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Abstract: Detecting irregular or arbitrary shape text in natural scene images is a challenging task that
has recently attracted considerable attention from research communities. However, limited by the
CNN receptive field, these methods cannot directly capture relations between distant component
regions by local convolutional operators. In this paper, we propose a novel method that can effectively
and robustly detect irregular text in natural scene images. First, we employ a fully convolutional
network architecture based on VGG16_BN to generate text components via the estimated character
center points, which can ensure a high text component detection recall rate and fewer noncharacter
text components. Second, text line grouping is treated as a problem of inferring the adjacency relations
of text components with a graph convolution network (GCN). Finally, to evaluate our algorithm,
we compare it with other existing algorithms by performing experiments on three public datasets:
ICDAR2013, CTW-1500 and MSRA-TD500. The results show that the proposed method handles
irregular scene text well and that it achieves promising results on these three public datasets.

Keywords: text detection; scene image; irregular; relation inference; GCN

1. Introduction

In recent years, with the popularity of smartphones and intelligent terminals, there has
been a growing demand for the extraction of text information from scene images (such as
those from intelligent transportation systems [1], geographic information systems [2], and
automatic scene understanding [3]). In response, scene image text detection has attracted
the attention of many researchers, and many text detection algorithms have been proposed,
such as CTPN [4], FCEnet [5], and Quadbox [6]. However, the detection of irregular scene
text is still an unsolved problem.

As methods based on connected regions are not affected by the lengths and shapes of
text lines, they can achieve better performance in irregular scene text detection cases, as
shown for CTPN [4] and TextSnake [7]. This kind of method usually employs convolutional
neural network (CNN)-based approaches to predict the adjacency relations between text
components. However, scene image texts are unfixed or irregular in terms of their positions,
sizes, and orientations, and their underlying structures are non-Euclidean structures. When
using a CNN to process such data, they need to be artificially converted to Euclidean-
structured data, which can reduce the final performance, meaning these methods cannot
directly capture relations between distant component regions due to the limitation of local
convolutional operators [8]. On the other hand, graph convolutional networks have obvious
advantages in processing non-Euclidean structured data. DRRG [8] detects irregular text
via a graph convolutional network. This method generates components in each text region
and then uses these text components to build a connected graph, where each node in the
connected graph represents a text component. Then, a graph convolutional network is used
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to infer the adjacency relations between the nodes in the connected graph to generate text
lines. However, this method produces a large number of noncharacter text components
during the generation process, which affects the detection speed and performance of the
approach. Inspired by DRRG [8], we propose an irregular scene text detection method
based on a graph convolutional network. The main flowchart of our method is shown in
Figure 1. During the text component extraction stage, to reduce the number of noncharacter
text components, the estimated character center point is utilized after detecting the text
regions with a fully convolutional network containing VGG16_BN as the backbone. In
the text line grouping stage, we consider the process of grouping irregular text lines as a
problem of inferring the adjacency relations of text components with a graph convolution
network. Our paper makes two primary contributions.

Figure 1. Overview of our overall architecture. Our network mainly consists of four parts: Text
component extraction, local inference graph establishment, deep adjacency relation inference, and
text line generation.

(1) Different from the literature [8], we combine the text regions created by a fully
convolutional network architecture based on VGG16_BN and the estimated character
center points to generate text components, which can obviously reduce the number of
noncharacter text components and help to improve the performance of text line grouping.

(2) We argue that the text line grouping problem can be posed as distinguishing edges
that are adjacent and nonadjacent to an undirected graph. A relation inference network
based on a graph convolutional network is designed to infer the adjacency relations of text
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components, in which the adjacency relationship between text components can be obtained
independently of the spatial distance between text components.

The remainder of this paper is organized as follows. Section 2 presents an overview of
previously published methods. Section 3 introduces the proposed method, and Section 4
reports the results of experiments conducted using the proposed system on the ICDAR2013,
MSRA-TD500, and CTW-1500 datasets. Finally, conclusions and suggestions for future
work are provided in Section 5.

2. Related Work

In this section, we summarize recent progress in arbitrary or irregular shape text
detection in scene images. Further information about text detection in scenes is available
in [1,9]. In recent years, detecting multioriented, arbitrary, or irregular text has become a
popular topic in the domain of text detection in scenes, and numerous studies [5,6,8,10–15]
concerning irregular text detection have been published. These methods can be roughly
divided into the following three categories.

