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Abstract: The recognition of hand signs is essential for several applications. Due to the variation
of possible signals and the complexity of sensor-based systems for hand gesture recognition, a
new artificial neural network algorithm providing high accuracy with a reduced architecture and
automatic feature selection is needed. In this paper, a novel classification method based on an extreme
learning machine (ELM), supported by an improved grasshopper optimization algorithm (GOA)
as a core for a weight-pruning process, is proposed. The k-tournament grasshopper optimization
algorithm was implemented to select and prune the ELM weights resulting in the proposed k-
tournament grasshopper extreme learner (KTGEL) classifier. Myographic methods, such as force
myography (FMG), deliver interesting signals that can build the basis for hand sign recognition. FMG
was investigated to limit the number of sensors at suitable positions and provide adequate signal
processing algorithms for perspective implementation in wearable embedded systems. Based on the
proposed KTGEL, the number of sensors and the effect of the number of subjects was investigated
in the first stage. It was shown that by increasing the number of subjects participating in the data
collection, eight was the minimal number of sensors needed to result in acceptable sign recognition
performance. Moreover, implemented with 3000 hidden nodes, after the feature selection wrapper,
the ELM had both a microaverage precision and a microaverage sensitivity of 97% for the recognition
of a set of gestures, including a middle ambiguity level. The KTGEL reduced the hidden nodes
to only 1000, reaching the same total sensitivity with a reduced total precision of only 1% without
needing an additional feature selection method.

Keywords: extreme learning machine; force myography; grasshopper optimization algorithm;
k-tournament selection

1. Introduction

Hand gestures are part of behavioral attributes that are authentic (emphasize or help
to express a thought or feeling), distinguishable (present a known meaning that depends
on culture, language, and use case), and have unique physiological patterns (physiologi-
cal signals and phenomena resulted from various hand gestures present varying unique
properties). Hand gesture recognition is essential in several applications, such as sign
language, mobile security systems, smart homes, and other IoT-based applications. In
addition, hand gesture recognition involves several challenges concerning the sensors and
machine learning algorithms, including the system design, which needs to fit different
persons, and the influence of the physiological state of the subject on the collected signal
quality. Hand grasp recognition and hand sign recognition are the main subtopics of hand
gesture recognition. The first is dedicated to the identification of the grasping nature, and
the object-handling tasks while sign recognition is dedicated mainly to communication
between persons or between persons and intelligent agents. Hand sign recognition is
valuable, e.g., for communication over long distances, in noisy environments, and with
people with disabilities. Identifying hand signs with camera-based systems is challeng-
ing in such environments and suffers from limited resolution, significant distances, and
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varying light conditions. Myographic measurement methods and sensors, which allow
the direct collection of information on the muscle state during the gesture performance,
can be of great importance in overcoming these limitations. Techniques such as surface
electromyography, force myography, and surface electrical impedance myography show
promising performance for gesture detection, even if only a few current investigations exist
for sign language recognition based on myographic signals. Another challenge for hand
sign classification is in the level of algorithms and features. The classification algorithm
must get a suitable feature subset to be able to realize a high classification accuracy. In addi-
tion, the quality of the classification is variable, along with the number of features. Hence,
the control of the feature number is essential since a limited feature number may cause
data overlapping, which means that the classification becomes not sufficiently grounded.
Too many features increase the dimension of the problem, and more complex classification
algorithms will be needed. Thus, the goal of feature selection is to define the best subset
of features by directly removing the irrelevant and redundant features from the data and
improving the classification performance and stability. Moreover, reduced resource con-
sumption is required to ensure the suitability of the classification algorithm with wearable
hand gesture recognition systems. Most investigations adopt a feature selection based on
metaheuristic optimization methods in binary format. The classification accuracy depends
on many factors, including the gesture types and numbers, the measurement accuracy of
the myographic signals, and the choice of the classifier itself. Furthermore, the classification
method should be suitable for solving multiclass problems with minimal calculation. Such
property is reported to be insured by an extreme learning machine (ELM). It is a single-layer
feed-forward network (SLFN) with randomly generated input weights and biases and
output layer weights calculated via linear algebra methods allowing fast training in only
one iteration, even in multiclassification problems. However, ELM suffers from the incerti-
tude caused by this random weight generation. Many optimization methods have been
suggested in the literature to solve this problem, including controlling the randomization
and pruning the hidden nodes. However, weight pruning is not sufficiently investigated
for the ELM architecture’s optimization. This work proposes a new approach for ELM
network optimization based on a coupled weight and feature selection that allows not only
the elimination of irrelevant weights in the network but also an integrated feature selection
and hidden node number reduction.

