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Abstract: The rare earth extraction process has significant time delay characteristics, making it
challenging to identify the time delay and establish an accurate mathematical model. This paper
proposes a multi-delay identification method based on improved time-correlation analysis. Firstly, the
data are preprocessed by grey relational analysis, and the time delay sequence and time-correlation
data matrix are constructed. The time-correlation analysis matrix is defined, and the H∞ norm
quantifies the correlation degree of the data sequence. Thus the multi-delay identification problem is
transformed into an integer optimization problem. Secondly, an improved discrete state transition
algorithm is used for optimization to obtain multi-delay. Finally, based on an Neodymium (Nd)
component content model constructed by a wavelet neural network, the performance of the proposed
method is compared with the unimproved time delay identification method and the model without
an identification method. The results show that the proposed algorithm improves optimization
accuracy, convergence speed, and stability. The performance of the component content model after
time delay identification is significantly improved using the proposed method, which verifies its
effectiveness in the time delay identification of the rare earth extraction process.

Keywords: rare earth extraction; time delay identification; grey correlation analysis; time-correlation;
discrete state transition algorithm; wavelet neural network

1. Introduction

The rare earth extraction process includes dozens or even hundreds of extraction
tanks. The mixing speed and time of each group of agitators are different, which affects the
reaction and transmission time of materials, leading to multi-delay, so a large amount of
data cannot be effectively utilized. Current modeling studies of the rare earth extraction
process do not consider time delay or take it as a constant [1–3], resulting in a particular
gap between the model and the extraction site. Therefore, it is significant to study how to
identify multi-delay.

A series of solutions have been proposed for the problem of time delay identification.
The step response method was used in the time delay identification of systems [4,5], but
this method is susceptible to noise and requires a filter to remove high-frequency noise.
Rad et al. [6] estimated the time delay of input and output signals based on the cross-
correlation function, which cannot reflect their specific relationship, so the results are not
ideal. Some scholars used a recursive least squares algorithm to identify the system with
time delay [7–9], which is assumed to be known and may not be established in engineering
practice. Neural networks were used to identify time delay, which have the problem of
long training times and easily falling into local optima [10–12]. Liu et al. [13] developed a
compressed sensing recovery algorithm for the multiple input single output finite impulse
response systems with unknown time delay, but it was not easy to choose the optimal
threshold. Chen et al. [14] proposed an effective identification model based on the Bayesian
theorem for systems with unknown time delay. Wang et al. [15] proposed a parameter iden-
tification method of a fractional-order time delay system based on the Legendre wavelet,
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which reduces the effect of noise on the accuracy of parameter identification. Hofmann
et al. [16] proposed an offline time-delay identification strategy based on falling film evapo-
rator pilot plant experiments and obtained good results in both validation experiments,
with and without evaporation. Prasad et al. [17] used fractional-order modeling technique
to identify the parameters of Hammerstein structured nonlinear systems with discontinu-
ous asymmetric (two segment piecewise-linear with a dead-zone) nonlinearity and input
time delay. Li et al. [18] designed a discrete-time robust adaptive estimator to identify the
time delay and sandwich system parameters. Meanwhile, they reconstructed the obser-
vation and augmented data to obtain the explicit expression of the delay parameter. To
achieve an effective system control strategy and accurate response prediction, Liu et al. [19]
proposed a new method to identify the parameters of linear time-delay differential systems
by analyzing the frequency domain response of complex systems. To solve the influence of
time delay on HVAC systems, Li et al. [20] introduced transfer entropy and proposed a
model-free identification method based on the information theory framework. Ni et al. [21]
studied the parameter estimation problem for a class of linear time-delay systems. Based
on the frequency responses and harmonic balance methods and by means of the gradient
search, a two-stage stochastic gradient and gradient-based iterative algorithm was devel-
oped by using the collected data under the sinusoidal excitation. The maximum likelihood
method [22], variable structure observer [23], particle swarm optimization [24], and other
methods have also been applied.

Industrial processes have become complex with the rapid development of science and
technology, resulting in multi-delay, and the abovementioned methods have been unable to
meet practical requirements. Xie et al. [25] improved the genetic algorithm, applied it to the
identification of multi-delay, and obtained their optimal estimate, but the method requires
an accurate system model. Huang et al. [26] proposed an improved cross-correlation
function method and realized multi-delay identification of the alumina carbon separation
process. Wang et al. [27] proposed a trend similarity analysis method and realized the
multi-delay identification of the hydrocracking process. All the abovementioned methods
have the problems of high computational redundancy and time consumption.