Regression-based methods. These methods treat the problem of scene text detection
as a regression problem with text bounding boxes [14,16,17]. Textboxes [17] utilizes a
sliding window and a convolution kernel for long rectangular candidate boxes to adapt to
the shapes of text lines, but this method can only process horizontal texts and cannot work
well when encountering arbitrarily shaped text. ABCnet [14] uses eight Bezier curve control
points to describe arbitrarily shaped text, but it requires high-precision point controls, which
seriously affects the final results. EAST [18] was designed to yield fast and accurate text
detection results in natural scenes. Zhang et al. [16] proposed a novel adaptive boundary
proposal network for arbitrary shape text detection, which can learn to directly produce
accurate boundaries for arbitrary shape text without any postprocessing. Although these
methods have achieved good performance in horizontal and multioriented text detection
cases, they may fail to detect scene texts with large aspect ratios and directions.

Segmentation-based methods. These methods locate text instances based on pixel-
level classification [11,12,19,20]. They usually employ deep convolutional neural networks
to obtain the text segmentation region, and then several postprocessing steps are used
to obtain the final text boxes. PilexLink [12] separates texts lying close to each other by
predicting the pixel connections between different text instances. PSEnet [11] was proposed
as a progressive scale expansion postprocessing algorithm, yielding greatly improved
detection accuracy. Tian et al. [19] proposed a pixel embedding algorithm that calculates
the feature distances between pixels and groups the pixels in the segmentation results
according to these feature distances. These methods have obvious advantages when dealing
with the segmentation of text and nontext data. However, during the training process
with the text segmentation region, some irrelevant noncharacters may also be marked
as characters. This may result in text line adhesion in the segmentation results of these
methods, which can affect their segmentation performance.

Connected component-based methods. These methods usually detect individual
text parts or characters first and then link or group the detected individual text parts or
characters into final text instances by a postprocessing procedure. Because they have a
more flexible representation and adapt well to irregularly shaped text, these methods are
popular in arbitrarily shaped text detection [4,6–8,12,13]. PixelLink [12] separates texts
lying close to each other by predicting pixel connections between different text instances.
TextSnake [7] used ordered disks and text centerlines to model text instances, which made
it able to represent text in arbitrary shapes. However, TextSnake still needs time-consuming
and complicated postprocessing steps (centralizing, striding, and sliding) during inference.
DRRG [8] also proposed a text detection method, in which each text instance is constructed
by a series of ordered rectangular components(including text components and nontext
components). These methods based on individual text parts generally divide the text re-
gions into many parts (text parts and nontext parts), and many nontext parts are generated
simultaneously and are fed to the following steps, which may increase the complexity and
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difficulty of calculation. Wei et al. [10] proposed a multioriented text detection method that
generated character candidates by exhaustive segmentation. CRAFT [13] predicted charac-
ter region maps and affinity maps by weakly supervised learning. As the text components
contain only character regions, these methods can decrease the number of text components
fed to subsequent steps and reduce the complexity and difficulty of calculations.

Relational inference. The connected component-based methods are usually robust for
the lengths and shapes of text lines, but the performance of these methods mainly depend
on the following text line grouping. PixelLink [12] used embedding features to provide
instance information and generate the text area. In CRAFT [13], after predicting affinity
maps by weakly supervised learning, the affinity map was used to group characters into a
single instance. However, limited by the CNN receptive field, these methods cannot directly
capture relations between distant component regions by local convolutional operators. To
solve this problem, Zhang et al. [8] employed a graph convolutional network (GCN) to
further reason and deduce the likelihood of linkages between the component and its
neighbors based on local graphs. Their method achieved state-of-the-art performance on
publicly available datasets. Zhang et al. [16] adopted an adaptive boundary deformation
model combined with GCN and RNN to perform iterative boundary deformation to
obtain a more accurate text instance shape. Their method achieved impressive results on
challenging text-in-the-wild datasets such as TotalText [21].

