A Review of Thermal Spectral Imaging Methods for Monitoring High-Temperature Molten Material Streams
Abstract
:1. Introduction
2. Radiation Thermometry Working Principles
2.1. Spectral Emissivity and the Apparent Temperature
2.2. Surroundings Interference and Surface Emissivity Effects
2.3. Radiation Ratio Thermometry
2.4. Multiwavelength Radiation Thermometry
3. Thermal Imaging
3.1. Thermal Broadband Imaging
3.2. Thermal Spectral Imaging
4. Molten Material Stream Monitoring
4.1. Detection of Slag Carry-Over
4.2. Measurement of Surface Temperature
4.3. Surface Conditions and Material Composition
4.4. Surface Flow Rate
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Reuter, M.A.; van Schaik, A.; Gutzmer, J.; Bartie, N.; Abadías-Llamas, A. Challenges of the Circular Economy: A Material, Metallurgical, and Product Design Perspective. Annu. Rev. Mater. Res. 2019, 49, 253–274. [Google Scholar] [CrossRef]
- Bartie, N.; Cobos-Becerra, L.; Fröhling, M.; Schlatmann, R.; Reuter, M. Metallurgical infrastructure and technology criticality: The link between photovoltaics, sustainability, and the metals industry. Miner. Econ. 2022, 35, 503–519. [Google Scholar] [CrossRef]
- Reuter, M.A.; KauBen, F.; Geimer, S.; Borowski, N.; Degel, R.; Lux, T. Metallurgical Slags Enable the Circular Economy—Digital Twins of Metallurgical Systems. World Metall. ERZMETALL 2021, 74, 192–202. [Google Scholar]
- Vázquez-Fernández, S.; Pieiga, A.G.; Lausín-Gónzalez, C.; Quintela, P. Mathematical modelling and numerical simulation of the heat transfer in a trough of a blast furnace. Int. J. Therm. Sci. 2019, 137, 365–374. [Google Scholar] [CrossRef]
- Lozynskyy, O.; Paranchuk, Y.; Kobylianskyi, O. Computer modelling of electric arc furnace electrode position control system. In Proceedings of the 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies, Lviv, Ukraine, 5–8 September 2017; pp. 442–445. [Google Scholar] [CrossRef]
- Odenthal, H.J.; Kemminger, A.; Krause, F.; Sankowski, L.; Uebber, N.; Vogl, N. Review on Modeling and Simulation of the Electric Arc Furnace (EAF). Steel Res. Int. 2018, 89, 1–36. [Google Scholar] [CrossRef]
- Halvorsen, S.A.; Downing, J.H.; Schei, A. Developing a Unidimensional Simulation Model for Producing Silicon in an Electric Furnace. In Proceedings of the Fourth European Conference on Mathematics in Industry; Wacker, H., Zulehner, W., Eds.; Springer: Dordrecht, Germany, 1991; pp. 293–298. [Google Scholar] [CrossRef]
- Reynolds, Q.G. Toward computational models of arc dynamics in silicon smelters. In Proceedings of the 14th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries SINTEF, Trondheim, Norway, 12–14 October 2020. [Google Scholar]
- Olsen, J.E.; Reynolds, Q.G. Mathematical Modeling of Furnace Drainage While Tapping Slag and Metal Through a Single Tap-Hole. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2020, 51, 1750–1759. [Google Scholar] [CrossRef]
- Reuter, M.A. Digitalizing the Circular Economy. Metall. Mater. Trans. B 2016, 47, 3194–3220. [Google Scholar] [CrossRef]
- Abburu, S.; Berre, A.J.; Jacoby, M.; Roman, D.; Stojanovic, L.; Stojanovic, N. COGNITWIN—Hybrid and Cognitive Digital Twins for the Process Industry. In Proceedings of the 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Cardiff, UK, 15–17 June 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Hvasta, M.G.; Bruhaug, G.; Fisher, A.E.; Dudt, D.; Kolemen, E. Liquid Metal Diagnostics. Fusion Sci. Technol. 2020, 76, 62–69. [Google Scholar] [CrossRef]
- Kadkhodabeigi, M. Modeling of Tapping Processes in Submerged Arc Furnaces. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2011. [Google Scholar]
- Reynolds, Q.; Erwee, M.W. Multiphase fluid flow modelling of furnace tapholes. In Proceedings of the 12th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, Trondheim, Norway, 30 May–1 June 2017; Available online: https://brage.bibsys.no/xmlui/bitstream/handle/11250/2480099/761.pdf?sequence=1 (accessed on 21 December 2020).