The paper is structured as follows: In Section 2, related works are described, which
provide information on the state of the art of ELM pruning and FMG-based gesture recog-
nition. In Section 3, the methodology of implementation of a k-tournament grasshopper
extreme learner, the ELM weight selection concept, and the proposed KTGEL is detailed.
Section 4 shows the study of the number of FMG sensors for an efficient hand sign recogni-
tion system and the influence of the number of subjects on the KTGEL performance. This
section also provides the experimental investigation on the performance of the KTGEL
compared with the state of the art and with a variation of the ambiguity level in the data
set followed by the conclusion.

2. Related Work

In the first part of this section, we present an overview of applied methods for pruning
an extreme learning machine to reduce its model architecture while keeping its good
performance and exposing the gap in approaches exploited to fulfill this aim. In the second
part, an overview of hand gesture recognition based on FMG sensors is presented, focusing
on the number of sensors, the features, the number of subjects, and the American Sign
Language recognition as an application.

2.1. Pruning of Extreme Learning Machine

An extreme learning machine (ELM) is a single-layer feed-forward network (SLFN)
where the fundamental concept is that the weights and biases of the hidden layer are
randomly generated. Moreover, the output layer weights are calculated using a least-
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squares solution defined by the outputs of the hidden layer and the target [1]. Thus, the
weights that connect the hidden nodes to the outputs can be trained very fast in one
iteration according to the pseudocode presented in Algorithm 1.

Algorithm 1: Pseudocode of an extreme learning machine [2].

1 Given a training set N = {(xi, ti)|xi ∈ Rn, ti ∈ R, i = 1 · · ·N}, activation function
G(w, b, x), and number of hidden nodes Ñ ;

2 Assign random input weights wi, and biases bi, for i = 1 · · · Ñ ;
3 Calculate the hidden layer output matrix H;
4 Calculate the output weight matrix

β = H†T (1)

where H† is the Moore–Penrose generalized inverse of matrix H and
T = [t1 · · · tN ]

T ; The output weight matrix β;

Since its first introduction, the ELM has been a subject for optimization as it represents
a promising possibility for embedded systems and online real-time classification tasks.
However, it also presents some limitations, especially in its hidden node number and
weights’ randomization method. An ELM also randomly generates the input weights and
the bias of hidden nodes, which has the following consequences: first, a slow learning speed
caused by the minor roles played by some hidden nodes with too small output weights on
the network’s output; second, a slow error reduction during the training process is caused
by these invalid hidden layer neurons, which increase the network complexity [3]. To solve
this, most of the proposed algorithms focus on simplifying the computation process, finding
the optimized depth of the SLFNs, or expanding the range of the generalized methods
via multilayers or a complex domain. However, for random weight optimization, the
proposed solutions tend to replace the completely randomly generated input weight and
bias with fully controllable metrics, which turns the ELM into a controlled method and
reduces the benefits of the weights’ randomness in the ELM results. The optimally pruned
ELM (OP-ELM) was proposed by Miche et al. [4] based on the ELM algorithm in terms
of kernel selection and using the methodology of pruning the neurons, leading to more
efficient algorithms and improving the ELM problems experienced when using irrelevant
or correlated data [4,5]. Compared to the ELM, the OP-ELM enhanced the robustness
and accuracy of the network. However, it had a higher computational time, affecting the
accuracy and training time [6,7]. Genetic algorithms for pruned ELM (GPA-ELM) were
proposed by Alencar et al. [8] to prune the hidden layer neurons based on multiobjective
GAs. It combined the advantages of ELMs and GAs to optimize the performance of the ELM
classifiers and prune the maximum possible number of hidden neurons. In [9], the authors
proposed the PSO-ELM for optimizing the input feature subset selection and the number of
hidden nodes to enhance the classification performance of ELM in the application of power
system disturbances classification. The experimental results showed that the proposed
PSO-ELM was faster and more accurate than the original ELM algorithm. However, the PSO
which was used to perform those optimizations was reported to be outperformed by other
newly introduced swarm intelligence optimization methods, including the GOA [10–12]. In
the literature, the main difference between the various pruned ELM versions is the different
optimization methods implemented to modify the ELM architecture to realize the hidden
nodes’ pruning. However, there is no specific idea proposed so far about weight selection
without controlling the random initialization or connection pruning optimization, which
is an integral part of extreme machine learning in data classification. Hence, in this work,
optimizing the ELM by proposing a weight selection by an improved version of the GOA
after the initial random initialization is presented as a methodology for connection pruning
in ELMs.
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2.2. Sensors for FMG

