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Abstract: The proposal of local differential privacy solves the problem that the data collector must
be trusted in centralized differential privacy models. The statistical analysis of numerical data
under local differential privacy has been widely studied by many scholars. However, in real-world
scenarios, numerical data from the same category but in different ranges frequently require different
levels of privacy protection. We propose a hierarchical aggregation framework for numerical data
under local differential privacy. In this framework, the privacy data in different ranges are assigned
different privacy levels and then disturbed hierarchically and locally. After receiving users’ data,
the aggregator perturbs the privacy data again to convert the low-level data into high-level data
to increase the privacy data at each privacy level so as to improve the accuracy of the statistical
analysis. Through theoretical analysis, it was proved that this framework meets the requirements
of local differential privacy and that its final mean estimation result is unbiased. The proposed
framework is combined with mini-batch stochastic gradient descent to complete the linear regression
task. Sufficient experiments both on synthetic datasets and real datasets show that the framework
has a higher accuracy than the existing methods in both mean estimation and mini-batch stochastic
gradient descent experiments.

Keywords: local differential privacy; numerical data; hierarchical aggregation; stochastic gradient
descent; linear regression

1. Introduction

Because of its strict mathematical definition and its ability to provide privacy guaran-
tees that do not depend on the attacker’s background knowledge, the differential privacy
model [1–3] has received attention and research from many scholars in the field of privacy
protection ever since it was proposed. However, in the classical centralized differential
privacy model, the data collector has direct access to the user’s real data, so it must be
ensured that the data collector is trusted; otherwise, the user’s private data are at risk
of leakage. To solve this problem, local differential privacy models [4,5] are proposed.
The local differential privacy model allows the data collector to obtain the desired data
characteristics through statistical analysis without directly accessing original user data [6,7].
Therefore, more and more companies are trying to use local differential privacy models to
protect user privacy. For example, Apple [8], Google [9] and Microsoft [10] have used local
differential privacy models to protect users’ privacy in their products and services.

Categorical and numerical data are two of the most fundamental types of data used in
statistical analysis. The statistical analysis of these two types of data under local differential
privacy models has been well studied in the literature. For example, for the frequency
estimation of categorical data, the literature [11–13] has proposed some effective privacy-
preserving mechanisms and statistical analysis methods, and for the mean estimation
problem of numerical data, the literature [14–16] has proposed their solutions based on the
RR [17] and Laplace [2] mechanisms, respectively.

Sensors 2023, 23, 1115. https://doi.org/10.3390/s23031115 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031115
https://doi.org/10.3390/s23031115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8112-9783
https://doi.org/10.3390/s23031115
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031115?type=check_update&version=2


Sensors 2023, 23, 1115 2 of 15

In real-world application scenarios, numerical data with different characteristics often
require different degrees of privacy protection. For example, in the case of income statistics,
data in the lower and higher income ranges are often more sensitive and require stricter
privacy protection than data in the middle income range. Moreover, in the case of user
weight data, data in the normal weight range require more lenient privacy protection than
fat and thin weight data. Under local differential privacy, a stronger degree of privacy
protection often means poorer data availability. Therefore, when collecting numerical data
from users, using a hierarchical collection approach to assign different privacy levels to
data in the different ranges can significantly improve the overall usability of the privacy
data. To achieve this need, Gu et al. [18] proposed a hierarchical collection approach for
categorical data that allows different privacy levels for different categories of private data;
the literature [19–21] has proposed personalized privacy solutions that allow different users
to set their own privacy levels.

In this paper, we investigate the selection of different privacy protection levels for
different ranges of privacy data in a local differential privacy model for the collection
and analysis of numerical data. In this application setting, the following challenges exist
to make the collection and analysis of privacy data satisfy the local differential privacy
requirements: (1) The privacy level used in local perturbation reflects the value interval to
which the privacy data belong, which also belong to user privacy, so the privacy level of
the privacy data cannot be sent directly to the data collector. (2) The output value domains
of user data under different privacy levels for local perturbation must be the same, so as to
ensure that the attacker does not infer the user’s data from the data sent to the collector
by the user. (3) The hierarchical collection of user data sets actually partitions the value
domain of privacy data into intervals, resulting in a reduction in the amount of data within
each subinterval, thus reducing the accuracy of the statistical analysis performed by the
collector. How to mitigate this effect is also one of the challenges to be addressed.

In addition, stochastic gradient descent is a common method used in machine learning
to find the model parameters. In the stochastic gradient descent process, the gradient needs
to be calculated based on the user’s privacy data for each iteration update of the model
parameters. In order to protect user privacy, the idea of “local differential privacy” can
be used to protect the user’s data in this process. Specifically, after the user calculates
the gradient locally, the gradient is perturbed using the privacy-preserving method for
numerical data, after which the processed gradient is sent to the data collector for parameter
updates. The literature [15,16] illustrates stochastic gradient descent methods in local
differential privacy and demonstrates that stochastic gradient descent in small batches can
yield better model parameters compared to ordinary stochastic gradient descent methods.