3. Proposed Method

An overview of the overall architecture of our method is shown in Figure 1, and
the whole framework is mainly divided into text component extraction, local inference
graph establishment, deep adjacency relation inference, and text line generation. First,
the text regions are extracted by the feature extraction network, and then the character
text components are obtained according to the character center points in the text regions.
Second, according to the basic properties of character text components, the local inference
graph is established, which contains the basic connection relations between the character
text components. Based on the local inference graph, the deep relational inference network
further performs reasoning on the connection relationships between the character text
components. Finally, the reasoning results are divided into different text instances according
to the division of the connected regions.

3.1. Text Component Extraction

Text component extraction is an important preprocessing step whose main goal is to
precisely generate text components, which are used for the subsequent text line grouping
process. Different from other methods, we employ a two-stream convolutional neural
network framework, which combines text region generation with character center point
estimation to generate text components. This step can reduce the number of noncharacter
text components without dropping the recall rate of the text component detection results.

Text region generation. To obtain the text region (TR), we use feature pyramid net-
works with VGG16 as the backbone to extract the feature maps of the given image. Finally,
the feature maps are processed by classification and regression to obtain the text region.
The architecture of the feature extraction network is shown in Figure 2.
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Figure 2. Architecture of the feature extraction network, where CR represents the classification
and regression operation for the text components. CR ∈ RH×W×5 has 2 channels for the logistic
classification of text regions and 3 channels for the logistic regression of h1, h2, and θ.

Character center point estimation. To more accurately locate text components, we
refer to the CRAFT method [13]. A fully convolutional network with VGG16_BN as the
backbone is used to obtain a heatmap, which represents the probability that the pixel is the
center of the character area. Then, the character center points are estimated based on the
heatmaps. The workflow of character center point estimation is shown in Figure 3. First,
the connected regions are obtained by threshold segmentation from the heatmap, and then
the center points of the characters are obtained by the Otsu algorithm. The character center
points will be directly used in the subsequent text component generation. The restriction of
the character center point can ensure that the extracted text components are character text
components and that the character text components are more representative in terms of
feature attributes. On the other hand, the restriction of the character center point reduces
the generation of nontext components, which can reduce the computational complexity.

Figure 3. The workflow of character center node estimation. (a) Source image. (b) Heatmap.
(c) Segmentation result. (d) Character center points.

Text component extraction. The subsequent task is text component generation. Dif-
ferent from DRRG, we combine the text region with character center point estimation to
generate the text components, which can reduce the number of noncharacter text compo-
nents. The processing flow of this step is shown in Figure 3. First, we divide the character
center points into several groups according to the number of text regions, and the character
center points in each group are sorted according to their X coordinate values. Second,
we draw a straight line between two adjacent character center points in each group. As
shown in Figure 4c, let Li represent the straight line that passes through pi and pi+1, and
let Ki be perpendicular to the line Li passing through the character point pi. Let ti and bi
represent the intersection points between line Ki and the boundaries of region R1. Then, the
associated text component is represented by the rotated rectangle whose height (denoted
by Hi) is the distance from point ti to point bi. The width (denoted by Wi) of the rotated
rectangle is one-third of its height. According to this method, each character center point
corresponds to a text component. More details are shown in Algorithm 1.



Sensors 2023, 23, 1070 6 of 17

Algorithm 1 Text component extraction
Input: Character center point set P = {p1,p2. . . pn}; Text regions R = {R1,R2. . . Rm}.
Output: Text components TC = {TC1,TC2. . . TCn}
1: S←NULL
2: for i = 1:m do
3: Gi←NULL
4: for each p in P but not in S do
5: if p is in Ri then
6: add p to Gi
7: add p to S
8: for i = 1:m do
9: The points in Gi are sorted by their X coordinate values

10: for i = 1:m do
11: for each p in Gi do
12: Lp ←A line connecting node p to the next node
13: Kp ←A line perpendicular to Lp and passing through node p
14: tp,bp←The boundary of Ri intersects two points of Kp
15: Hp← distance(tp, bp)
16: Wp← Hp/3
17: θp← The angle between Kp and the X-axis
18: TCp← (Xp,Yp,Hp,Wp,θp)
19: add TCp to TC

20: return TC

Figure 4. The processing flow of text component generation. (a) The result of character center point
grouping. (b) Text region R1 and its character center points. (c) One of the text components.