Since it is possible to perform FMG with either pressure or strain sensors, unlim-
ited choices of sensors are available. However, in 2006, Amft et al. [13] compared the
force-sensitive resistor (FSR) as a pressure sensor with a fabric stretch sensor (FSS) as a
strain sensor and surface electromyography (sEMG) for monitoring muscles’ contraction
for grasping, upper-hand activities, and object lifting. The feasibility of muscle activity
detection by the strain and pressure sensors as alternatives to sEMG was confirmed in
that study. Moreover, the experimental results showed that the pressure sensors were
more suitable as a future alternative to sEMG for gesture recognition applications as they
were able to monitor the contraction of more muscle groups than the strain sensor. Hence,
the FSR pressure sensor for FMG measurement was chosen for this study. Moreover, as
commercial sensors were more suitable for this work’s aims, a study of the FSR sensors
market and publications was conducted. As the cost for various FSR sensors were almost
similar, and the FSR sensor by Interlink Electronics and the FlexiForce™ by Tekscan Ink
were the most popular commercial sensors, which were used in 55% of publications about
FMG applications until 2019 [14], the sensor choice range was limited between both these
sensors. Their characteristics extracted from their data sheets are shown in Table 1.

Table 1. FSR Interlink and Flexiforce properties from data sheets [14].

Title 1 Interlink FSR (FSR402) Flexiforce (FLX-A201-F)

Minimum actuation force (N) 0.1 N/A
Force sensitivity range (N) 0.1–10 0 to 4.4, 0 to 445

Single-part force repeatability ±2% ±2.5%
Part-to-part force repeatability ±6% ±40%

Drift <5% per log10 (time) <5% per log10 (time)
Hysteresis +10% <4.5%

Response time (µs) <3 <5
Linearity error N/A <±3%

Vecchi et al. compared the previous sensors on several points, such as repeatability,
time drift, or dynamic force measurement via an experimental process. The results showed
that the FlexiForce sensors had better performance in terms of linearity, repeatability, time
drift, and dynamic accuracy. However, Interlink’s FSR was more robust [15]. Another
study that compared the same sensors with the LuSense PS3 (Standard 151) sensor was
conducted in 2006 and concluded that the FlexiForce had not only the highest precision but
also the highest noise with the slowest response time and the highest resistance dropping
from the nominal value during subsequent tests [16]. Hence, each sensor has its pros and
cons. The choice was based on the response time as a real-time and fast system was the
goal in this study’s outlook. Thus, the Interlink’s FSR possessing the lowest response time
in the data sheet (see Table 1) and in experiments [16] was chosen to perform the FMG
data collection in this work. A typical Interlink Electronics’s FSR sensor consists of a top
carbon-based ink layer and a bottom conductive substrate layer with a spacer adhesive
located in the middle of the two layers [17]. Therefore, during FMG collection, as the
hand exerts a force, the corresponding muscles on the arm produce a deformation on the
skin’s surface. These deformations apply pressure to the surface of the top layer of the FSR,
changing its resistance. These changes in resistance can be translated into corresponding
changes in voltage by a voltage divider structure resulting in the FMG distinct patterns
that could be used for hand gesture recognition with the best sensitivity, which is ensured
by a reference resistance of 100 kΩ in the voltage divider [17,18].

2.3. Hand Gesture Recognition Based on FMG Sensors

FSRs have been used for hand gesture recognition often in recent years, sometimes
alone [19], sometimes in combination with sEMG [20] or other sensors [21]. In these studies,
the sensors were mostly worn on the forearm or the wrist [14]. In some rare cases, the
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sensors were worn while attached to a glove [20]. Moreover, FSR-based hand gesture
recognition studies have practically focused on grasping [22], upper-arm activities such as
pinching or rotations [21], and robotic hand [23] or prostheses control [24]. Moreover, there
have been studies comparing grasp vs. nongrasp gestures [19]. However, sign language
recognition have rarely been investigated with FMG signals and have never been the
focus of any published scientific work except a few [18,25,26], where the feasibility of sign
language recognition by FMG-based systems and investigations about the measurement
system and the recognition with classic classification methods were conducted. Many
studies have shown the advantages of FMG over EMG signals [19,27]. For example, FMG
does not require much skin preparation and is less affected by skin impedance or sweat.
Furthermore, FMG is characterized by its stability and robustness to external electrical
noise; in addition, it does not necessitate the same amount of signal processing, and feature
extraction as EMG [19]. Thus, all of these factors were the main reason for making the
implementation of FMG in wearable devices more reliable in terms of cost and equipment.
The oldest research discussing FMG features is from 2017 [28], while most research has
implemented FMG as raw signals for gesture recognition. The discussed features for
force myography are primarily used in grasping detection, robot hand control, and gait
analysis [28–32]. Many researchers have achieved hand gesture recognition based on various
machine learning methods. In addition, the hand gesture term includes a massive number
of gestures with different levels of force and acceleration from sign language alphabets that
generally cover postures and some slight motions to grasping and upper-arm activities that
contain the interaction with objects and a high level of muscle contraction force. As for the
different myography measurement techniques considered in this work, the high force level
ensures a higher representation of the gesture. Most hand gesture recognition studies in
the literature have focused on grasping and upper-arm activities. In contrast, sign language
recognition is still an application where more investigations for features and classification
methods are mandatory. Hence for the experimental part of this work, the application
focus is on sign language recognition and, more specifically, American Sign Language (ASL)
recognition. An overview of publications discussing American Sign Language recognition
based on FMG as a standalone system or combining FMG and sEMG are listed in Table 2.