This paper draws on the successful application of the time-correlation analysis
method [28] in the alumina carbon separation and evaporation processes. We propose an
improved time-correlation analysis method for the rare earth extraction process. Based
on field data and the improved method, the multi-delay identification problem is trans-
formed into an unconstrained integer optimization problem without changing the time
delay relationship. Since the discrete state transition algorithm [29] can effectively solve
the unconstrained integer optimization problem [30], we adopt the improved algorithm to
solve it. Experimental comparison and analysis show that the improved time-correlation
analysis method has high speed, high accuracy, and good stability, and is suitable for the
multi-delay identification of the rare earth extraction process.

2. Improvement of Time-Correlation Analysis Method

Time-correlation analysis is a time delay identification method based on the relation-
ship between data sequences, which has the advantage of high efficiency. This paper
improves its shortcomings in data preprocessing and selection.

2.1. Grey Relational Analysis

Grey relational analysis (GRA) is derived from the grey system theory in system
science [31]. Its basic idea is to judge the tightness of sequence connections according to
the similarity between the geometric shapes of sequence curves. The closer the curves, the
more significant the correlation between sequences.

Compared with traditional multi-factor analysis methods (such as canonical correla-
tion analysis and multiple linear regression), this method has lower data requirements and
less computational burden. It is suitable for quantitative analysis of the dynamic develop-
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ment process and hence can be used to analyze the correlation between a large amount of
process data obtained from a production site and the content of rare earth elements.

Let the time base of a critical process variable in N work units be d = [d1, d2, . . ., di, . . ., dN],
where i = 1, 2, . . ., N, di = τi/T. T is the sampling period, the delay sequence is
Γ = [τ1, τ2, . . ., τi, . . ., τN ], and τi is the time delay of the ith work unit. The content of
n rare earth elements and m process variables is obtained by k times sampling. The
element component content U′j(t) = [u′1(t), u′2(t), . . ., u′j(t), . . ., u′n(t)] are used as the ref-
erence sequence in the correlation analysis, where 1 ≤ j ≤ n, 1 ≤ t ≤ k, and u′j(t)
represents the jth rare earth element component content. The process variable data
E′l(t) = [e′1(t), e′2(t), . . ., e′l(t), . . ., e′m(t)] are used as the comparison sequence, where
1 ≤ l ≤ m, 1 ≤ t ≤ k, and e′l(t) represents the lth process variable data.

The original data are normalized to eliminate the influence of different dimensions on
the results. Standard processing methods include initialization and averaging. This paper
adopts averaging, {

Uj(t) = U′j(t)/
1
k ∑k

t=1 U′j(t)

El(t) = E′l(t)/
1
k ∑k

t=1 E′l(t)
(1)

where Uj(t) is the processed reference sequence data, and El(t) is the processed comparison
sequence data.

The correlation coefficient is used to express the degree of closeness between the index
values of the comparison and reference sequence in grey relational analysis. The higher the
value, the greater the degree of proximity,

ξl j(t) =
min

l
min

j
|Uj(t)− El(t)|+ ρmax

l
max

j
|Uj(t)− El(t)|

|Uj(t)− El(t)|+ ρmax
l

max
j
|Uj(t)− El(t)|

(2)

where ξl j(t) is the correlation coefficient of the lth characteristic variable corresponding
to the content of the jth rare earth element component, and ρ ∈ [0, 1] is the resolution
coefficient, which we take as 0.5.

According to the correlation coefficient, the correlation degree between each process
variable and the content of rare earth elements can be obtained as

rl j(t) =
1
k

k

∑
t=1

ξl j(t) (3)

The correlation degree is sorted from large to small. If r11 < r21, then the correlation
degree between the comparison sequence e2(t) and the content of the first rare earth element
component is greater than that of comparison sequence e1(t).