Detection loss. The text component extraction loss consists of two losses and is
computed as

L = Lcls + Lreg (1)

where Lcls is a smooth L1 [22] regression loss and Lreg is a cross-entropy classification loss.
The classification loss Lclsis computed as

Lcls = Ltr + λ1Ltp + λ2Ltn (2)

where Ltr represents the loss for the TR; Ltp only calculates pixels inside the TR, and Ltn
only calculates the pixels outside TR. In scene images, the text instances usually occupy a
small area. Thus, the numbers of text pixels and nontext pixels are rather imbalanced. To
make the network training process focus more on pixels that are hard to distinguish, we
adopt the OHEM [23] strategy for the TR loss, in which the ratio between the negatives
and positives is set to 3:1. In our experiments, the weights λ1 and λ2 are empirically set to
1.0 and 0.5, respectively. The regression loss Lr is computed as

Lreg = LH + Lθ (3)
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LH = smoothL1
1
n

n

∑
i=1

(H̃i − Hi) (4)

Lθ = smoothL1
1
n

n

∑
i=1

(θ̃i − θi) (5)

where Hi and θi are ground-truth values; H̃i and θ̃i are the corresponding predicted val-
ues; H is the height of the text component in the ground truth; and n is the number of
text components.

3.2. Local Inference Graph Establishment

After extracting the text components, the next task is to group the text components
into text lines. We treat text line grouping as a problem of inferring the adjacency relations
between text components with a graph convolution network. Each node in the graph
corresponds to a text component. However, if all nodes on the fully connected graph are
directly used for inference, the training time and difficulty will be increased. To solve this
problem, DRRG [8] uses a method that generates a local inference graph, which consists of
the pivot node and its first-order and second-order neighbor nodes. The first-order neighbor
nodes consist of the 8 nearest neighbor nodes of the pivot, and the second-order neighbor
nodes consist of the 4 nearest neighbors of the first-order neighbor nodes. Different from
DRRG, our method only needs to consider four neighbor nodes, and we select the pivot
and four first-order adjacent nodes and two second-order adjacent nodes to build the local
inference graph, which can reduce the number of nodes participating in the reasoning
calculation. More details about the local inference graph establishment process are shown
in Figure 5. In our method, adjacency is judged by the similarity between nodes, and the
similarity Es between the pivot node p and another node q is defined as:

Es = 1− Epq/ max(H, W) (6)

Epq =
√
(Xp − Xq)

2 + (Yp −Yq)
2 (7)

where H and W are the height and width of the corresponding images, respectively. Epq is
the Euclidean distance between node p and node q.

Figure 5. Local inference graph generation. (a) Source image. (b) Graph of text component
nodes. (c) Local inference graph. “1st” indicates the first-order nodes and “2st” denotes the second-
order nodes.

3.3. Deep Adjacency Relation Inference

The local inference graph contains the basic adjacency relations between the text
component nodes. However, simple link mapping or embedding mapping cannot fully
reflect the adjacency relations between text component nodes, and we thus employ a
deep relational inference network based on a GCN to further infer the adjacency relations
between the text component nodes. In the deep adjacency relation inference process, we
only need to infer the adjacency relations between the pivot and the first-order adjacent
nodes, and we believe that the features of a node can also be affected by the features of its



Sensors 2023, 23, 1070 8 of 17

surrounding nodes, so the second-order adjacent nodes are used to provide fusion features
for the first-order adjacent nodes. The inputs of the GCN usually include the feature matrix
and adjacency matrix (denoted by X and A, respectively). The computational method of
the two matrices is as follows:

Feature matrix X. The text components within the same text instance have similar
geometric features, and each text component is made up of a rotated rectangle, so we
combine the deep features with the geometric features as features for the text components.
After extracting to a text component, we map its features to the RROI-Align layer and then
obtain its deep features. Next, we obtain the geometric features of the text component
through its five geometric attributes(X,Y,W,H,θ). According to the literature [8,24,25],
the geometric attributes of text components are embedded in high dimensional spaces
to obtain geometric features. The formulas for the embedding calculation are shown in
Equations (8) and (9). Finally, we concatenate the deep features and geometric features to
obtain the feature matrix X of the text components.

ε2i(z) = cos(
z

10002i/Cε
), i ∈ (0, Cε/2i− 1) (8)

ε2i+1(z) = sin(
z

10002i/Cε
), i ∈ (0, Cε/2i− 1) (9)

Adjacency matrix A. We extract the adjacency matrix A based on the preliminary
connection relations between the text component nodes in the local inference graph. For
each local inference graph, if the text component node i is connected with text component
node j, let A(i,j) = 1, otherwise, let A(i,j) = 0. We do not need to explore the adjacency
relation between the node and itself, and define A(i,i) = 0.