Table 2. State of the art for FMG-sensor-based ASL recognition.

Sensors Features Subjects Gestures Classifier Accuracy

8 colocated MAV, WL 5 10 LDA 91.6%
sEMG FMG ZC, SSC

[33]

8 FMG MAV 5 10 LDA 80%
Self-produced

[33]

16 FMG RAW signal 12 16 LDA 96.70%
[19]

8 nanocompos-
ite sensors

min, max, mean,
RMS, median, STD 10 10 ELM 93%

[34]

For FMG-based hand gesture recognition studies in the state of the art, the number
of sensors is relatively high for portable and user-friendly systems. Moreover, the use
of raw FMG signals in most of the studies limits the signal abilities and the machine
learning methods’ performance. In addition, the applications of FMG are mainly focused
on grasping and robotic hand or prosthesis control where a significant muscle contraction
force is included, and they are rarely investigated for sign language recognition. From
Table 2, for force myography, only one publication presented the sign language recognition
by FMG as a standalone system based on commercial sensors [19]. However, that previous
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study was based on raw FMG only. In our studies in [18,25,35], the feasibility of sign
language recognition by a reduced number of FMG sensors up to four and the investigation
of various features for the recognition from an FMG-based bracelet with classic classification
methods were conducted. In [25], it was proved that for a low-level ambiguity in the gesture
set that the ELM could recognize the signs with an accuracy of 89.65% based on six standard
features extracted from signals collected by four commercial sensors. In [35], the ELM
accuracy for sign recognition based on the same extracted features as in [25] from the FMG
signals collected by six sensors was equal to 91.11%. In this work, an optimized classifier is
proposed, and its adequate minimal number of sensors to recognize various sets of signs
with different levels of ambiguities is investigated.

3. Proposed k-Tournament Grasshopper Extreme Learner

The ELM has been proven in the literature to outperform other algorithms in terms of
accuracy, speed, and model size. Therefore, it is more suitable for embedded systems. How-
ever, the weights’ random tuning remains a source of incertitude in terms of the optimal
result this algorithm could reach. Researchers with different approaches proposed many
optimizations of ELMs to reduce this effect. However, the used optimization methods were
relatively old algorithms in the field. New optimization methods with good performances
in various applications have been newly proposed and could give better results. Moreover,
none of the proposed methods investigated the selection of randomly generated weights to
optimize the architecture of an ELM without controlling its randomization process.

3.1. ELM Weights Selection

A neural network weight selection is one of the pruning types of network architecture,
also named connection pruning, where the number of connections in the network is reduced.
Another type is node pruning, where the number of hidden nodes is reduced by selecting
the more significant hidden nodes [36]. For ELM pruning, researchers have proposed
several methods for node pruning [8,37–42], but the weight pruning problem has not yet
been studied. To cover this gap in the ELM architecture optimization strategies, a weight
selection of the ELM is proposed in this paper as shown in Figure 1.

Figure 1. Proposed ELM architecture optimization strategy.

The selection of initially generated weights proposed in this work has the aim of
keeping only the best subset of weights, which shares the same idea as other feature
selection methods. In the latter methods, the goal, in general, is to define the best subset of
features to improve the performance of the classification stage. Moreover, feature selection
is important because the quality of the classification is variable along with the number of
features. Hence, controlling this number is important because when it is too small, it may
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cause an overlap of data, which means it is not enough for the classification. However, if the
number of features are too great, the dimension of the problem increases, and more complex
classification algorithms are needed. Similar to the number of features, the number of weights
in the ELM also impacts the overfitting, the model size, and the complexity. From there comes
the inspiration to use a feature selection approach as a strategy for ELM weights’ selection.

3.2. k-Tournament Grasshopper Extreme Learning Machine for Selection Problems

First, the tournament process is included in the grasshopper repositioning process, as
shown in the pseudocode in Algorithm 2 by controlling the best population evaluation.

Algorithm 2: k-Tournament grasshopper optimization algorithm.