The main contributions of this paper are in the following five areas:

(1) A locally hierarchical perturbation method is proposed, an LHP (locally hierarchical
perturb) algorithm, for numerical data. This method not only solves the problem that
the privacy level needs to be protected, but it also ensures the requirement that the
output value domain is the same when different data are perturbed locally;

(2) A privacy level conversion method, a PLC (privacy level convert) algorithm, is pro-
posed to increase the amount of available data for each privacy level and thus improve
the accuracy of mean estimation, which solves the problem of the reduced statistical
accuracy of data caused by data hierarchy;

(3) Based on the LHP and PLC algorithms, a hierarchical aggregation method, a HierA
algorithm, is proposed for numerical data under local differential privacy, which
achieves the hierarchical collection of privacy data and improves data availability
while ensuring that users’ privacy needs are satisfied;

(4) The proposed hierarchical collection method was applied to small-batch stochastic gra-
dient descent to complete a linear regression task and obtain more accurate prediction
models while protecting user privacy;
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(5) Experimental comparisons with other existing methods on real and synthetic datasets
with different distributions were conducted to demonstrate that the proposed method
has better usability than the existing methods.

2. Related Work

To address the reliance on the data collector’s trustworthiness in the classical cen-
tralized differential privacy model, Duchi et al. proposed the local differential privacy
model [5]. Since then, numerous scholars have studied the collection of different data types
and different statistical analysis tasks for data in the local differential privacy setting.

In the field of frequency estimation for categorical data, the random response (RR)
mechanism [17] is the basic perturbation mechanism in the local differential privacy model,
which focuses on binary values; i.e., the cardinality of the value domain is 2. The generalized
random response (GRR) mechanism [11] improves the RR mechanism by expanding the
number of values that can be perturbed to k (k ≥ 2). However, when k is a very large
value, the probability that the perturbed data is still the true value is very small, which
leads to low availability of the perturbed data. To address this issue, the concept of unary
encoding (UE) [12] is proposed, in which privacy data are first encoded into a vector of a
specific length before being perturbed. The subsequent perturbation operations act on this
vector, and mechanisms such as RAPPOR [9] and OUE [12] based on the concept of UE are
proposed one after another.

For the mean estimation problem of numerical data, the Laplace mechanism [2]
commonly used in centralized differential privacy can be directly applied to numerical data.
However, this approach adds additional noise to each attribute of each datum in a dataset,
resulting in low utility of the perturbed data. Duchi et al. [14] proposed their own solution
by applying the RR mechanism to the mean estimation of numerical data. The method
not only satisfies the local differential privacy requirement but also has an asymptotic
error bound. Nguyên et al. [15] proposed the harmony method based on the solution by
Duchi et al. The harmony method has the same privacy guarantees and asymptotic error
bounds as the method by Duchi et al. while simplifying the data perturbation operation,
especially when dealing with multidimensional data. The output value domain after
data perturbation in Duchi’s method and the harmony method has only two numbers
whose absolute values are greater than 1, so the variance of the perturbed data is always
greater than 1 [16]. Even with larger privacy budgets, the accuracy of statistical analysis
remains poor. To solve this problem, the piecewise mechanism (PM) was proposed by
Wang et al. [16]. The range of values taken from the perturbed data in this method is a
continuous interval and the larger the privacy budget, the greater the probability that the
output value will be near the true value. Compared with the method by Duchi et al., the
accuracy of the PM method is much higher when the privacy budget is large.

In addition, some local differential privacy models for complex data types and specific
application scenarios have been proposed one after another. For example, these have
included: the data perturbation methods for key-value pair data, PrivKV [22], PCKV [23]
and LRR_KV [24]; the data perturbation method for missing data, BiSample [25]; and
the personalized models that allow users to set their own privacy budgets, PENA [19],
PUM [20] and PLDP [21], etc.

In the application scenario of this paper, the processing of privacy data belongs to the
privacy processing of numerical data and the processing of the privacy level belongs to the
privacy processing of categorical data.

3. Preliminaries and Problem Definition
3.1. Preliminaries

Unlike classical centralized differential privacy, localized differential privacy data
perturbation is performed locally by the user. The user only sends the perturbed data to
the collector, which ensures that no attacker can access the real data other than the user
themself. At the same time, the user’s local data perturbation ensures that the attacker
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cannot infer the user’s real data with high enough probability after obtaining the perturbed
data; thus, local differential privacy solves the problem that the data collector must be
trusted in the centralized differential privacy model. Local differential privacy is specifically
defined as follows.

