and
VGG-16 models correctly classified 85% and 100% predictions, respectively. Additionally,
in terms of false positives, the single-frame CNN and VGG-16 models incorrectly classified
2.4% and 4% of the clapping labels as non-clapping, respectively. Finally, for the false
negatives, the single-frame CNN and VGG-16 models incorrectly classified 15% and 0% of
the non-clapping class as clapping, respectively.
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The proposed models were compared with traditional ML models: RF, KNN, and SVM.
The KNN classifier, among several classifiers available, relies on a distance or similarity
function, such as the Euclidean distance, to evaluate pairs of observations. It is a case-based
learning algorithm that utilizes this function to make classifications [41]. SVM is effective
in handling datasets with a high number of dimensions.

In cases where the data are nonlinear and datasets cannot be easily separated, kernels
are used to project the data into a higher-dimensional space, where it becomes feasible
to separate the data linearly [41]. Finally, the RF technique is rooted in the idea of en-
semble learning, where multiple classifiers are combined to tackle intricate problems and
enhance model effectiveness. By extending the principles of decision trees, RF enables the
construction of more robust models.

The evaluation of the performance metrics is shown in Table 5, which presents various
measures—accuracy, precision, recall, and F1. Accuracy shows the ratio of total observa-
tions that have been predicted correctly. Precision represents the ratio of correctly predicted
positive observations to total predicted observations that are positive. Recall denotes the
ratio of correctly predicted positive observations to total observations in the actual class.
Lastly, F1 is a weighted average of precision and recall [34].

Table 5. Performance metrics.

Dataset Algorithm Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%)

KTH

SVM 93 95 92 93

RF 98 98 99 98

KNN 97 99 96 97

Single-frame
CNN 91 97 85 90

VGG-16 98 96 100 98

The results show that the VGG-16 model achieved higher accuracy compared with the
single-frame CNN model. In terms of precision, there is a minor difference between the
two models, given that the single-frame CNN and VGG-16 models scored 97% and 96%,
respectively. However, there is a notable difference between the two models with respect
to recall, where the VGG-16 and single-frame CNN models attained 100% and 85% recall,
respectively. Last, regarding the F1 measure, the VGG-16 and single-frame CNN models
had rates of 98% and 90%, respectively.

8. Result and Discussion

In addition to the confusion matrix results, which show that the VGG-16 model
outperformed the other method, the classification accuracy of our model was also compared
to other previous studies that used similar approaches, where they used the same dataset
but different extracted features classification techniques, as shown in Table 6.

Table 6. Summary of comparison with similar approaches.

Ref. Feature Extraction Classifier Accuracy

David and Abbas, 2019 [42] Corner, blob, and ridge
interest points KNN 90%

Chakraborty and Mukhopadhyay, 2023 [43] Spatiotemporal HRSNN 94.32%

Guo and Wang, 2021 [44] Spatiotemporal features DBN 90%

Liu et al., 2022 [45] LSM 86.3%

Our proposed model VGG-16 98%
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For instance, David and Abbas, in [42], addressed the difficulties in capturing videos
within the KTH dataset, such as issues related to lighting, noise, and scaling. The proposed
method extracted corner, blob, and ridge interest points, and all the challenges specific to
the KTH dataset were thoroughly evaluated. Because of the large number of data involved,
the classification method chosen was KNN, known for its effectiveness with big data. The
proposed algorithm achieved an accuracy rate of 90% with this approach.

Additionally, Chakraborty and Mukhopadhyay [43] introduced a novel approach
called heterogeneous recurrent spiking neural network (HRSNN), which uses unsupervised
learning to classify spatiotemporal video activity recognition tasks. This approach was
applied to various datasets, including KTH, in addition to event-based datasets. They
achieved an accuracy rate of 94.32% specifically for the KTH dataset.

Moreover, Guo and Wang [44] proposed a model for recognizing human sports behav-
ior by utilizing specific spatiotemporal features to extract and analyze information from
large-scale video data. Their study improved the spatiotemporal deep belief network (DBN)
and focused on enhancing the belief networks in DL using different pooling strategies. The
proposed time–space DBN algorithm achieved an accuracy rate of 90% on the KTH dataset.

Finally, Liu et al. [45] introduced a learning algorithm that utilizes an evolutionary
membrane algorithm to optimize the neural structure and hyperparameters of a liquid-state
machine. To verify its effectiveness, the algorithm was tested on the MNIST and KTH
datasets through simulation experiments. The algorithm achieved the best result of 86.3%
accuracy on the KTH dataset.

Additionally, we conducted comparisons of the running time for each implemented
model. As illustrated in Table 7, the single-frame CNN exhibited the longest training time,
which is attributed to its construction from scratch and utilization of the traditional neural
network approach. Conversely, the KNN model demonstrated the lowest time, although
it yielded lower accuracy, 97%, compared with the higher accuracy of 98% achieved by
VGG-16, which was achieved in a reasonable time due to its application of the transfer
learning approach.

Table 7. Model running time comparison.

Algorithm Running Time

SVM 12.8 s

RF 10.1 s

KNN 9.7 s

Single-frame CNN 936.7 s

VGG-16 20.6 s

9. Conclusions

HAR is an important technology that has numerous applications across different
domains. The development of DL algorithms, availability of large datasets, and parallel
computing technologies have facilitated the development of accurate and real-time HAR
systems. As the field continues to advance, it has the potential to revolutionize various
domains, including health care, sports analysis, surveillance, and robotics.

In this study, we developed an imitation detection system using a CNN within the
context of HAR, specifically targeting clapping imitation. We utilized transfer learning
to build two models: a single-frame CNN and VGG-16. Performance evaluation using
various metrics, including confusion matrix, accuracy, precision, recall, and F1, indicated
that the VGG-16 model outperformed the single-frame CNN model.

One of the main challenges in HAR is the variability and complexity of human actions.
Actions can differ significantly in terms of speed, duration, and style, posing difficulties
in accurately recognizing and classifying all actions. Additionally, some actions may be
ambiguous or resemble other similar actions, making it challenging for the system to
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identify them accurately. Moreover, the need for large number of labeled data to effectively
train DL models is a challenge. Collecting and labeling data can be a time-consuming
and expensive process, and obtaining a diverse and representative dataset that includes
various actions and variations can be challenging. Real-world scenarios present further
challenges for HAR systems, as they can be unpredictable and noisy. The system needs
to handle changes in lighting conditions, occlusions, and other factors that can impact
its performance. Additionally, robustness to individual differences is crucial, as different
individuals may perform the same action in slightly different ways, requiring the system to
recognize and adapt to these variations.

Future work for our research will address the aforementioned challenges and improve
the system design to enable real-time analysis and visualization. In addition, enhancing
the system’s accessibility online could enhance its usability. Furthermore, the imitation de-
tection system could be expanded to recognize various movements beyond hand clapping,
thereby extending its applicability and versatility. Importantly, a key future direction of our
research is to advance the field and contribute to the development of more accurate and
tailored solutions for behavior recognition in children with ASD. The focus on behavioral
screening for children with ASD presents a valuable research point, and by integrating
the characteristics of behavioral screening for children with ASD and further refining the
methods proposed in this article, we could enhance the value and impact of our study.
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