1 Initialization of CMin, CMax and MaxIteration;
2 Initialize the population of particles Xi;
3 Evaluate each solution in the population;
4 Set T as the best solution;
5 while t < MaxIteration do
6 Update c using the controlling parameter equation;
7 for each solution do
8 Normalize the distances between the grasshoppers in [1, 4];
9 Update the step vector ∆Xi(i) of the current solution;

10 Bring the current grasshopper back if it goes outside the boundaries;

11 Conduct a K=2 tournament between the current solution and the rest of the
population;

12 Update T with the winners of the tournaments.;
13 t = t + 1;

14 Return T

Furthermore, to perform the selection of this algorithm, the S-shaped transfer function
is applied to the velocity of the search agents in the same way shown in the binary grasshop-
per optimization algorithm proposed in [43] presented by the pseudo-code in Algorithm 3
before combining it with the extreme learning machine shown in the Algorithm 1 as the
wrapper’s evaluation classifier.

Algorithm 3: Binary grasshopper optimization algorithm (BGOA) [43].

1 Initialization of CMin, CMax, and MaxIteration;
2 Initialize the population of particles Xi;
3 Evaluate each solution in the population;
4 Set T as the best solution;
5 while t ≤ MaxIteration do
6 Update c using the controlling parameter equation;
7 for each solution do
8 Normalize the distances between the grasshoppers in [1, 4];
9 Update the step vector ∆Xi of the current solution;

10 for i = 1 : dim do
11 if rand ≥ T(∆Xt+1) then
12 Xt+1(i) = 1;
13 else
14 Xt+1(i) = 0;

15 t = t + 1;

16 Return T;
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For this wrapper, the ELM was chosen as the evaluation method of the selected subsets be-
cause it outperformed other classification methods customarily used for wrapper building, such
as KNN and SVM, in terms of accuracy, speed, and minimal computation complexity [44–48].
Moreover, searching for the best feature subset in feature selection is a challenging problem,
especially in wrapper-based methods. This is because the selected subset needs to be evaluated
by the learning algorithm (e.g., classifier) at each individual optimization step. Hence, a proper
optimization method is required to reduce the number of evaluations, which is ensured by the
ELM’s ability to solve multiclass problems in one iteration [49].

3.3. k-Tournament Grasshopper Extreme Learner

The final proposed KTGEL is shown in Algorithm 4. The proposed approach tends
to optimize the extreme learning machine by selecting the most significant weights from
the randomly generated ones during its initialization. The weight selection is integrated
into the training process of the ELM. Moreover, the proposed KTGEL inherits the training
procedure of the ELM, including the coupling between the input data and the input weights.
Hence, the KTGEL is able to perform the feature selection within its training phase as an
effect of the weight coupling relation with the input data during this phase. Each weight is
coupled to one feature, but one feature is coupled to many weights, resulting in a feature being
only eliminated if all its related weights are eliminated. Hence the proposed k-tournament
grasshopper extreme learner is estimated to provide a better classification accuracy than the
original ELM classifier on different biosignal databases for hand gesture recognition with a
smaller model size as nonselected weights are replaced by zero so that no more computations
are devoted to them.

Algorithm 4: Pseudocode of the proposed k-tournament grasshopper extreme learner.
Input: Given the training set N = {(xi, ti)|xi ∈ Rn, ti ∈ R, i = 1 · · ·N}, the

activation function g, and the number of hidden nodes Ñ
Output: The output weight matrix β and selected feature vector.

1 Assign random input weights wi and biases bi, for i = 1 · · · Ñ;
2 Initialize the tournament size and maximal iterations;
3 Initialization of CMin, CMax; Initialize the population of grasshoppers Xi:(wi,xi);
4 Run "tournaments" among the k individuals chosen at random from the

population;
5 The winner of each tournament is selected as the best solution;
6 while t < MaxIteration+1 do
7 Update c;
8 for each solution do
9 Normalize the distances between the grasshoppers in [1, 4];

10 Update the step vector ∆Xi of the current solution;
11 for i = 1 : dim do
12 if rand ≥ T(∆Xt+1) then
13 Xt+1(i) = 1;
14 else
15 Xt+1(i) = 0;

16 Conduct a k = 2 tournament between the current solution and the rest of the
population;

17 Update T with the winners of the tournaments;
18 t = t + 1;

19 Return T: (w,x);
20 Calculate the hidden layer output matrix;
21 Calculate the output weight matrix: β = H†T where H† is the Moore–Penrose

generalized inverse of matrix H and T = [t1 · · · tN ]
T ;
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4. Experimental Investigations