Graph convolutional network. After the feature matrix X and the adjacency matrix
A of the local inference graph are obtained, we employ the deep relation inference network
based on a GCN to further infer the adjacency relations between the pivot and its first-order
adjacent text component nodes. Fk represents the feature matrix of the output at layer k,
and the convolution layer is defined as follows:

Fk = σ((Xk ⊕ GXk)Wk) (10)

G = D̃−1/2 ÃD̃−1/2 (11)

D̃i,i = ∑
j

Ãi,j (12)

where Xk ∈RN×din , Fk ∈ RN×dout , and din, dout are the feature dimensions of the input
nodes and output nodes, respectively; Λ is the diagonal matrix and N is the number of text
components in the local inference graph; G represents the symmetric normalized Laplacian
of size N × N; the ⊕ operator denotes concatenation along the feature matrix; Wk is the
trainable weight matrix of layer k; and σ represents a nonlinear activation function. We only
back-propagate the gradients for the nodes on the 1-order neighbors in training, because
we only care about the linkage between a pivot and its first-order neighbors. For testing,
we also only consider the classification of 1-order nodes.

3.4. Text Line Generation

After completing the deep adjacency relation inference, the adjacency probability
matrix (denoted by S) is obtained by summarizing the probability information of all local
inference graphs. Let TH represent the threshold of the adjacency probability. If the
adjacency probability between node i and node j is greater than the threshold TH, the
edge between them is preserved (we also say that node i connects node j) and we let
S̃(i,j) = 1, otherwise S̃(i,j) = 0. Then, we use breadth-first search (BFS) to find the connected
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subgraphs, and the set of subgraphs is represented by L = {L1, L2. . . Lk}. Finally, the nodes
in each subgraph are sorted, and each element in the set L represents a final text line that
we need to find.

4. Experiments
4.1. Datasets and Evaluation Methods

ICDAR2013 dataset. The ICDAR2013 dataset is inherited from the benchmark used
in ICDAR 2011. Several images that are duplicated over training and testing sets of
the ICDAR 2011 dataset are removed. In addition, a small portion of the ground-truth
annotations is revised. A total of 229 images are used for training, and 233 images are used
for testing. However, this dataset is a collection of natural images having horizontal and
near-horizontal text appearances.

MSRA-TD500 dataset. The MSRA Text Detection 500 Database (MSRA-TD500) con-
tains 500 natural images, which are taken from indoor (office and mall) and outdoor (street)
scenes using a pocket camera. The indoor images are mainly signs, doorplates, and caution
signs, while the outdoor images are mostly guide boards and billboards in complex back-
grounds. The resolutions of the images vary from 1296 × 864 to 1920 × 1280. The text in
this dataset may be in different languages (Chinese, English, or a mixture of both), fonts,
sizes, colors, and orientations.

CTW-1500 dataset. The SCUT-CTW1500 dataset contains 1500 images: 1000 for train-
ing and 500 for testing. In particular, it provides 10,751 cropped text instance images,
including 3530 with curved text. The images are manually harvested from the internet,
image libraries such as Google Open-Image, or phone cameras. The dataset contains much
horizontal and multioriented text.

To evaluate the detection performance of the proposed method on the above three
datasets, the evaluation method proposed by Wolf and Jolion [26] is adopted to compare
the detection performance of our method with that of other methods through precision (P),
recall (R), and F-measure (F).

4.2. Implementation Details

The backbone of our network is the VGG16 model pretrained on ImageNet [27].
In the training phase, the input image size is set to 640 × 640, and data augmentations
(resizing, flipping, rotation, cropping, padding, etc.) are also employed to produce better-
performing models. During the training process, stochastic gradient descent (SGD) is
selected as the optimizer of the model, and the initial learning rate is set to 0.001. Then, the
learning rate decreases by 0.0001 every 100 epochs. All experiments are carried out on a
computer equipped with an RTX3080 GPU graphics card and the Linux16.04 system, and
the experimental environment includes Python3.6 and PyTorch1.7.