2.2. Time Delay Identification Method Based on Time-Correlation Analysis

The process variable with the highest gray correlation is taken as the key process
variable, and its standardized data el(t) are used to form the time-correlation data matrix,

E =

∣∣∣∣∣∣∣∣∣
e0,t e1,t+τ1 · · · ei,t+τ1+···+τi · · · eN,t+τ1+···+τN

e0,t+T e1,t+τ1+T · · · ei,t+τ1+···+τi+T · · · eN,t+τ1+···+τN+T
...

...
. . .

...
. . .

...
e0,t+(F−1)T e1,t+τ1+(F−1)T · · · ei,t+τ1+···+τi+(F−1)T · · · eN,t+τ1+···+τN+(F−1)T

∣∣∣∣∣∣∣∣∣ (4)

where e0,∗ and ei,∗ are the time series of the inlet process variables and the ith unit outlet
process variables, respectively. F ≥ ∑N

1 di, so that the data in the time-correlation matrix
contain information about the entire process cycle, from inlet to outlet.
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The matrix E describes the degree of correlation between the data corresponding
to the time sequences. Multiple time sequences are described by the time-correlation
analysis matrix,

R =
cov(E)

∏N
i=1 σi

(5)

where cov(E) is the covariance matrix of E, whose standard deviation of column i is σi.
R is a time-correlation analysis matrix, which reflects the correlation degree of multiple

groups of sequences under multi-delay. The H∞ norm can quantify it and is expressed as

β = max(||R||∞) (6)

A maximum value of the H∞ norm indicates the maximum correlation between each
time sequence in the data matrix. At this time, the corresponding delay sequence Γ consists
of the multi-delay to be solved.

According to the extraction production site experience, each unit’s time delay during
operation will fluctuate within a fixed range. Based on this, the time-base value range
of key process variables can be determined as di ∈ [dimin, dimax]. Thus, the time delay
identification problem of Equation (6) can be transformed into an unconstrained integer
optimization problem, {

β = max(‖R‖∞)

s.t di ∈ [dimin, dimax]
(7)

In summary, the steps of the improved method of combining grey correlation analysis
with time-correlation analysis are as follows.

Step 1: Based on the original data of the rare earth extraction process, the multi-delay
sequence Γ is constructed;

Step 2: Grey correlation analysis is used to identify key process variables and construct
a time-correlation data matrix according to Equation (4);

Step 3: According to Equation (5), the time-correlation analysis matrix is defined, and
the correlation degree of the data sequence is quantified by the H∞ norm;

Step 4: The time delay identification results are obtained using Equation (7).
There are many methods to solve the time delay identification. The discrete state

transition algorithm (DSTA) has been successfully applied to typical discrete optimization
problems such as Boolean integer programming [32] and staff assignment [30]. We use this
method to solve Equation (7).

3. Adaptive Chaotic Discrete State Transition Algorithm

Discrete state transition algorithm is an individual-based optimization algorithm. Its
basic idea is to regard the solution of an optimization problem as a state, and the process
of updating the solution is called state transition. The standard form of the discrete state
transition algorithm can be described as{

xs+1 = Asxs ⊕ Bsus

ys+1 = f (xs+1)
(8)

where xs ∈ Z is a current state; As, Bs are transformation operators; us ∈ Z is a control
variable; ⊕ is an operation; f (·) is the evaluation function, which is used to measure the
quality of xs.

The four special transformation operators [32] are as follows.

(1) Swap transformation:
xs+1 = Aswap

s (ma)xs (9)

where Aswap
s ∈ Rn×n is a random 0–1 matrix with swap action, called a swap transfor-

mation matrix, and ma is a swap factor that can control the number of swap elements
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in the solution. Swap transformation is called local exploration and global exploration
when ma = 2 and ma ≥ 3, respectively.

(2) Shift transformation:

xs+1 = Ashi f t
s (mb)xs (10)

where Ashi f t
s ∈ Rn×n is a random 0–1 matrix with shift action, called a shift transfor-

mation matrix, and a shift factor, mb, can control the continuous shift of elements in
the solution. If mb = 1, the shift transformation is regarded as local exploitation, and
if mb ≥ 2, the shift transformation is regarded as global exploration.

(3) Symmetry transformation:
xs+1 = Asym

s (mc)xs (11)

where Asym
s ∈ Rn×n is a random 0–1 matrix with symmetry action, called a symmetry

transformation matrix, and a symmetry factor, mc, can control the continuous sym-
metry of elements in the solution. Symmetry transformation is intrinsically called
global exploration.

