Sensorimotor Time Delay Estimation by EMG Signal Processing in People Living with Spinal Cord Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Instruments and Data Acquisition
2.4. Data Analysis
2.4.1. First Strategy
2.4.2. Second Strategy (TKEO)
2.4.3. Third Strategy (Cepstral Analysis)
2.4.4. Fourth Strategy (Power Spectrum)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vette, A.H.; Masani, K.; Kim, J.-Y.; Popovic, M.R. Closed-Loop Control of Functional Electrical Stimulation-Assisted Arm-Free Standing in Individuals with Spinal Cord Injury: A Feasibility Study. Neuromodulation Technol. Neural Interface 2009, 12, 22–32. [Google Scholar] [CrossRef]
- Winter, E.M.; Brookes, F.B.C. Electromechanical Response Times and Muscle Elasticity in Men and Women. Eur. J. Appl. Physiol. Occup. Physiol. 1991, 63, 124–128. [Google Scholar] [CrossRef]
- Chagdes, J.R.; Rietdyk, S.; Jeffrey, M.H.; Howard, N.Z.; Raman, A. Dynamic Stability of a Human Standing on a Balance Board. J. Biomech. 2013, 46, 2593–2602. [Google Scholar] [CrossRef]
- Curuk, E.; Lee, Y.; Aruin, A.S. Individuals with Stroke Improve Anticipatory Postural Adjustments after a Single Session of Targeted Exercises. Hum. Mov. Sci. 2020, 69, 102559. [Google Scholar] [CrossRef]
- Kanekar, N.; Aruin, A.S. Aging and balance control in response to external perturbations: Role of anticipatory and compensatory postural mechanisms. Age 2014, 36, 9621. [Google Scholar] [CrossRef] [Green Version]
- Kemoun, G.; Thoumie, P.; Boisson, D.; Guieu, J. Ankle Dorsiflexion Delay Can Predict Falls in the Elderly. J. Rehabil. Med. 2002, 34, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Crisco, J.J.; Panjabi, M.M. Euler Stability of the Human Ligamentous Lumbar Spine. Part I: Theory. Clin. Biomech. 1992, 7, 19–26. [Google Scholar] [CrossRef]
- Silfies, S.P.; Cholewicki, J.; Radebold, A. The Effects of Visual Input on Postural Control of the Lumbar Spine in Unstable Sitting. Hum. Mov. Sci. 2003, 22, 237–252. [Google Scholar] [CrossRef]
- Potten, Y.J.M.; Seelen, H.A.M.; Drukker, J.; Reulen, J.P.H.; Drost, M.R. Postural Muscle Responses in the Spinal Cord Injured Persons during Forward Reaching. Ergonomics 1999, 42, 1200–1215. [Google Scholar] [CrossRef]
- Grangeon, M.; Gagnon, D.; Gauthier, C.; Jacquemin, G.; Masani, K.; Popovic, M.R. Effects of Upper Limb Positions and Weight Support Roles on Quasi-Static Seated Postural Stability in Individuals with Spinal Cord Injury. Gait Posture 2012, 36, 572–579. [Google Scholar] [CrossRef]
- Blandeau, M.; Guerra, T.-M.; Pudlo, P.; Gabrielli, F.; Estrada-Manzo, V. How a Person with Spinal Cord Injury Controls a Sitting Situation Unknown Input Observer and Delayed Feedback Control with Time-Varying Input Delay. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24–29 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2349–2356. [Google Scholar]
- Blandeau, M.; Estrada-Manzo, V.; Guerra, T.-M.; Pudlo, P.; Gabrielli, F. Unknown Input Observer for Understanding Sitting Control of Persons with Spine Cord Injury. IFAC-PapersOnLine 2016, 49, 175–181. [Google Scholar] [CrossRef]
- Nguyen, A.-T.; Pan, J.; Guerra, T.-M.; Blandeau, M.; Zhang, W. Designing Fuzzy Descriptor Observer with Unmeasured Premise Variables for Head-Two-Arms-Trunk System. IFAC-PapersOnLine 2020, 53, 8007–8012. [Google Scholar] [CrossRef]