4.3. Ablation Study
4.3.1. Ablation Study on Text Component Extraction

To verify the effectiveness of our method in the text component generation stage, we
conduct a text component ablation experiment on the MSRA-TD500 and CTW-1500 datasets.
Our method is improved on the basis of DRRG, and we compare the experimental results
with those of DRRG. We visualize the generated text components of the two methods, and
the comparison results are shown in Figure 6. We also statistically compare the numbers
of text components and detection results of the two methods. Through the data analysis
comparison in Table 1, we find that the number of text components per image and the
detection time decrease significantly, with the number of text components decreasing by
32% and 26%, and the detection time decreasing by 40% and 51%. Compared with those
of DRRG, the F measures of our method on MSRA-TD500 and CTW-1500 are improved
by 2.3% and 3.5%, respectively. The experimental results show that our text component
generation method can both decrease the number of noncharacter text components and
also improve the performance of text detection.
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Table 1. Results of ablation experiments involving text component extraction.

Datasets Methods Ave_num Ave_time(s) P(%) R(%) F(%)

MSRA-TD500
DRRG 41 0.252 88.1 82.3 85.1

Ours 28 0.151 89.7 85.1 87.4

CTW-1500
DRRG 84 0.374 83.8 81.5 82.6

Ours 62 0.183 86.7 85.4 86.1

Note: Ave_num is the average number of text components per image; Ave_time is the average detection time
per image.

Figure 6. Comparative examples of the text component extraction results of our method and DRRG.
The first row contains the text component instances extracted by our method, and the second row
contains text component instances extracted by DRRG.

4.3.2. Ablation Experiment on Deep Relation Inference

Methods that directly detect text regions through feature extraction networks often
encounter difficulties when dealing with segmentation between text lines. For example,
two text regions are easy to segment into one region, such as a and b in Figure 7, or one
region can be divided into two regions, such as c, d, e, and f in Figure 7. The relation
inference network can achieve improved text region segmentation through the adjacency
relationships of the text components and then produce better detection results. To verify the
effectiveness of the adjacency inference network, we also conduct deep relation inference
ablation experiments on the MSRA-TD500 and CTW-1500 datasets. It can be found from
Table 2 that the precision, recall, and F-measure are increased by 6.5%, 6.6%, and 6.6%,
respectively, on MSRA-TD500. On CTW-1500, the precision, recall, and F-measure are
increased by 3.6%, 4.8%, and 4.3%, respectively. The improvement of these performance
indices also proves the effectiveness of our proposed adjacency inference network.
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Figure 7. Experimental results of two detection methods. The images in the top row are the detection
results obtained directly through the feature extraction network, and the images in the next row are
the detection results obtained with the addition of the GCN-based relation inference network.

Table 2. Results of ablation experiments of deep relation inference.

Datasets Methods P (%) R (%) F (%)

MSRA-TD500
Baseline 83.2 78.5 80.8

Baseline+GCN 89.7 85.1 87.4

CTW-1500
Baseline 83.1 80.6 81.8

Baseline+GCN 86.7 85.4 86.1
Note: Baseline is directly obtained by text region; Baseline+GCN is a relation inference network based on GCN
added to Baseline.

4.4. Experimental Results and Discussion

Experiments on the ICDAR2013 dataset. We conducted experiments on the IC-
DAR2013 dataset, and some examples of the experimental results are shown in Figure 8.
The results show that the method in this paper achieves a good detection effect on this
dataset. The comparison between the detection results of our method and other text de-
tection methods is shown in Table 3. The data in Table 3 show that our method achieves
92.8% precision, an 87.1% recall rate, and an 89.9% F-measure in the detection performance
evaluation. The recall rate and F-measure of our method are better than those of the
other methods.

Experiments on the MSRA-TD500 dataset. To verify the effectiveness of our method
on a multilanguage scene text dataset, we also carry out experiments on the MSRA-TD500
dataset. Some examples of the experimental results are shown in Figure 9, and a comparison
with the results of other methods is shown in Table 4. Table 4 shows that our method
also achieves good results on the MSRA-TD500 dataset, with precision, recall rate, and
F-measure values of 89.7%, 85.1%, and 87.4%, respectively. Compared with other methods,
our method achieves the best recall rate and F-measure value.

Table 3. Experimental results of various methods on the ICDAR2013 dataset.