In this section, three performance metrics were investigated: the accuracy in compari-
son with other works in the state of the art, reproducing the same set of gestures performed
with the same number of subjects under as many similar conditions as possible, the influ-
ence of the number of sensors in relation with the number of subjects on the classification
accuracy, and the influence of the ambiguity level in the set of gestures in comparison
with an ELM after a feature selection step. The ELM and KTGEL were initialized with
3000 hidden nodes and compared on the data collected from eight FSR sensors with a
total of 48 initial features in terms of accuracy, the final network architecture after weight
selection by the KTGEL, the average sensitivity, and the average precision. To investigate
the effect of the ambiguity level between gestures on their classification based on the FMG
eight-sensor band, 40 participants from both genders in the age range between 20 and
32 years old participated in the collection of the 27 letters, the ASL numbers from 0 to
10, and the expression “I love you.”. Each subject participated in collecting only 10 or 9
signs with ten repetitions for each. In total, the collected data included 39 signs from the
ASL, with 100 observations for each one. From this database, two sets of gestures were
exploited in this paper for the investigations of the ambiguity level influence on the KTGEL
performance. As for the evaluation with the accuracy, both the micro precision and the
micro recall are conventionally used for a multiclassification assessment, where TPj, FPj,
FN j are, respectively, the numbers of true positives, false positives, and false negatives of a
class j, to show the overall classifier precision and sensitivity [50].

micro-P =
∑m

j=1TPj

∑m
j=1TPj + FPj

(2)

micro-R =
∑m

j=1TPj

∑m
j=1TPj + FNj

(3)

4.1. Comparison with the State of the Art of FMG-Based Gesture Recognition

In Table 3 a comparison between this work and the 2 studies from the state of the
art was conducted to compare the algorithms’ performance while keeping the number
of sensors, observations, and subjects. In [33], the FMG signals were collected with eight
self-produced sEMG-FMG colocated sensors placed on the forearm of the subjects, and
in this work, eight commercial FSR sensors were integrated into a wristband. In [34],
carbon-nanotube-based FMG sensors were customized to produce more sensitive sensors
with a higher ability to detect signs than commercial FSR sensors.

Table 3. Performance of the proposed classifiers vs. the state of the art of ASL numbers’ recognition
by FMG.

Work Hand
Signs

Sensor
No. Sensor Classifier Accuracy

in % Observations Subjects

[33] 10 8 Customized LDA 80.00 50 5
This work 10 8 FSR KTGEL 88.00 50 5

[34] 10 8 Customized ELM 93.00 100 10
This work 10 8 FSR KTGEL 98 100 10

For FMG, the comparison with [33] showed that the proposed FMG bracelet located on
the wrist and commercial sensors could provide better accuracy for ASL numbers’ classifi-
cation. Moreover, the comparison with [34] was made with the exact same gestures proving
that the KTGEL outperformed the ELM in terms of accuracy, even while implemented on
data collected with commercial sensors. In contrast, the data in [34] were collected with
optimized sensors that had been proved to outperform the commercial FSR sensors when
the same signal processing was applied to data collected by both sensors.
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4.2. Investigation of the Sensors and Subject Number Influence

Force myography is rarely used for sign language recognition, and it has only been
used with raw signals. Thus, it has not been sufficiently investigated in the literature. That
is why it was necessary to conduct tests and observe the results. Both the number of sensors
and the convenient features should be examined in this part. The idea is to find the optimal
number of sensors from the wrist sensor band since previous studies [19] confirmed that the
wrist-positioned band had more sensitivity to ASL than forearm bands. To minimize the
sensors’ number and thereby ensure user comfort, two bands of six and eight commercial
pressure sensors were designed, realized, and tested to find the band that led to the best
accuracy for the ASL gesture recognition system. In the first band, eight sensors were
placed with a gap of 2 cm around the wrist, while the second band had six sensors with
a 2.25 cm gap between sensors. In all systems, Teensy boards with synchronized ADCs
were employed as acquisition boards with a sampling frequency of 100 Hz. The two-band
system was used to collect data during the performance of ASL signs according to the
measurement protocol in Figure 2.

Figure 2. FMG signal collection protocol.

The first investigation aimed to test the feasibility of finger sign detection by the wrist
FSR bands, including a small number of sensors compared to the state of the art, where the
previous studies that implemented sign language included 16 commercial sensors [19] or
8 customized sensors [33,34]. Hence, only one person was asked to wear one of the two
bands each time and perform the nine ALS numbers from one to nine shown in Figure 3
for twenty trials each.

Figure 3. Performed ASL numbers from 1 to 9 .