- Nelson, L.R.; Hundermark, R.J. The tap-hole—Key to furnace performance. J. S. Afr. Inst. Min. Metall. 2016, 116, 465–490. [Google Scholar] [CrossRef] [Green Version]
- DeWitt, D.P.; Nutter, G.D. Theory and Practice of Radiation Thermometry; John Wiley & Sons: Hoboken, NJ, USA, 1988. [Google Scholar]
- Pope, T.D. Infrared detection and imaging with microbolometer focal plane arrays. Proc. SPIE 2017, 131, 2017. [Google Scholar] [CrossRef]
- Clagget, T.J.; Worrall, R.W.; Liptak, B.G. Radiation and Infrared Pyrometers. In Process Measurement and Analysis; Liptak, B.G., Ed.; CRC Press: Boca Raton, FL, USA, 2003; Volume 1, pp. 630–644. [Google Scholar]
- Usamentiaga, R.; García, D.F.; Molleda, J.; Bulnes, F.G.; Pérez, J.M. Temperature measurement using the wedge method: Comparison and application to emissivity estimation and compensation. IEEE Trans. Instrum. Meas. 2011, 60, 1768–1778. [Google Scholar] [CrossRef]
- Ono, A. Methods for reducing emissivity effects. In Theory and Practice of Radiation Thermometry; DeWitt, D.P., Nutter, G.D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1988; pp. 565–622. [Google Scholar]
- Saunders, P. MSL Technical Guide 35 Emissivity of Blackbody Cavities. 2016. Available online: https://www.measurement.govt.nz/resources/#collapse-control-1-5 (accessed on 10 June 2019).
- Nicholas, J.V.; White, D.R. Traceable Temperatures: An Introduction to Temperature Measurement and Calibration; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Michalski, L.; Eckersdorf, K.; Kucharski, J.; McGhee, J. Temperature Measurement; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Grujic, K.; Habisreuther, T.; Mathisen, H.; Simonsen, S. Optical Techniques for Measurement of Extreme Temperatures for Metallurgical Applications; In Proceedings of the Northern Optics & Photonics, Lappeenranta, Finland, 2 – 4 June 2015.