(4) Substitute transformation:

xs+1 = Asub
s (md)xs + Bsub

s (md)us (12)

where Asub
s , Bsub

s ∈ Rn×n is a substitute transformation matrix, and md is a constant
integer, called a substitute factor, to control the maximum number of positions to be
substituted. If md = 1, the substitute transformation is regarded as local exploitation,
and if md ≥ 2, the substitute transformation is regarded as global exploration.

The initial solution is given randomly in the discrete state transition algorithm, and the
solution significantly affects the convergence performance of the algorithm. DSTA easily
falls into local optima in the iterative process. Therefore, an adaptive chaotic discrete state
transition algorithm (ACDSTA) is proposed by introducing the opposition-based learning
strategy, chaotic perturbation strategy, and adaptive recovery strategy.

3.1. Initialization Method Based on Opposition-Based Learning Strategy

The initialization method of the discrete state transition algorithm has the problem
of uneven distribution, which somewhat affects its optimization efficiency. Therefore,
an opposition-based learning strategy (OBL) is introduced to initialize the discrete state
transition algorithm. OBL [33] is a machine-learning method whose idea is to generate a
reverse solution based on the forward solution, compare their fitness values, and select
the optimal solution as the initial solution, thereby improving the optimization speed of
the algorithm.

Let X = [x1, x2, . . . , xc, . . . , xD] be an entity in D-dimensional space. The reverse
solution based on OBL is X′ = [x′1, x′2, . . . , x′c, . . . , x′D], where xc, x′c ∈ [La, Lb], c = 1, 2, . . . , D
calculated as

X′ = La + Lb − X (13)

where La and Lb are the upper and lower bounds, respectively, of the value range of the
target vector.

Based on the idea of OBL, the best initial solution is selected as

yo = max
(

f (X), f
(
X′
))

(14)

where f (·) is the fitness function, yo is the fitness value corresponding to Xo, and Xo is the
initial solution into the subsequent iterative process.

3.2. Chaos Perturbation Strategy

Chaos comes from nonlinear dynamic systems. Because of its unique randomness,
ergodicity, and complexity, it can effectively prevent the algorithm from falling into local
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optima, and it is widely used in optimization problems [34]. We propose the chaotic
perturbation strategy to improve the problem that the discrete state transition algorithm
can easily fall into local optima and is described as follows. During the algorithm iteration,
when a value recurs a certain number of times, it indicates that the algorithm has fallen
into a local optimum. Chaotic perturbation is applied to obtain a chaotic variable sequence,
which is inversely mapped to the original solution space to obtain the perturbation solution,
which is substituted in the next iteration so that the calculation exits the local extremum.
When the termination condition is satisfied, the algorithm ends the iteration, and the final
solution is the global optimum.

There are many rules to generate chaos, among which logistic mapping is common,
but it has the problem of uneven frequency distribution. Zhou et al. [35] combined logistic
mapping and tent mapping based on the uniform ergodicity of tent mapping to realize
logistic-tent mapping,

Xn+1 =

{
(αXn(1− Xn) + (4− α)Xn/2)mod1 Xn < 0.5

(αXn(1− Xn) + (4− α)(1− Xn)/2)mod1 Xn ≥ 0.5
(15)

where Xn ∈ [0, 1] is a chaotic variable, and the mod1 operation ensures that its output data
are in the range of [0, 1], and α ∈ (0, 4] is a chaotic factor, which we take as 3.99.

The chaotic variables generated by Equation (15) cannot be directly used for iterative
calculation of the algorithm. So, chaotic variables are mapped to the solution space of the
objective function,

Xnew = round(Lb + (La − Lb)Xn) (16)

where Xnew is a new solution generated after chaotic perturbation.

3.3. Adaptive Recovery Strategy

In the iterative process of the discrete state transition algorithm, the chaos perturbation
strategy is introduced to generate new solutions, which can effectively improve its ability
to jump out of local optima. However, the new solution directly enters the next iteration,
which will decrease the algorithm’s convergence performance. To only use the greedy
criterion can no longer meet the convergence requirements. We propose adaptive recovery,
adopting the greedy criterion to ensure the general convergence of the algorithm. The
current value is restored to the preserved historical best value with adaptive probability to
further improve convergence performance.