- Guerra, T.M.; Blandeau, M.; Ngyuen, A.T.; Pan, J. Practical Approach of Input Delay Nonlinear Systems: Application to Spinal Cord Injury Sitting Stability. IFAC-PapersOnLine 2019, 52, 67–72. [Google Scholar] [CrossRef]
- Guerra, T.-M.; Blandeau, M.; Nguyen, A.-T.; Srihi, H.; Dequidt, A. Stabilizing Unstable Biomechanical Model to Understand Sitting Stability for Persons with Spinal Cord Injury. IFAC-PapersOnLine 2020, 53, 8001–8006. [Google Scholar] [CrossRef]
- Reeves, N.P.; Cholewicki, J.; Milner, T.E. Muscle Reflex Classification of Low-Back Pain. J. Electromyogr. Kinesiol. 2005, 15, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Radebold, A.; Cholewicki, J.; Panjabi, M.M.; Patel, T.C. Muscle Response Pattern to Sudden Trunk Loading in Healthy Individuals and in Patients with Chronic Low Back Pain. Spine 2000, 25, 947–954. [Google Scholar] [CrossRef]
- Granata, K.P.; Slota, G.P.; Bennett, B.C. Paraspinal Muscle Reflex Dynamics. J. Biomech. 2004, 37, 241–247. [Google Scholar] [CrossRef]
- Cholewicki, J.; Silfies, S.P.; Shah, R.A.; Greene, H.S.; Reeves, N.P.; Alvi, K.; Goldberg, B. Delayed Trunk Muscle Reflex Responses Increase the Risk of Low Back Injuries. Spine 2005, 30, 2614–2620. [Google Scholar] [CrossRef]
- Pereira, S.; Silva, C.C.; Ferreira, S.; Silva, C.; Oliveira, N.; Santos, R.; Vilas-Boas, J.P.; Correia, M.V. Anticipatory Postural Adjustments during Sitting Reach Movement in Post-Stroke Subjects. J. Electromyogr. Kinesiol. 2014, 24, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Aruin, A.S.; Kanekar, N.; Lee, Y.-J.; Ganesan, M. Enhancement of Anticipatory Postural Adjustments in Older Adults as a Result of a Single Session of Ball Throwing Exercise. Exp. Brain Res. 2015, 233, 649–655. [Google Scholar] [CrossRef]
- Redfern, M.S.; Müller, M.L.; Jennings, J.R.; Furman, J.M. Attentional Dynamics in Postural Control during Perturbations in Young and Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2002, 57, B298–B303. [Google Scholar] [CrossRef] [Green Version]
- Reeves, N.P.; Luis, A.; Chan, E.C.; Sal, Y.R.V.G.; Tanaka, M.L. Assessing Delay and Lag in Sagittal Trunk Control Using a Tracking Task. J. Biomech. 2018, 73, 33–39. [Google Scholar] [CrossRef]
- Brown, L.A.; Jensen, J.L.; Korff, T.; Woollacott, M.H. The Translating Platform Paradigm: Perturbation Displacement Waveform Alters the Postural Response. Gait Posture 2001, 14, 256–263. [Google Scholar] [CrossRef]
- Leinonen, V.; Kankaanpää, M.; Luukkonen, M.; Hänninen, O.; Airaksinen, O.; Taimela, S. Disc Herniation-Related Back Pain Impairs Feed-Forward Control of Paraspinal Muscles. Spine 2001, 26, E367–E372. [Google Scholar] [CrossRef]
- Radebold, A.; Cholewicki, J.; Polzhofer, G.K.; Greene, H.S. Impaired Postural Control of the Lumbar Spine Is Associated with Delayed Muscle Response Times in Patients with Chronic Idiopathic Low Back Pain. Spine 2001, 26, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Adkin, A.L.; Frank, J.S.; Carpenter, M.G.; Peysar, G.W. Fear of Falling Modifies Anticipatory Postural Control. Exp. Brain Res. 2002, 143, 160–170. [Google Scholar] [CrossRef]