Definition 1. Local Differential Privacy [5].

For a randomized perturbation algorithm M, it is said to satisfy local differential
privacy when it satisfies the following conditions:

Pr(M(x) = y)
Pr(M(x′) = y)

≤ eε

where x and x′ represent any two different inputs to the algorithm M, and y represents
the corresponding output. The smaller the value of ε representing the privacy budget, the
more difficult it is to identify the corresponding input for the same output, which means
that the algorithm has a higher degree of privacy protection.

Theorem 1. Sequential Composition.

For k randomized algorithms Mi(1 ≤ i ≤ k), if Misatisfies εi—local differential
privacy—then the sequence combination of these k randomized algorithms (M1, M2, . . . , Mk)
satisfies (∑k

i=1 εi)—local differential privacy.
Based on this property, the given total privacy budget ε can be divided into several

parts, each corresponding to a randomized algorithm, so that the raw data can be collected
using a sequence of algorithms.

The literature [18] proposes a definition of categorical local differential privacy (ID-
LDP) for categorical data whose privacy level needs tend to be different for different
categories. Similarly, there is graded local differential privacy for different intervals of
similar data, defined as follows.

Definition 2. Graded local differential privacy.

Given a set of privacy budgets ε = {ε1, ε2, . . . , εk} and a set of data subintervals
corresponding to them D = {D1, D2, . . . , Dk}, a perturbation algorithm M is said to satisfy
graded local differential privacy when it satisfies the following conditions:

Pr(M(x) = y)
Pr(M(x′) = y)

≤ er(εx ,εx′ )

where x, x′ ∈ U represent any two different inputs, εx and εx′ represent the privacy
budget determined according to the subintervals in which x and x′ are located, respectively,
y represents the output that the user sends to the collection side, and r(εx, εx′) represents
the privacy budget function with respect to x and x′. For any two different inputs, the
degree of indistinguishability of the output is determined jointly by the privacy budgets of
the two input data.

Under local differential privacy, the methods for collecting numerical data are generally
divided into two categories: one is the Laplace mechanism [2], which is a noise-added
method, and the other is the RR mechanism [17], which is a perturbation method, where the
user’s continuous numerical data are first discretized according to a certain rule and then
perturbed using a specific mechanism to meet the local differential privacy requirements.

The Laplace mechanism [2] is a frequently used method under the classical centralized
differential privacy model. Its essence is to add noise to the user’s data that fits the
Laplace distribution. For the Laplace distribution Lap(λ), its probability density function is

pd f (x) = 1
2 e(−

|x|
λ ), its expectation is 0 and its variance is 2λ2. For all inputs, the output range
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of the Laplace mechanism is (−∞,+∞) and its expectation of adding noise to all levels of
privacy data is 0. Therefore, the simple graded Laplace mechanism solves challenges (1)
and (2) and can be used for the graded collection of numerical data. For user data x (whose
privacy budget is εx), noise that fits the Lap(2/εx) distribution is added to it according
to their privacy budget, and the user sends the noise-added data to the collector, which
directly performs analyses such as mean estimation based on the received data. Since
the collection side cannot identify user data of different privacy levels from the collected
data, it cannot solve the problem of reduced accuracy of mean estimation due to the small
amount of data within each privacy level. In the experimental part, by comparing the
analysis on different datasets, it is demonstrated that our proposed HierA method is more
advantageous than the graded application of Laplace mechanism.

The GRR method [11] is a local differential privacy perturbation method for categorical
data. In this method, for any input x ∈ {1, 2, . . . , k}, the probability that its output y = x is
p = eε/(eε + k− 1) and the probability that y 6= x is q = 1/(eε + k− 1).

The harmony method (see Algorithm 1) is a method proposed in the literature [15] for
the collection and analysis of numerical type data under local differential privacy, which
consists of three main steps: discretization, perturbation and calibration.

The method essentially perturbs the user’s numerical data v with a certain probability
into discrete v∗, v∗ ∈

{
eε+1
eε−1 ,− eε+1

eε−1

}
.

Algorithm 1. Harmony [15]

Input: user’s numerical data v, v ∈ [−1, 1] and their privacy budget ε

Output: perturbed data v*

1. Discretize

v∗ =
{
−1 w.p. 1−v

2
1 w.p. 1+v

2
;

2. Perturb

v∗ =

{
v∗ w.p. eε

eε+1
−v∗ w.p. 1

eε+1
;

3. Calibrate
v∗ = v∗ · eε+1

eε−1 ;
4. Return v∗

The PM method [16] (see Algorithm 2) is another perturbation method for numerical
type data under local differential privacy, which uses a segmented perturbation mechanism.
There is a higher probability of perturbing the user data to values in the middle segment of
the value domain and a lower probability, to values at both ends.