Gestures have been performed with a resting of two minutes between every two
gestures to avoid muscle fatigue. The collected signal seemed to have stationary behaviors
for the different gestures, so it was estimated that even though features increased the
performance of algorithms in comparison with raw data, there was no need for complicated
features. Hence, six basic features, which were the min, max, RMS, var, STD, and mean,
were extracted and normalized by the min–max method, and the KTGEL was used to
classify the gestures. The classification accuracy was considered here as the evaluation
criterion for the needed number of sensors for further data collection.
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In this set of gestures, the ambiguity level between signs could be described as low
since no dynamic gestures were considered, and the similarity between the gesture perfor-
mance process was limited between the numbers six, seven, eight, and nine between all
the possible combinations of the nine gestures. The collected data from only one person
resulted in a total of 180 observations. In this investigation, 80% of the observations were
used to train and validate the KTGEL using a fivefold cross-validation while saving a
random 20% of each gesture’s data to be used only as testing data. From the confusion
matrices in Figures 4 and 5, it could be confirmed that for only one subject performing
the gestures, both bracelets could detect and allow the classifier to predict the nine tested
gestures correctly. It was proved by this investigation that the six sensors were sufficient to
recognize gestures with a low ambiguity level collected from only one subject.

Figure 4. Confusion matrix of the KTGEL for one person for ASL numbers from 1 to 9:6 sensors.

Figure 5. Confusion matrix of the KTGEL for one person for ASL numbers from 1 to 9:8 sensors.
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The second investigation was to evaluate the system’s stability and accuracy for the
same gesture recognition while increasing the number of subjects to 10 subjects. However,
in that investigation, each person was asked to perform each gesture only ten times. In
total, 1000 observations were used in this implementation of the KTGEL, with 80% of the
observations employed to train and validate the model using fivefold cross-validation
while a random 20% of each gesture observations were safeguarded to be used only as
testing data.

The results in Figure 6 show that with six sensors collecting nine gestures, the KTGEL
had a test accuracy of 71%. Figure 7 shows that the eight sensors band collecting American
Sign Language numbers could be recognized with an accuracy of 95%. These results
confirmed that six sensors were not suitable enough for FMG-based gesture recognition
with several subjects. The additional complexity in the signals induced by the physiological
difference between the various subjects could not be canceled by the use of six sensors
only. It is also observed in Figure 6 that the confusion between gestures could not be
totally obvious from the gestures’ nature, which led to the estimation that the collected
data were not enough to differentiate the gestures. However, observing Figure 7, it could
be seen that the confusions were limited, with the most relevant confusions being between
gestures six, seven, and eight. Hence, this investigation showed that eight FSR sensors
as the minimal number of sensors had an acceptable gesture recognition accuracy from
the data collected from 10 subjects. In addition, to confirm the user’s comfort with the
used number of sensors, subjects were asked about their evaluation of the band. None of
the subjects complained about the sensor band placement, but they announced that the
material used for the actual band was not soft enough. Hence, the eight-sensor band was
kept for further data collection as a possible standalone system for a future investigation
of sign recognition with more features, and a modification of the bracelet material will be
considered as an outlook of the system design.

Figure 6. Confusion matrix of the KTGEL for ten person and nine numbers: 6 sensors.
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Figure 7. Confusion matrix of the KTGEL for ten person and nine numbers: 8 sensors.

4.3. Recognition of ASL Signs with a Middle Ambiguity Level

To investigate the influence of ambiguity on the KTGEL performance for American
Sign Language recognition, the first ten alphabet letters from A to J were collected from
10 healthy subjects. During the data collection, subjects followed an informative video
for ASL teaching. Gestures were collected as postures except for the letter J, which was a
dynamic gesture including a rotation movement of the wrist as symbolized by the arrow
in Figure 8. This set of gestures was considered to have a middle ambiguity level as it
included a dynamic gesture and a similarity in the posture between the signs A, C, and E
and the signs G and H.

Figure 8. Ten ASL letters, A–J.

Implemented with 3000 hidden nodes after a feature selection by the KTGELM, the
ELM had both a microaverage precision and a microaverage sensitivity of 97% when
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trained with only 13 selected features out of the original 48 features, as it is detailed in the
comparison presented in Table 4. The KTGEL initialized with 3000 hidden nodes resulted
in a trained model with only 1000 hidden nodes while it was given the full 48 features as
inputs. The KTGEL reached the same total sensitivity with a reduced total precision by
only 1% in comparison with the ELM after a separate feature selection stage.

Table 4. Comparison between the ELM and KTGEL in recognition of ASL signs with a middle
ambiguity level.

ELM KTGEL

Additional feature
selection algorithm yes no

Initial number of features 13 48

Initial number of hidden nodes 3000 3000

Final number of hidden nodes 3000 1000

Training time with feature
selection in seconds 9.5 2.5

Testing time in seconds 0.22 0.04

Testing accuracy in % 95 94

Precision in % 97 96

Sensitivity in % 97 97

The confusion matrices in Figures 9 and 10 show that even though J was a dynamic
gesture, it was 100% recognized using the FSR wrist band, which could be explained by the
muscle deformation resulting from the rotation of the wrist which resulted in a stronger
level of the signal in comparison with the other signs where the muscle movements in the
wrist level were not visible.