- Mochizuki, G.; Sibley, K.M.; Esposito, J.G.; Camilleri, J.M.; McIlroy, W.E. Cortical Responses Associated with the Preparation and Reaction to Full-Body Perturbations to Upright Stability. Clin. Neurophysiol. 2008, 119, 1626–1637. [Google Scholar] [CrossRef]
- Borghuis, A.J.; Lemmink, K.A.; Hof, A.L. Core Muscle Response Times and Postural Reactions in Soccer Players and Nonplayers. Med. Sci. Sport. Exerc. 2011, 43, 108–114. [Google Scholar] [CrossRef]
- Kanekar, N.; Aruin, A.S. The Effect of Aging on Anticipatory Postural Control. Exp. Brain Res. 2014, 232, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
- Blenkinsop, G.M.; Pain, M.T.; Hiley, M.J. Evaluating Feedback Time Delay during Perturbed and Unperturbed Balance in Handstand. Hum. Mov. Sci. 2016, 48, 112–120. [Google Scholar] [CrossRef]
- Claudino, R.; Dos Santos, M.J.; Mazo, G.Z. Delayed Compensatory Postural Adjustments After Lateral Perturbations Contribute to the Reduced Ability of Older Adults to Control Body Balance. Mot. Control 2017, 21, 425–442. [Google Scholar] [CrossRef]
- Mohebbi, A.; Amiri, P.; Kearney, R.E. Identification of Human Balance Control Responses to Visual Inputs Using Virtual Reality. J. Neurophysiol. 2022, 127, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Maurer, C.; Peterka, R.J. A New Interpretation of Spontaneous Sway Measures Based on a Simple Model of Human Postural Control. J. Neurophysiol. 2005, 93, 189–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, T.D.; Ting, L.H. A Feedback Model Reproduces Muscle Activity during Human Postural Responses to Support-Surface Translations. J. Neurophysiol. 2008, 99, 1032–1038. [Google Scholar] [CrossRef] [Green Version]
- Sovol, A.W.; Valles, K.D.B.; Riedel, S.A.; Harris, G.F. Bi-Planar Postural Stability Model: Fitting Model Parameters to Patient Data Automatically. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August 2010–4 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 3962–3965. [Google Scholar]
- van Drunen, P.; Maaswinkel, E.; van der Helm, F.C.; van Dieen, J.H.; Happee, R. Identifying Intrinsic and Reflexive Contributions to Low-Back Stabilization. J. Biomech. 2013, 46, 1440–1446. [Google Scholar] [CrossRef] [Green Version]
- Valles, K.D.B.; Udoekwere, U.I.; Long, J.T.; Schneider, J.M.; Riedel, S.A.; Harris, G.F. A Bidirectional Model of Postural Sway Using Force Plate Data. Crit. Rev. Biomed. Eng. 2014, 42, 451–466. [Google Scholar] [CrossRef]
- Yin, K.; Chen, J.; Xiang, K.; Pang, M.; Tang, B.; Li, J.; Yang, L. Artificial Human Balance Control by Calf Muscle Activation Modelling. IEEE Access 2020, 8, 86732–86744. [Google Scholar] [CrossRef]
- Wang, H.; van den Bogert, A.J. Identification of Postural Controllers in Human Standing Balance. J. Biomech. Eng. 2021, 143, 041001. [Google Scholar] [CrossRef] [PubMed]
- McKee, K.L.; Neale, M.C. Direct Estimation of the Parameters of a Delayed, Intermittent Activation Feedback Model of Postural Sway during Quiet Standing. PLoS ONE 2019, 14, e0222664. [Google Scholar] [CrossRef] [Green Version]
- Nagy, D.J.; Bencsik, L.; Insperger, T. Experimental Estimation of Tactile Reaction Delay during Stick Balancing Using Cepstral Analysis. Mech. Syst. Signal Process. 2020, 138, 106554. [Google Scholar] [CrossRef]