The discrete state transition algorithm is in the stage of rapid optimization in the early
stages of iteration, which greatly decreases fitness. The recovery probability should be
small at this time, so as not to affect the searchability of the algorithm in the early stage
of iteration. In the middle and later stages, the searchability decreases, and the optimal
historical value should be restored with a large probability. We use a nonlinear adaptive
adjustment method [36],

P = (pa − pb)× (1− sin(
π

2
· ( iter

itermax
)µ)) (17)

where P ∈ [0, 1], Pa is the maximum value of the recovery probability P, Pb is the minimum
value of P, iter is the current number of iterations, itermax is the maximum number of
iterations, and µ is the adaptive factor, which we take as 2.

The steps of the proposed adaptive chaotic discrete state transition algorithm are
as follows.

Step 1: Set relevant parameters such as swap factor ma, shift factor mb, symmetry
factor mc, substitution factor md, chaos factor α, and adaptive factor µ;

Step 2: Generate the reverse solution using the initialization method according to
Equation (13). The fitness of the forward and reverse solutions is compared by Equation (14)
to select the best initial solution;
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Step 3: Update the solution by swap, shift, symmetry, and substitution transformations
(Equations (9)–(12)) in turn;

Step 4: According to Equation (17), judge whether the adaptive recovery strategy is
satisfied, and if so, assign the optimal historical value to the current solution;

Step 5: Determine whether the condition of the chaotic perturbation strategy is satis-
fied. If so, generate the chaotic variable according to Equation (15), and the perturbation
solution Xnew according to Equation (16) for the next iteration. Otherwise, go to step 6.

Step 6: Determine whether the iteration termination condition is satisfied. If so,
terminate the search and output the final optimization result. Otherwise, return to step 3.

3.4. Validation of ACDSTA

Many applications in economics, chemistry, manufacturing, and other fields can be
transformed into unconstrained integer optimization problems. To verify the feasibility,
superiority, and applicability of ACDSTA, three functions of unconstrained integer opti-
mization problems [37] are selected for experiments, denoted by EXP1, EXP2, and EXP3,
and expressed as follows, with respective optimal values of −620, −70,429, and −1,439,658.

[EXP1]

{
min f (x) = 1

2 xTQx + cTx
s.t x ∈ {0, 1, 2, . . . , 10}8 (18)

where

Q =



4 −2 −3 0 1 4 5 −2
−2 −4 0 0 2 2 0 0
−3 0 8 −2 0 3 4 0
0 0 −2 −4 4 4 0 1
1 2 0 4 100 2 0 −2
4 2 3 4 2 100 1 0
5 0 4 0 0 1 200 4
−3 0 0 1 −2 0 4 10


,

cT = (−4 1 − 8 3 − 100 − 10 − 20 0).

[EXP2]

{
min f (x) = xTQx

s.t x ∈ {0, 1, 2, . . . , 49}10 (19)

where

Q =



−1 −2 2 8 −5 1 −4 0 0 8
−2 2 0 −5 4 −4 −4 −5 0 −5
2 0 2 −3 7 0 −3 7 5 0
8 −5 −3 −1 −3 −1 7 1 7 2
−5 4 7 −3 1 0 −4 2 4 −2
1 −4 0 −1 0 1 9 5 2 0
−4 −4 −3 7 −4 9 3 1 2 0
0 −5 7 1 2 5 1 0 −3 −2
0 0 5 7 4 2 2 −3 2 3
8 −5 0 2 −2 0 0 −2 3 3


.

[EXP3]
{

min f (x) = xTQx + cTx
s.t x ∈ {0, 1, 2, . . . , 99}20 (20)

where
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Q =



−3 7 0 −5 1 1 0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6
7 0 −5 1 1 0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3
0 −5 1 1 0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7
−5 1 1 0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0
1 1 0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5
1 0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1
0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1
2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0
−1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2
−1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1
−9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2
3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3
5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9
0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9 4
0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9 4 −1
1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9 4 −1 −3
7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9 4 −1 −3 9
−7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9 4 −1 −3 9 7
−4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9 4 −1 −3 9 7 −9
−6 −3 7 0 −5 1 1 0 2 1 2 3 9 4 −1 −3 9 7 −9 8



,

cT = (−5 2 − 1 − 3 5 4 − 1 0 9 4 7 − 4 3 5 8 − 1 1 5 − 6 9).