Algorithm 2. Piecewise Mechanism [16]

Input: user’s numerical data v, v ∈ [−1, 1] and their privacy budget ε

Output: perturbed data v∗ ∈ [−C, C]
1. Sample x uniformly at random from [0, 1];
2. If X < eε/2

(eε/2+1) :

Sample v∗ uniformly at random from [l(v), r(v)];
3. Otherwise:
Sample v∗ uniformly at random from [(−C, l(v)) ∪ (r(v), C)];
4. Return v∗

Where C = (eε/2+1)
(eε/2+1)

, l(vi) =
C+1

2 × vi − C−1
2 , r(vi) = l(vi) + C− 1.

3.2. Problem Definition

This paper focuses on the hierarchical collection method for numerical data and uses
the method for mean estimation.
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For the convenience of the study, it is assumed that the user data to be collected takes
values in the range [−1,1] and the privacy level is t ∈ {1, 2, . . . , k} with a privacy budget of
εt ∈ {ε1, ε2, . . . , εk} for each level, corresponding to the privacy level. The various symbols
used in this paper are shown in Table 1.

Table 1. Symbol Definitions.

Symbol Description

U = {u1, u2, . . . , un} User set ui indicating the i-th user
V = {v1, v2, . . . , vn} User’s dataset vi denoting user ui′s data

D = {D1, D2, . . . , Dk} Subintervals of data value fields by privacy level
ε = {ε1, ε2, . . . , εk} Collection of privacy budgets for user data, with k levels

µ ∈ {1, 2, . . . , k} Number of data reused
vi* User data after perturbation
ti Privacy level of user data vi
ti* Privacy level after perturbation
p Probability of user data remaining unchanged
m True mean of the user’s dataset

m∗ Estimated mean of the user’s dataset

4. Hierarchical Aggregation for Numerical Data

To address various problems and challenges in the hierarchical collection of numerical
data in the local differential privacy environment, the HierA method is proposed in this
paper. First, the user perturbs the user’s privacy level and privacy data sequentially and
locally using the local hierarchical perturbation method (Algorithm 3). After that, the user
sends the privacy level together with the privacy data to the collector, and the collector
uses the received user privacy level to classify the user privacy data, first using the privacy
level conversion method (Algorithm 4) to process the collected data and then performing a
mean estimation from the processed data.

4.1. Local Hierarchical Perturbation Mechanism on the User Side

The user’s privacy data v are numerical data and privacy levels t are categorical data.
The privacy data are first queried according to the interval range in which they are located
and the privacy levels are perturbed using the GRR method [11], after which the privacy
data are discretized and perturbed. The processing of privacy data is borrowed from the
harmony mechanism [15], with the difference in the calibration after perturbation placed
uniformly on the data collection side in order to reduce the computational overhead locally
for the user.

Without the loss of generality, this paper assumes that user privacy data v are within
[−1,1]. If v is not within [−1,1] in the actual scene, the following conversion can be
performed using the following conversion rules v′ = 2 · v−L

U−L − 1 [25], where v is the
original data, which takes value in the range [L, U], and v’ is the output data, which takes
values in the range [−1,1].

After the user perturbs the privacy level t and privacy data v locally, the perturbed
<t*, v*> is sent to the data collector. It is assumed that the privacy level of each subinterval
of the user data value domain is sorted from low to high, and the corresponding privacy
budgets in each privacy budget set are sequentially decreasing; i.e., ε1 > ε2 > . . . > εk.
If the privacy level of each subinterval of the user data value domain is not sequentially
increasing, then the position of each subinterval can be adjusted so that its privacy level is
sequentially increasing. The specific algorithm is as follows.
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Algorithm 3. Local hierarchical perturbation (LHP)

Input: the user’s privacy data vi ∈ [−1, 1], the set of subintervals of the data value field
D = {D1, D2, . . . , Dk} and the set of privacy budgets corresponding to each subinterval
ε = {ε1, ε2, . . . , εk}
Output: perturbed tuple <ti*, vi*>
1. According to the interval in which vi is located, find out its corresponding pri-vacy level
ti, ti ∈ {1, 2, . . . , k};
2. Perturb ti:

Pr(t∗i = d) =

{
eεti

eεti +k−1
i f d = ti

1
eεti +k−1

i f d 6= ti

where d, ti ∈ {1, 2, . . . , k};
3. Discretize vi:

v∗i =

{
−1 w.p. 1−vi

2
1 w.p. 1+vi

2
;

4. Perturb vi
*:

v∗i =

 v∗ w.p. e
εt∗i

e
εt∗i +1

−v∗ w.p. 1
e

εt∗i +1

;

5. Obtain the perturbed tuple <ti*, vi*>.

4.2. Calibration Analysis at the Collection End

We then needed to address the problem that the amount of data at each level decreases
after data hierarchical collection, resulting in larger mean estimation errors. In this pa-
per, we propose a privacy level transformation method (PLC algorithm) to significantly
increase the amount of available data within each privacy level (especially within the
high privacy level), which leads to a significant improvement in the accuracy of the mean
value estimation.