Figure 9. Ten ASL letters, A–J, detected with FMG and classified by the ELM after feature selection
by the KTGELM.
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Figure 10. Ten ASL letters, A–J, detected with FMG and classified by the KTGEL.

4.4. Recognition of ASL Signs with a High Ambiguity Level

The used data set in this part included the 20 ASL letters shown in Figure 11 with 10
of the signs showing a big similarity, namely between “B” and “4”, “M” and “N”, “U” and
“2”, “6” and “W,” “S” and “T”, and a dynamic sign “Z”, so the expected accuracy could be
as low as 50% for this data set.

The same sign set was collected by 20 new subjects while wearing the eight-sensor
band, and 100 observations of each sign were collected as FMG data. The data collected by
the FMG sensor at the wrist level presented not only information about muscle contraction
but also about the tendon state. As the sensors were distributed around the wrist, the FMG
band could cover all the superficial muscles. Hence, more confusion between signs was
noted due to the force transmission through the muscle fibers during the contraction and
the influence of the deep muscle on the superficial ones. Therefore, different signs could
have the same FMG response at the level of one or more sensors when signs shared an
initial hand shape or the same performing fingers. For the ELM after the KTGELM feature
selection shown in Figure 12, it could be seen that the signs “T” and “S”, symbolized as
classes 15 and 11, presented a source of confusion for the rest of the signs as not only
the majority of their observations were misclassified, but also many other classes were
mispredicted as signs “T” and “S”. Based on the FMG data set, the ELM after feature
selection by the KTGELM presented a classification microaveraged precision of 78% with a
sensitivity of 80% among the 20 signs.

Using the same database, the KTGEL resulted a trained model with 1000 hidden
nodes. The original data without feature selection are presented in the confusion matrix
in Figure 13, where similar results to the ELM with feature selection could be seen with
a micro-p of 77% and a micro-r of 80% and a thrice smaller model size. Evaluating the
overall classification accuracy, it could be seen that the ELM after the KTGELM and the
KTGEL had the same performance in most cases, with the second being less complicated
as it had only 1000 hidden nodes and could do the feature selection and the classification in
the same process.
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Figure 11. Data set of 20 ASL letters with expected high ambiguity, namely between “B” and “4”,
“M” and “N”, “U” and “2”, “6” and “W”, “S” and “T”, and a dynamic sign “Z”.

Figure 12. High-ambiguity data set classified by ELM after feature selection by the KTGELM.
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Figure 13. High-ambiguity data set classified by the KTGEL without a previous feature selection.

5. Conclusions

This work focused on recognizing American Sign Language based on commercial
FMG sensors. We proposed to optimize an ELM by a weight-pruning method to optimize
the network architecture and maintain the randomness of the initial weights. The pruning
reduced the network size in the ELM by removing the weights, which were participating
less in the classification result. We proposed to use the k-tournament grasshopper opti-
mization algorithm (KTGOA) as the core of the ELM’s weight-pruning process due to its
fast convergence in multidimensional optimization spaces. A KTGOA was implemented to
select the ELM weights. Thereby, a k-tournament grasshopper extreme learner (KTGEL)
was proposed as a classifier with a reduced architecture, high performance, and internal
feature selection. The influence of the number of FMG sensors and the number of subjects
on the performance of the KTGEL was first investigated. It was proved in this paper that if
only one subject was performing the data collection, a six-sensor bracelet was sufficient.
However, with an increasing number of subjects, eight sensors were the minimal number
needed to recognize the ASL numbers accurately. The investigation of the influence of the
ambiguity level in the set of gestures on the performance of the KTGEL compared with
the ELM showed that both had similar accuracy in the case of middle and high ambiguity
levels. However, the ELM was trained with fewer features as it was preceded by a feature
selection wrapper, while the KTGEL was trained with all the features. Moreover, in both
tested cases, the KTGEL-trained model reduced the number of initially hidden nodes by
two-thirds. The KTGEL also showed similar sensitivity and precision values with those of
the ELM trained with selected features. The proposed KTGEL was created by the KTGOA
that optimized the process of the best solution selection but inherited the linear behavior
of the exploration–exploitation balancing coefficient from the original GOA. Similarly to
the GOA, this linearity could lead to a trapping into a local optimum during the selection
process of coupled features and weights, during the weight pruning in the KTGEL. Hence,
in future work, the nonlinearization of the exploration–exploitation coefficient for the
weight selection process will be investigated.
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