The algorithm was simulated using an Intel Core i5-11300H CPU at 3.10 GHz, with
16.00 GB RAM, Windows 10, and MATLAB R2018a, and compared with particle swarm op-
timization (PSO), DSTA, and DSTAI [32], based on the results of each group of experiments
running 20 times.

The maximum numbers of iterations of EXP1–EXP3 were set to 100, 500, and 1000,
respectively. The remaining parameters were set as follows: PSO learning probability
c1 = c2 = 1.5, initial population 120, inertia weight 0.8. The ACDSTA parameters were set
to SE = 30, ma = 2, mb = 1, mc = 0, md = 1, and mmax = 20. The parameter settings of
DSTA and DSTAI were the same as in Zhou et al.’s study [32].

The average error, average value, and accuracy of optimization (S/20) were selected
as performance evaluation indices of each algorithm. Table 1 compares the results of
quadratic integer programming problems EXP1, EXP2, and EXP3, where the optimal
values of each function index are in boldface.

Table 1. Results of unconstrained integer optimization.

Algorithm Index EXP1 EXP2 EXP3

PSO
average error 0 7.6% 18.7%
average value −620 −64,907 −1,170,653

S/20 20/20 11/20 2/20

DSTA
average error 82.9% 62.6% 58.1%
average value −106 −26,264 −603,975

S/20 0/20 0/20 0/20

DSTAI
average error 0 1.6% 8.4%
average value −620 −69,148 −1,319,270

S/20 20/20 18/20 7/20

ACDSTA
average error 0 0 2.2%
average value −620 −70,429 −1,408,107

S/20 20/20 20/20 15/20
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Figure 1 compares the convergence curves of EXP1, EXP2, and EXP3 under four
optimization algorithms.

Figure 1. Convergencecurves of EXP1, EXP2, and EXP3 on four algorithms.

From Table 1 and Figure 1, we can see the following: (1) For the unconstrained integer
optimization problem EXP1 with a low dimension, PSO, DSTAI, and ACDSTA can all find
the optimal solution, and all the indices are the best; (2) For the unconstrained integer
optimization problems EXP2 and EXP3 with higher dimensions, although PSO and DSTAI
can also find the optimal solution, each index of ACDSTA is better. Among them, the
optimization accuracies of EXP3 were improved by 65%, 75%, and 40% compared with
PSO, DSTA, and DSTAI, respectively, and the respective average values were 20.3%, 133.1%,
and 6.7% higher. Moreover, the average error was only 2.19%, which is significantly lower
than for the other comparison algorithms. This indicates that the higher the dimensionality
of the integer optimization problem and the larger the search space of the solution, the
more prominent the advantage of ACDTSA; (3) Whether low-dimensional EXP1 or high-
dimensional EXP3, ACDSTA was superior to the other three algorithms in terms of initial
average fitness and convergence speed and could find the optimal value faster. This shows
that ACDSTA can approach the optimal value faster and improve convergence performance
through the opposition-based learning strategy and adaptive recovery strategy; (4) For
EXP3, the optimization accuracy of ACDSTA was better than that of the other three
algorithms. Although there was a tendency to fall into local optima in late iterations, it
could effectively jump out of local optima and obtain better optimization accuracy because
of the chaos perturbation strategy.

In summary, ACDSTA was superior to the other algorithms in the test of uncon-
strained integer optimization problems, especially when the dimension and optimization
range were extensive, which can better reflect the advantages of ACDSTA. This demon-
strates the feasibility, superiority, and applicability of ACDSTA when solving practical
engineering problems.

4. Application of ACDSTA in Rare Earth Extraction Process
4.1. Rare Earth Extraction Process Analysis

Rare earth extraction is the obtaining of a single rare earth product from rare earth
liquid, extractant, and detergent through specific equipment. We use the praseodymium/
neodymium (Pr/Nd) extraction and separation process as an example, as shown in Figure 2.
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Figure 2. Schematic Diagram of Rare Earth Extraction Process.

The extractant is added from the first stage, and it flows from left to right through
the stirrer. The detergent is added from the n + m stage and flows from right to left. The
organic phase is added to the feed liquid from the nth stage. The solution in the tank is
divided into two layers by stirring and clarifying. The upper layer is the organic phase,
and the lower layer is the water phase. The difficult extraction product Pr is obtained in the
lower layer of the first stage and the easy extraction product Nd from the upper layer of
the n + m stage.