Suppose there is user data v after graded perturbation v ∈ {−1, 1}, whose privacy
level is i. Its corresponding privacy budget is εi, to which a random perturbation has been
applied using the random response mechanism. Then, its perturbation probability, i.e., the
probability of remaining unchanged, is pi =

eεi
eεi+1 . Now, we want to perturb it for the

second time so that it has privacy level j, privacy budget εj and perturbation probability

pj, pj =
eε j

eε j+1
. Firstly, assume that the probability of the second perturbation is q, then q

should satisfy pi · q + (1− pi)(1− q) = pj. We can obtain q =
pi+pj−1

2pi−1 . Accordingly, the

probability that v performs a flip in the second perturbation is 1− q =
pi+pj−1

2pi−1 . The overall

flip probability is pi ·
pi−pj
2pi−1 + (1− pi)

pi+pj−1
2·pi−1 = 1− pj. Therefore, using

pi+pj−1
2pi−1 as the

perturbation probability of the second perturbation can perturb v into the data with privacy
level j. Note that we can only perturb low-level data into high-level data; i.e., pi must be
greater than pj. The specific steps are as follows.

Algorithm 4. Privacy level conversion (PLC)

Input: the dataset Vi with privacy level i, the number of times of data reuse µ and the set of
privacy budgets ε = {ε1, ε2, . . . , εn}
Output: the set of converted datasets

{
Vi, Vi(i+1), Vi(i+2), . . . , Vi(min(k,i+µ−1))

}
1. For j = i + 1 to min(k, i + µ− 1)
2. For v in Vi:

3. v =

 v w.p. pi+pj−1
2pi−1

−v w.p. pi−pj
2pi−1

where pi =
eεi

eεi+1 , pj =
eε j

eε j+1
;

4. Obtain
{

Vi, Vi(i+1), Vi(i+2), . . . , Vi(min(k,i+µ−1))

}
.
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The reuse of privacy data is achieved by converting data with a lower privacy level
to data with a higher privacy level. The number of rank conversions varies depending on
the number of reuses set by the system. Theoretically, it is possible to convert low-level
data to any high-level data, but the computational overhead will increase as the number of
conversions increases.

The HierA algorithm for the hierarchical collection of numerical data under local
differential privacy is given by combining Algorithms 3 and 4, and the specific steps are
shown in Algorithm 5.

Algorithm 5. Hierarchical aggregation for numerical data

Input: the users’dataset V = {v1, v2, . . . , vn} the set of subintervals of the data value field
D = {D1, D2, . . . , Dk}, the set of privacy budgets ε = {ε1, ε2, . . . , εn} and the number of data
reuse µ ∈ {1, 2, . . . , k}
Output: estimated mean m∗

User side:
1. The user perturbs their data vi locally using the LHP method to obtain the perturbed tuple
< t∗i , v∗i >:
< t∗i , v∗i >= LHP(D, ε, vi);
Collection side:
2. The received user data are classified according to the privacy level to obtain b
{V1, V2, . . . , Vk};
3. The classified dataset is transformed using the PLC algorithm to obtain the transformed
dataset:{

Vi, Vi(i+1), Vi(i+2), . . . , Vi(min(k,i+µ−1))

}
= PLC(Vi, ε, µ)

4. The following dataset matrix is obtained, with each column representing a privacy level:
V1 V12 · · · V1(min(k,µ))

V2 V23 · · · V2(min(k,µ+1))
. . .

. . .
. . .

. . .


5. The datasets with the same privacy level are merged and the compensation dataset is added:
for i in {1, 2, . . . , k}:
if i + µ− 1 > k:
V∗i = (µ− k + i)Vi
if i < µ:

V∗i = Vi + V(i−1)i + . . . + V1i
otherwise µ <= i < k− µ + 2:

V∗i = Vi + V(i−1)i + . . . + V(i−µ+1)i
Obtain V∗ =

{
V∗1 , V∗2 , . . . , V∗k

}
;

6. Perform the following for each dataset V∗i in in V∗:
The number of 1 and −1 in V∗i is denoted as n1 and n2, respectively:
Ni = n1 + n2, pi =

eεi
eεi+1

n∗1 =
pi ·N−n2

2pi−1 ;

n∗2 =
pi ·N−n1

2pi−1 ;
Correct n∗1 and n∗2 by making them equal to N if they are greater than N or equal to 0 if they are
less than 0.
S(V∗i ) = n∗1 − n∗2 ;
7. Calculate the estimated mean:m∗ = 1

|V∗ |∑
k
i=1 S(V∗i ).