- Růžička, J.; Houžvička, J.; Bok, J.; Praus, P.; Mojzeš, P. Single-crystal sapphire tubes as economical probes for optical pyrometry in harsh environments. Appl. Opt. 2011, 50, 6599–6605. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22193189 (accessed on 23 April 2014). [CrossRef] [PubMed]
- Olsen, Å.A.F.; Mathisen, H.; Simonsen, S. An investigation into a calibration scheme for a light pipe based temperature probe. Meas. Sci. Technol. 2018, 29, 115004. [Google Scholar] [CrossRef]
- Bedford, R.E. Calculation of effective emissivities of cavity sources of thermal radiation. In Theory and Practice of Radiation Thermometry; DeWitt, D.P., Nutter, G.D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1988. [Google Scholar]
- Biasetto, L.; Manzolaro, M.; Andrighetto, A. Emissivity measurements of opaque gray bodies up to 2000 °C by a dual-frequency pyrometer. Eur. Phys. J. A 2008, 38, 167–171. [Google Scholar] [CrossRef]
- Mayr-Schmölzer, B.; Wesemann, I.; Tröber, R.; O’Sullivan, M.; Kestler, H.; Sigl, L.S. A method for measuring the high temperature emissivity of refractory metal surfaces. Int. J. Refract. Met. Hard Mater. 2018, 73, 7–12. [Google Scholar] [CrossRef]
- Tenney, A.S. Radiation ratio thermometry. In Theory and Practice of Radiation Thermometry; DeWitt, D.S., Nutter, G., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1988; pp. 459–494. [Google Scholar]
- Cassady, L.D.; Choueiri, E.Y. High accuracy multi-color pyrometry for high temperature surfaces. In Proceedings of the 28th International Electric Propulsion Conference, Toulouse, France, 17–21 March 2003. [Google Scholar]
- Araujo, A. Multi-spectral pyrometry—A review. Meas. Sci. Technol. 2017, 28, 082002. [Google Scholar] [CrossRef]
- Saunders, P. Reflection errors and uncertainties for dual and multiwavelength pyrometers. High Temp. High Press. 2000, 32, 239–249. [Google Scholar] [CrossRef]
- Chernysheva, N.S.; Ionov, A.B.; Ionov, B.P. The main principles of development of an intelligent multi-channel radiation thermometer. In Proceedings of the 2020 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Chemal, Russia, 29 June 2020–3 July 2020. [Google Scholar] [CrossRef]
- Liwei, C.; Jin, Z. Application research of artificial neural network in multispectral radiation thermometry. In Proceedings of the 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), Beijing, China, 17–19 August 2017; pp. 724–727. [Google Scholar] [CrossRef]
- Felice, R.A. The Spectropyrometer—A Practical Multi-wavelength Pyrometer. AIP Conf. Proc. 2002, 684, 711–716. [Google Scholar] [CrossRef] [Green Version]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [Green Version]
- Peacock, G.R. Thermal imaging of liquid steel and slag in a pouring stream. Proc. SPIE 2000, 4020, 50–60. [Google Scholar] [CrossRef]
- Rogalski, A. Progress in focal plane array technologies. Prog. Quantum Electron. 2012, 36, 342–473. [Google Scholar] [CrossRef]
- Meriaudeau, F. Real time multispectral high temperature measurement: Application to control in the industry. Image Vis. Comput. 2007, 25, 1124–1133. [Google Scholar] [CrossRef]
- Dai, Y.; Ali, S.Z.; Hopper, R.; Falco, C.; Pandey, P.; Oxley, C.; Popa, D.; Udrea, F. Crosstalk Analysis of a CMOS Single Membrane Thermopile Detector Array. Sensors 2020, 20, 2573. [Google Scholar] [CrossRef]
- Hobbs, M.J.; Grainger, M.P.; Zhu, C.; Tan, C.H.; Willmott, J.R. Quantitative thermal imaging using single-pixel Si APD and MEMS mirror. Opt. Express 2018, 26, 3188. [Google Scholar] [CrossRef] [PubMed]
- Hagen, N.; Kudenov, M.W. Review of snapshot spectral imaging technologies. Opt. Eng. 2013, 52, 090901. [Google Scholar] [CrossRef] [Green Version]