There are many extraction stages, and it is necessary to control the content distribution
of Pr/Nd components in the tank to ensure the stability of product quality. It takes several
hours or more to cause changes in the content of the export grade Pr/Nd component due
to changes in the flow rate of the feed solution, extractant, and detergent. Therefore, it is
necessary to obtain the residence time of materials in each unit group for timely control.

4.2. Time Delay Identification of Rare Earth Extraction Process

To verify the ability of the proposed method to solve the engineering delay problem,
the delay identification of the 30-stage Pr/Nd production process in a rare earth extraction
plant was carried out. During the Pr/Nd extraction process, the content of Pr/Nd com-
ponents in different tanks changes with time, which leads to a change in the color of the
solution. Therefore, the characteristic color variable of the solution image can be selected
as an auxiliary variable to identify the time delay.

The sampling period was 5 min, and 220 groups of data of Nd component content
and color characteristic variables (H, S, I, R, G, B) were selected in the continuous stable
production process. The grey correlation method was used to analyze the correlation
between Nd component content and color characteristic variables. The results are shown in
Table 2, where the B component has the highest correlation degree, and the H component
has the lowest correlation degree. Therefore, the B component is regarded as the critical
process variable. In the actual extraction site, every five stages of the extraction tank share
a set of agitators, i.e., every five stages constitute a unit group. Therefore, the 30-stage
extraction tank was constructed as six groups of units for identification. According to the
flow direction of the extractant, the first-stage inlet sampling data and each group of outlet
sampling data were recorded as e0, . . ., e6, and the original data matrix E was obtained.

Table 2. Results of GRA.

Color Feature R G B H S I

correlation degree 0.6179 0.5832 0.6734 0.543 0.5706 0.6123

According to the operation experience of the extraction separation site, the time
delay range of stirring and clarification of each stage extraction tank is [3, 8] min. Given
the abovementioned construction method, the time delay range of each unit group is
[15, 40] min. Therefore, the value range of the time-base sequence is [3, 8]. According to
Equation (4), the time-correlation data matrix E is constructed, and the time delay sequence
solution is transformed into the optimization problem by Equations (5) and (6), as shown
in Equation (7).
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ACDSTA is used to solve the abovementioned optimization problem. A certain
number of time-based sequences is generated according to the range of time-based values,
and the fitness function is constructed according to Equation (7). A new sequence is
generated after the operation of the time-based sequence by the swap, shift, symmetry, and
substitution operators. At the same time, the fitness value is calculated, and the current
optimal value and the optimal time-based sequence are retained. The abovementioned
operation is repeated until the iteration termination condition is satisfied, and the global
optimal fitness value and global optimal time-based sequence are obtained. The solution
process of ACDSTA is shown in Figure 3. Here, the maximum number of iterations is set to
100, SE = 5, and the remaining parameters are set according to Section 3.4.

Figure 3. Iterative curve of improved discrete state transition algorithm.

As seen from Figure 3, ACDSTA can obtain the optimal value H∞ = 3.711 in the
early stage of iteration, and the corresponding time-base sequence is [3 6 4 5 4 4]. Since the
sampling period is 5 min, the time delay of the identified unit group is [15 30 20 25 20 20], i.e.,
the 30-stage Pr/Nd extraction production process and the time delay identification result
of each stage of the extraction tank are [3 3 3 3 3 6 6 6 6 6 4 4 4 4 4 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4].

4.3. Time Delay Identification Results and Method Verification

To verify the accuracy of the improved time delay identification method, we conducted
the following experiments. Firstly, the characteristic components H, S, and I of the solution
image of the rare earth extraction tank are considered auxiliary variables. A prediction
model of Nd component content that meets the requirements of the extraction site is
established by the wavelet neural network and used as a verification model. Then the
maximum relative error (MAXRE), mean relative error (MEANRE), and mean absolute
error (MAE) are determined to measure the performance of the model,

MAXRE = MAX
(
|z− z′|

z′
× 100%

)
(21)

MEANRE =
1
n

n

∑
i=1

|z− z′|
z′

× 100% (22)

MAE =
1
n

n

∑
i=1

∣∣z− z′
∣∣ (23)
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where z is the predicted component content value of the wavelet neural network, and z′

is the actual component content value. Finally, the following comparative experiments
are designed. Based on the data processed by the improved time delay identification
method (Improved method), time-correlation analysis method (Original method), and
Unused method, the performance of the component content model based on wavelet
neural network (WNN) is compared and analyzed.