Methods P (%) R (%) F (%)

Wei Y et al. [28] 83.5 77.2 80.2
Wei Y et al. [10] 87.3 81.1 84.3
Gao et al. [29] 90.0 80.0 85.0
CAST [30] 94.0 69.0 80.0

Ours 92.8 87.1 89.9
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Figure 8. Detection examples of the proposed method in the ICDAR2013 dataset.

Table 4. Experimental results of various methods on the MSRA-TD500 dataset.

Methods P (%) R (%) F (%)

SegLink [31] 86.0 70.0 77.0
TextField [32] 87.4 75.9 81.3
CRAFT [13] 88.2 78.2 82.9
Wan et al. [33] 81.6 77.2 79.3
Wang et al. [34] 85.0 82.0 83.0
DRRG [8] 88.1 82.3 85.1
R-YOLO [35] 90.2 81.9 85.8
Zobeir Raisi et al. [36] 90.9 83.8 87.2
Liao et al. [37] 91.5 83.3 87.2

Ours 89.7 85.1 87.4

Figure 9. Detection examples obtained by the proposed method on the MSRA-TD500 dataset.

Experiments on CTW-1500 dataset. In addition, to verify the robustness of our
method in terms of detecting irregular scene text, we also select the CTW-1500 irregu-
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lar and multidirectional text dataset for experiments. Some examples of the experimental
results are shown in Figure 10, and the performance parameter comparison with other
methods is shown in Table 5. Table 5 shows that the recall rate and F-measure of our
method are better than those of other methods, reaching 85.4% and 86.1%.

Table 5. Experimental results of various methods on the CTW-1500 dataset.

Methods P (%) R (%) F (%)

TextDragon [38] 84.5 82.8 83.6
TextField [32] 83.0 79.8 81.4
Zhang et al [16] 87.7 80.6 84.0
CRAFT [13] 86.0 81.1 83.5
Wan et al. [33] 85.1 78.2 81.5
DRRG [8] 85.9 83.0 84.4
CountourNet [39] 83.7 84.1 83.9
PCENet [5] 87.6 83.4 85.5

Ours 86.7 85.4 86.1

Figure 10. Detection examples produced by the proposed method on the MSRA-TD500 dataset.

Discussion. The experimental results show that after adding constraints, our method
can reduce the generation rate of noncharacter text, which in turn reduces the detection rate
of nontext and improves the recall rate. In addition, the deep relational inference network
further modifies the text regions obtained by the FPN, and the text detection effect is further
improved. In addition, the deep relational inference network further corrects the text
regions obtained by the FPN, and the text detection effect is further improved. However,
our method is not ideal when dealing with the detection of overlapping text (Figure 11a),
low-resolution text (Figure 11b), and partially occluded text (Figure 11c). The main reason
for this is that the character detection effect is impacted during the detection process.
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Figure 11. Some failed detection examples of the proposed method: (a) overlapping text; (b) low-resolution
text; (c) partially occluded text. The red lines mark text boxes, and the text markers ¬–´ represent the text
that is un-detected.

4.5. Generalization Ability

To further verify the effectiveness of our method, we randomly collected some images
of natural scenes containing irregular text from the internet and conducted experiments
on the collected images. The experimental results are shown in Figure 12. As shown in
Figure 12, the proposed method is robust to irregular scene texts, which shows that the
proposed method has a good generalization ability. We believe that two main factors lead to
the good results of our approach. On the one hand, we employ the connected component-
based method, which is robust to the shapes and sizes of scene texts, to generate text
commponents in text component stage. On the other hand, the GCN can obtain a better
adjacency relation between two text component nodes during the text line grouping stage.
The above shows that the generalization ability of our method is good.

Figure 12. Examples of internet and life scene text images.
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5. Conclusions

This paper presents an irregular text detection method based on a graph convolution
network. In the text component extraction stage, we combine character center point
estimation with the text regions to extract more accurate text components. In the text line
grouping stage, we treat text line grouping as a problem of inferring the adjacency relations
of text components. From the experimental results, it is shown that our method is effective
and robust in irregular scene text detection scenarios and achieves promising results on
three public datasets. Future work will focus on two aspects.

(1) We will solve the limitations of the current methods, such as the detection of
overlapping text, low-resolution text, and partially occluded text in scene text images.

(2) Combining our method with text recognition, we will design an end-to-end text
detection and recognition approach.
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