In step 3, when i + µ− 1 > k, the number of transformations of dataset Vi may be
less than µ− 1. To ensure that the final mean estimate is unbiased, it is necessary to add
µ− k + i datasets Vi as the compensation dataset in step 5.
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4.3. Privacy and Usability Analysis

Theorem 2. Algorithm 3 satisfies the graded local differential privacy requirement.

In the application scenario of the proposed method, the user’s original data and the
adopted privacy level are both private data, where the privacy level is determined by the
user’s original data. Therefore, both the perturbation of the user’s privacy level and the per-
turbation of the user’s privacy data need to satisfy the local differential privacy requirements.

1. Perturbation for user privacy level ti:

Pr(t∗ |t1)
Pr(t∗ |t2)

≤ Pr(t∗=t1|t1)
Pr(t∗=t1|t2)

=
e
εt1

e
εt1 +k−1

1
e
εt2 +k−1

≤ emax(εt1 ,εt2 )

Thus, the processing of user privacy level ti satisfies the hierarchical local differential
privacy requirements.

2. Perturbation for user privacy data vi:

The perturbation of vi is related to the perturbation of ti, the privacy levels after the
perturbation of t1 and t2 are t∗1 and t∗2 , respectively, and the perturbed output values have
only two values (−1 and 1), which we consider the case v∗ = 1 (similarly for v∗ = −1).

Pr(v∗=1|v1)
Pr(v∗=1|v2)

=

1+v1
2 ·

e
εt∗1

e
εt∗1 +1

+
1−v1

2 ·
1

e
εt∗1 +1

1+v2
2 ·

e
εt∗2

e
εt∗2 +1

+
1−v2

2 ·
1

e
εt∗2 +1

= e
εt∗2 +1

e
εt∗1 +1

· v1(e
εt∗1 −1)+e

εt∗1 +1

v2(e
εt∗2 −1)+e

εt∗2 +1

≤ e
εt∗2 +1

e
εt∗1 +1

· eεt∗1

≤ e
max(εt∗1

,εt∗2
)

Therefore, the processing of user data vi satisfies the hierarchical local differential
privacy requirements.

Theorem 3. The mean estimate obtained by Algorithm 5 is an unbiased estimate.

Proof of Theorem 3. By denoting the true mean of the user dataset V as m = 1
n ∑n

i vi and
the mean after discretizing the user data in Algorithm 3 as m′, we have:

E(m′) = E( 1
n ∑n

i v∗i )
= 1

n ∑n
i (−1 · 1−vi

2 + 1+vi
2 )

= 1
n ∑n

i vi
= m

Therefore, the mean estimation of the user discretized data is unbiased. The random
perturbation of the discretized data in Algorithm 3 causes bias, so the user data is corrected
in Algorithm 5.

Step 6 in Algorithm 5 corrects the data after user discretization. For any privacy level
dataset V∗i , denote its true mean as mi. Denote the number of true 1 and −1 in the user
dataset before the local perturbation as

_
n 1 and

_
n 2, the number of 1 and −1 received by the
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collector after the perturbation as n1 and n2 and the number of 1 and −1 corrected by the
collector as n∗1 and n∗2 . So, we have:

E(m∗i ) =
_
n 1 +

_
n 2

_
n 1 +

_
n 2

= mi

E(n1 + n2) = pi
_
n 1 + (1− pi)

_
n 2 + pi

_
n 2 + (1− pi)

_
n 1

=
_
n 1 +

_
n 2

E(n∗1) = E( pi−1
2pi−1 · Ni +

n1
2pi−1 )

= pi−1
2pi−1 E(n1 + n2) +

E(n1)
2pi−1

= (pi−1)(
_
n 1+

_
n 2)+pi

_
n 1+(1−pi)

_
n 2

2pi−1

=
_
n 1

Similarly:
E(n∗1) = E( pi−1

2pi−1 · Ni +
n2

2pi−1 )

=
_
n 2

Therefore, for dataset V∗i , its estimated mean m∗i satisfies:

E(m∗i ) = E(
n∗1 − n∗2
n∗1 + n∗2

) =

_
n 1 −

_
n 2

_
n 1 +

_
n 2

= mi

Noting the estimated mean value in Algorithm 5 as m∗, we have:

E(m∗) = E( 1
|V∗ |∑

k
i=1 (Ni ·m∗i ))

= 1
|V∗ |∑

k
i=1 (Ni ·mi))

= m

Therefore, the mean estimate in Algorithm 5 is an unbiased estimate. �

5. Application of Hierarchical Aggregation in Stochastic Gradient Descent

Stochastic gradient descent is a common method for finding model parameters in ma-
chine learning. The linear regression model is used as an example to study the application
of hierarchical aggregation method in stochastic gradient descent.