WNN is a neural network based on wavelet analysis theory that combines the excellent
time-frequency localization property of wavelet function and the powerful self-learning
function of the neural network. WNN uses the wavelet basis function as the activation
function, which has a strong prediction ability than the back propagation neural network.
Lu et al. [38] showed a nonlinear relationship between the color characteristic components
H, S, and I of the rare earth extraction solution image and Nd component content. Therefore,
we use the WNN to model the component content of the rare earth extraction process,
using the Morlet function as the wavelet basis function.

y = cos(1.75x)(−0.5x2) (24)

The parameter settings are as follows. The learning probability is 0.01, the momentum
factor is 0.001, and the maximum number of iterations is 1000. The data samples consist of
220 groups, and 190 groups are randomly selected for model training. The remaining are
used to verify the model, as shown in Figure 4.

Figure 4. Prediction model result of wavelet neural network.

The maximum relative error of the model prediction is 4.76%, which meets the accuracy
requirements of the rare earth extraction site for the prediction model, so it can be used as a
verification model for time delay identification.

Table 3 shows the model evaluation indices based on the Unused, Original, and
Improved methods, where the bold data are the optimal values, and the corresponding
relative error curve is shown in Figure 5.

Table 3. Model evaluation indices of different methods.

Method MAXRE% MEANRE% MAE

Unused 7.96 1.63 0.9183
Original 5.08 1.33 0.8738

Improved 1.69 0.48 0.362
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Figure 5. Forecast relative error of different methods.

From Table 3 and Figure 5, we can see the following: (1) The performance of the
component content model based on the Original method is better than that based on the
Unused method. However, its maximum relative error is greater than 5%, which does not
meet actual requirements. This shows that although the Original method can improve the
model’s performance to a certain extent, due to the randomness of its data selection and
the lack of data preprocessing, the method fails to accurately identify the real-time delay.
(2) The mean relative error of the component content model based on the Improved method
is better than that based on the Unused and Original methods, which is reduced by 70.1%
and 63.9%, respectively. This shows that the model based on the improved method is more
stable. (3) Compared with the Unused and Original methods, the mean absolute error of
the model based on the improved method is reduced by 60.6% and 58.6%, respectively,
indicating that the prediction accuracy of the model is higher.

In summary, the improved method significantly improved the model’s performance.
This shows that the improved method based on grey correlation analysis can effectively
select the data closest to the real-time delay and improve the accuracy of the delay identi-
fication results. At the same time, the maximum relative error of the model based on the
improved method is less than 5%, which meets the actual requirements. This shows that
the improved time delay identification method proposed in this paper is suitable for the
time delay identification of rare earth extraction process.

5. Conclusions

Rare earth extraction is a typical nonlinear, large-time-delay industrial process. The
existence of time delay precludes the effective use of much field data and leads to a gap
between the model describing the rare earth extraction process and the actual situation.
We did the following work in response to this problem: Based on the standard discrete
state transition algorithm, an improved algorithm (ACDSTA) was proposed, using an
opposition-based learning strategy to initialize and accelerate the convergence of the
algorithm, and an adaptive recovery strategy to improve its convergence performance.
A chaotic perturbation strategy can improve the ability of the algorithm to jump out of
local optima. An experimental comparison with three unconstrained integer optimization
problems showed that ACDSTA can effectively solve such problems, and verified its
effectiveness, superiority, and applicability; An improved time delay identification method
was proposed to solve the problem that the data are not preprocessed and are randomly
selected in the time-correlation analysis method. The method was applied to the time
delay identification of a rare earth extraction process. The superiority and effectiveness of
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the proposed improved time delay identification method were verified by comparing the
time-correlation analysis method and the data without the identification method under
the same Nd component content. To sum up, the proposed time delay can provide a
reference for modeling the rare earth extraction process and has guiding significance for
the improvement of the online detection accuracy of component content.
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