- Andreu, J.P. A slag temperature and flow monitoring system. Proc. Third Int. Conf. Comput. Vis. Theory Appl. 2008, 2, 502–507. [Google Scholar] [CrossRef]
- Fu, T.; Liu, J.; Tian, J. VIS-NIR multispectral synchronous imaging pyrometer for high-temperature measurements. Rev. Sci. Instrum. 2017, 88, 064902. [Google Scholar] [CrossRef]
- Dagel, D.J.; Grossetete, G.D.; Maccallum, D.O.; Korey, S.P. Four-color imaging pyrometer for mapping temperatures of laser-based metal processes. Proc. SPIE 2016, 8985, 986103. [Google Scholar] [CrossRef]
- Wójcik, W.; Firago, V.; Smolarz, A.; Shedreyeva, I.; Yeraliyeva, B. Multispectral High Temperature Thermography. Sensors 2022, 22, 742. [Google Scholar] [CrossRef] [PubMed]
- Souto-López, Á.; García-Díaz, A.; Méndez-Rial, R. Temperature imaging in the MWIR range independent of emissivity. Proc. SPIE 2018, 1068005, 4. [Google Scholar] [CrossRef]
- Devesse, W.; De Baere, D.; Guillaume, P. High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging. Sensors 2017, 17, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.; Ni, L.; Liu, H.; Zhou, H. Measurement of the distribution of temperature and emissivity of a candle flame using hyperspectral imaging technique. Optik 2019, 183, 222–231. [Google Scholar] [CrossRef]
- Qu, D.; Berry, J.; Calta, N.P.; Crumb, M.F.; Guss, G.; Matthews, M.J. Temperature Measurement of Laser-Irradiated Metals Using Hyperspectral Imaging. Phys. Rev. Appl. 2020, 14, 014031. [Google Scholar] [CrossRef]
- Levichev, N.; Staudt, T.; Schmidt, M.; Duflou, J.R. Hyperspectral imaging and trim-cut visualization of laser cutting. CIRP Ann. 2021, 70, 207–210. [Google Scholar] [CrossRef]
- Bhan, R.K.; Dhar, V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto-Electron. Rev. 2019, 27, 174–193. [Google Scholar] [CrossRef]
- Boldrini, B.; Kessler, W.; Rebner, K.; Kessler, R.W. Hyperspectral Imaging: A Review of Best Practice, Performance and Pitfalls for in-line and on-line Applications. J. Near Infrared Spectrosc. 2012, 20, 483–508. [Google Scholar] [CrossRef]
- Hagen, N. Snapshot advantage: A review of the light collection improvement for parallel high-dimensional measurement systems. Opt. Eng. 2012, 51, 111702. [Google Scholar] [CrossRef]
- Pistorius, P.C. Slag carry-over and the production of clean steel. J. S. Afr. Inst. Min. Metall. 2019, 119, 557–561. [Google Scholar] [CrossRef]
- Patra, P.; Sarkar, A.; Tiwari, A. Infrared-based slag monitoring and detection system based on computer vision for basic oxygen furnace. Ironmak. Steelmak. 2019, 46, 692–697. [Google Scholar] [CrossRef]
- Zhang, Z.; Bin, L.; Jiang, Y. Slag detection system based on infrared temperature measurement. Optik 2014, 125, 1412–1416. [Google Scholar] [CrossRef]
- Chakraborty, A.; Ghose, J.; Chakraborty, S.; Chakraborty, B. Vision-based detection system of slag flow from ladle to tundish with the help of the detection of undulation of slag layer of the tundish using an image analysis technique. Ironmak. Steelmak. 2022, 49, 10–15. [Google Scholar] [CrossRef]
- Chen, J.; Barrow, R. Novel applications of thermal imaging in the steel industry. In Proceedings of the SPIE’s 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, Orlando, FL, USA; 1995. [Google Scholar] [CrossRef]
- DeWitt, D.P.; Richmond, J.C. Thermal radiative properties of materials. In Theory and Practice of Radiation Thermometry; John Wiley & Sons: Hoboken, NJ, USA, 1988; pp. 171–175. [Google Scholar]
- Seifter, A. About the Meaning of the Hagen—Rubens Relation To Radiation Thermometry. In Proceedings of the XVII IMEKO World Congress Metrology in the 3rd Millennium, Dubrovnik, Croatia, 22−27 June 2003; pp. 1695–1698. [Google Scholar]