Assume that each user has a set of multidimensional data < xi, yi >, xi ∈ [−1, 1]d,
yi ∈ [−1, 1]. The target model is a linear model f (xi) =αTxi + b. Let β = (b, α1, α2, . . . , αd),
such that the final goal of model training is to obtain a parameter vector β*, satisfying the
following condition:

β* = arg min
β

[
1
n∑n

i=1 L(β; xi, yi) +
λ

2
‖β‖2

2]

where L(·) denotes the loss function L(β; xi, yi) = (βTxi − yi)
2, λ

2 ‖β‖
2
2 denotes the regular

term and λ denotes the regular term coefficient.
The literature [9,10] has demonstrated that in a local differential privacy setting, the

use of small-batch stochastic gradient descent can yield a more accurate prediction model
than the ordinary stochastic gradient descent method. Specifically, a parameter vector β*

0 is
first initialized and then iteratively updated by the following equation:

βt+1 = βt − γt ·
1
|G|

|G|

∑
i=1
∇R(βt; xi, yi)
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where R(β; xi, yi) = L(β; xi, yi) +
λ
2 ‖βt‖2

2, ∇R(βt; xi, yi) is the gradient of R(β; xi, yi) at βt;
γt represents the learning efficiency at the tth iteration γt = O(1/

√
t); and |G| represents

the number of samples used in each iteration, i.e., the number of users per group |G| =
Ω(

d log d
ε2 ).
The collector first sends the existing parameter vector β∗t to a group of |G| users in

each iteration, and each user in the group calculates the gradient ∇R based on the received
β∗t and then uses a perturbation algorithm for numerical data to privatize ∇R and sends it
to the collector. After receiving the gradients from a set of users, the collector calculates
the mean value for the update of the parameter vector to obtain β∗t+1, and this paper uses
Algorithm 4 to implement the privacy processing of ∇R and to find the mean value. It
is important to note that in order to achieve the hierarchical protection for user data, the
classification of∇R is not based on the size of each∇R component itself, but on the privacy
classification of certain attribute data corresponding to the ∇R component. Referring to
the gradient clipping method commonly used in deep learning, the user calculates ∇R and
then corrects each component by making it equal to 1 if it is greater than 1 or equal to −1 if
it is less than −1.

In ordinary stochastic gradient descent, each sample datum often needs to participate
in multiple iterations until the parameter vector changes are small enough. However, in
the local differential privacy setting, if each sample point is involved in multiple iterations,
the privacy budget used by the user will be severely divided each time to protect the user’s
privacy, resulting in a drastic decrease in the usability of the user’s data. Therefore, in the
local differential privacy environment, each user participates in only one cycle.

6. Experiments

Experiments were conducted using synthetic datasets conforming to uniform distribu-
tion, Gaussian distribution, exponential distribution and several real datasets as the users’
privacy data, respectively, and the proposed method was fully analyzed in a cross-sectional
and longitudinal comparison.

The data ranges of the synthetic datasets were all set to [−1, 1], with a mean of 0.3 and
a standard deviation of 0.2 for the Gaussian distribution dataset and a standard deviation
of 0.3 for the exponential distribution dataset.

The real dataset uses the 2010 census data for Brazil and the United States extracted
from the Integrated Public Use Microdata Series [26], denoted as the BR dataset and the US
dataset, respectively. The BR dataset has approximately 3.86 million records, each contain-
ing four numerical and six categorical attributes. The US dataset contains approximately
1.52 million records, each containing five numerical and five categorical attributes.

For the category-type attributes in the dataset, if there is an order relationship between
the attribute values, they are converted into consecutive values. For example, the two
attribute values “Does not speak English” and “Speaks English“ are converted to {0,1}. If
there is no sequential relationship between the attribute values, they are converted to k
attributes according to the k attribute values they have; for example, the attribute values
“male” and “female” are converted to (1,0) and (0,1). After that, the range of all the data is
converted to [−1,1].

The interval division of user data and the privacy budget allocation of each privacy
level should be set according to the specific needs of the actual problem, and the specific
setting method is out of the scope of this paper. In the following experiments, five privacy
levels are used as an example, and the value domain is divided into five subintervals
equally according to the size of data values {[−1,−0.6), [−0.6,−0.2), . . . , [0.6, 1.0]} and the
set of privacy budgets ε = {5ε, 4ε, 3ε, 2ε, ε}.