- Díaz, J.; Fernández, F.J.; Suárez, I. Hot metal temperature prediction at basic-lined oxygen furnace (BOF) converter using IR thermometry and forecasting techniques. Energies 2019, 12, 3235. [Google Scholar] [CrossRef] [Green Version]
- Usamentiaga, R.; Molleda, J.; Garcia, D.F.; Granda, J.C.; Rendueles, J.L. Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision. IEEE Trans. Instrum. Meas. 2012, 61, 1149–1159. [Google Scholar] [CrossRef]
- Cheng, X.; Cheng, S.; Zhou, D.; Zhang, R. Application of a Temperature Measurement System Based on CCD Sensor in Blast Furnace Tuyere Raceway. Lect. Notes Electr. Eng. 2019, 606, 199–207. [Google Scholar] [CrossRef]
- Fu, T.; Xiong, Y.; Liu, J.; Shi, C. Measurements of temperature and emissivity distributions on a high-temperature surface using an auxiliary light source method. J. Heat Transfer. 2019, 141, 082702. [Google Scholar] [CrossRef]
- Jirasuwankul, N. Visualization and Estimation of Temperature from Glowing Hot Object by Artificial Neural Network and Image Analysis Technique. Procedia Comput. Sci. 2018, 130, 712–719. [Google Scholar] [CrossRef]
- Felice, R.A.; Nash, D.A. Pyrometry of materials with changing, spectrally-dependent emissivity-Solid and liquid metals. AIP Conf. Proc. 2012, 1552, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Felice, R. Pyrometry for liquid metals. Adv. Mater. Process. 2008, 166, 31–33. [Google Scholar]
- Staudt, T.; Eschner, E.; Schmidt, M. Temperature determination in laser welding based upon a hyperspectral imaging technique. CIRP Ann. 2019, 68, 225–228. [Google Scholar] [CrossRef]
- Takasuka, E.; Tokizaki, E.; Terashima, K.; Kimura, S. Emissivity of liquid silicon in visible and infrared regions. J. Appl. Phys. 1997, 81, 6384–6389. [Google Scholar] [CrossRef]
- Slater, C.; Hechu, K.; Davis, C.; Sridhar, S. Characterisation of the solidification of a molten steel surface using infrared thermography. Metals 2019, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- Eckert, S.; Cramer, A.; Gerbeth, G. Velocity measurement techniques for liquid metal flows. Magnetohydrodyn. Fluid Mech. Appl. 2007, 80, 275–294. [Google Scholar]
- Zhang, T.; Yang, J.; Jiang, P. Measurement of molten steel velocity near the surface and modeling for transient fluid flow in the continuous casting mold. Metals 2019, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Iguchi, M.; Kawabata, H.; Morita, Z. Velocity Measurement of Molten Metal Flow at Very High Temperatures. High Temp. Mater. Process. 2000, 19, 187–196. [Google Scholar] [CrossRef]
- Ratajczak, M.; Hernández, D.; Richter, T.; Otte, D.; Buchenau, D.; Krauter, N.; Wondrak, T. Measurement techniques for liquid metals. IOP Conf. Ser. Mater. Sci. Eng. 2017, 228, 012023. [Google Scholar] [CrossRef]
- Hvasta, M.G.; Kolemen, E.; Fisher, A. Application of IR imaging for free-surface velocity measurement in liquid-metal systems. Rev. Sci. Instrum. 2017, 88, 013501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grujić, K. A Review of Thermal Spectral Imaging Methods for Monitoring High-Temperature Molten Material Streams. Sensors 2023, 23, 1130. https://doi.org/10.3390/s23031130
Grujić K. A Review of Thermal Spectral Imaging Methods for Monitoring High-Temperature Molten Material Streams. Sensors. 2023; 23(3):1130. https://doi.org/10.3390/s23031130
Chicago/Turabian StyleGrujić, Katarina. 2023. "A Review of Thermal Spectral Imaging Methods for Monitoring High-Temperature Molten Material Streams" Sensors 23, no. 3: 1130. https://doi.org/10.3390/s23031130
APA StyleGrujić, K. (2023). A Review of Thermal Spectral Imaging Methods for Monitoring High-Temperature Molten Material Streams. Sensors, 23(3), 1130. https://doi.org/10.3390/s23031130