The mean absolute error (MAE) as well as the mean square error (MSE) were used to
evaluate the utility of the numerical data collection methods in performing mean estimation.
The calculation equations were:

MAE(m∗) =
1
T ∑|m∗ −m|
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MSE(m∗) =
1
T ∑ (m∗ −m)2

where m represents the true mean of the user data, m∗ represents the estimated mean and T
represents the number of experiments.

6.1. Different Data Reuse Times µ

The “age” attribute was extracted from the US dataset as the experimental dataset
(US_AGE dataset), and the number of data reused µ was varied to observe the accuracy of
mean estimation using the HierA method, using MAE as the evaluation metric T = 100.

The size of the data reuse count µ determines the number of rank conversions of low
ranked data for mean estimation on the collection side. The larger the value of µ, the greater
the number of conversions, and the greater the amount of data used for mean estimation,
the greater the computational overhead. The range of µ is {1,2,...,k} without considering
computational overhead where µ = 1 corresponds to no rank conversion and µ = k means
converting a rank datum to any higher ranked datum.

Figure 1 shows that the higher the value of µ, the higher the accuracy of the mean
estimation. This is mainly due to the fact that the larger the value of µ, the larger the amount
of data available for each privacy level and therefore the more accurate the mean estimation.
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6.2. Comparison of Different Methods

The HierA method (µ = 2) proposed in this paper is compared with the harmony
method, PM method and graded Laplace method for MAE when performing mean estima-
tion on synthetic and real datasets with different distributions. Note that the HierA method
proposed in this paper is a graded data collection method. The privacy level of user data
may vary depending on its size. The harmony and PM methods are single privacy-level
methods, and to ensure users’ privacy security, all users in these two methods must use
the highest privacy level, i.e., the smallest privacy budget at the time of perturbation. Fur-
thermore, the graded Laplace method uses the same graded settings as the HierA method.
The experiments compared the MAE of the different methods when data collection was
performed and mean estimation was performed under different privacy budgets ε.

From Figure 2, we can see that the HierA method proposed in this paper for the
hierarchical collection of numerical data has a higher accuracy than the existing methods on
different datasets, especially when the privacy budget ε is small, with the advantage of the
HierA method being more obvious. This is mainly due to the fact that the proposed method
not only assigns appropriate privacy levels to different privacy data according to their
own characteristics to avoid the unnecessary loss of data availability, but also expands the
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amount of data available at each level for mean estimation by transforming and merging
the privacy levels of data, which solves the problem of data reduction at each level due to
data grading.
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6.3. Small-Batch Stochastic Gradient Descent

Perform small-batch stochastic gradient descent experiments on the BR and US
datasets. Perform small-batch stochastic gradient descent experiments using the processed
BR and US datasets to complete the linear regression task. Specifically, the “total income”
attribute is used as output y and the other attributes are used as input x. According to [9],
the parameters are set as follows: the number of people per group G =

d log d
ε2 , learning

efficiency γt = (1/
√

t) and the penalty term coefficient λ = 10−4.
Privacy-preserving treatments were applied to the gradients of each set of user data

using the harmony, PM, graded Laplace and HierA methods proposed in this paper. The
MSE with 10 times of 5-fold cross-validation was used to evaluate the prediction accuracy
of the obtained linear models when different privacy-preserving methods were used.

As can be seen from Figure 3, in the linear regression task, the accuracy of the predic-
tion models obtained using graded privacy-preserving methods (graded Laplace and HierA
method) is higher than that of the models obtained by single-grade privacy-preserving
methods. Additionally, the HierA method proposed in this paper is more advantageous
than the simple graded Laplace method.
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7. Conclusions

To address the problem that numerical privacy data of the same type in different
ranges require different degrees of privacy protection, this paper proposes the HierA
method. This method uses the LHP algorithm to implement a hierarchical perturbation of
user data and the PLC algorithm to implement a privacy level conversion of the perturbed
data. The method was then applied to a small-batch stochastic gradient descent to complete
a linear regression task.

Through theoretical analysis, it is demonstrated that the method satisfies the local
differential privacy requirement and that mean estimation is unbiased. Finally, through
experiments, it is demonstrated that the hierarchical collection method of numerical data
proposed in this paper outperforms the existing local differential privacy-preserving meth-
ods in both simple mean estimation and small-batch stochastic gradient descent. The
impact of user data distribution on the accuracy of the hierarchical collection method will
be further investigated in the future and the optimal hierarchical collection method under
different distributions will be proposed.
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