- Peterka, R.J.; Loughlin, P.J. Dynamic Regulation of Sensorimotor Integration in Human Postural Control. J. Neurophysiol. 2004, 91, 410–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basmajian, J.V. Electromyography—Dynamic Gross Anatomy: A Review. Am. J. Anat. 1980, 159, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Grin, L.; Frank, J.; Allum, J.H. The Effect of Voluntary Arm Abduction on Balance Recovery Following Multidirectional Stance Perturbations. Exp. Brain Res. 2007, 178, 62–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokuno, C.D.; Carpenter, M.G.; Thorstensson, A.; Cresswell, A.G. The Influence of Natural Body Sway on Neuromuscular Responses to an Unpredictable Surface Translation. Exp. Brain Res. 2006, 174, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Weaver, T.B.; Hamilton, L.E.; Tokuno, C.D. Age-Related Changes in the Control of Perturbation-Evoked and Voluntary Arm Movements. Clin. Neurophysiol. 2012, 123, 2025–2033. [Google Scholar] [CrossRef] [PubMed]
- Solnik, S.; Rider, P.; Steinweg, K.; DeVita, P.; Hortobágyi, T. Teager-Kaiser Energy Operator Signal Conditioning Improves EMG Onset Detection. Eur. J. Appl. Physiol. 2010, 110, 489–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, M.J.; Kanekar, N.; Aruin, A.S. The Role of Anticipatory Postural Adjustments in Compensatory Control of Posture: 1. Electromyographic Analysis. J. Electromyogr. Kinesiol. 2010, 20, 388–397. [Google Scholar] [CrossRef]
- Crow, E.L.; Siddiqui, M.M. Robust Estimation of Location. J. Am. Stat. Assoc. 1967, 62, 353–389. [Google Scholar] [CrossRef]
- Thongpanja, S.; Phinyomark, A.; Quaine, F.; Laurillau, Y.; Limsakul, C.; Phukpattaranont, P. Probability Density Functions of Stationary Surface EMG Signals in Noisy Environments. IEEE Trans. Instrum. Meas. 2016, 65, 1547–1557. [Google Scholar] [CrossRef]
- Xu, L.; Peri, E.; Vullings, R.; Rabotti, C.; Van Dijk, J.P.; Mischi, M. Comparative Review of the Algorithms for Removal of Electrocardiographic Interference from Trunk Electromyography. Sensors 2020, 20, 4890. [Google Scholar] [CrossRef]
- Parzen, E. On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Vasudevan, J.M.; Logan, A.; Shultz, R.; Koval, J.J.; Roh, E.Y.; Fredericson, M. Comparison of Muscle Onset Activation Sequences between a Golf or Tennis Swing and Common Training Exercises Using Surface Electromyography: A Pilot Study. J. Sport. Med. 2016, 2016, 3987486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebetrau, A.; Puta, C.; Anders, C.; de Lussanet, M.H.; Wagner, H. Influence of Delayed Muscle Reflexes on Spinal Stability: Model-Based Predictions Allow Alternative Interpretations of Experimental Data. Hum. Mov. Sci. 2013, 32, 954–970. [Google Scholar] [CrossRef] [PubMed]
ID | Age | Sex | Weight (kg) | Height (cm) | IMC | Injury Level | ASIA | TIC | Injury Age (Months) |
---|---|---|---|---|---|---|---|---|---|
1 | 33 | F | 58.5 | 162.6 | 22.1 | T6 | A | 0.5 | 112 |
2 | 33 | M | 59.9 | 177.8 | 18.9 | T4 | A | 0 | 126 |
3 | 35 | M | 76.2 | 178 | 24.0 | T6 | A | 0 | 147 |
4 | 31 | F | 51.7 | 157.5 | 20.8 | T6 | B | 0.5 | 95 |
5 | 44 | M | 63 | 165 | 23.1 | T6 | A | 0.5 | 161 |
6 | 57 | M | 94.8 | 185 | 27.7 | T4 | A | 0.5 | 185 |
7 | 45 | F | 72.1 | 168 | 25.5 | T4 | A | 0 | 131 |
Muscles | LD * | TB * | DP * | BB * | PMC * | PMS * | TD * | DA * | ||
---|---|---|---|---|---|---|---|---|---|---|
Parameters | ||||||||||
First strategy | Found value | 82 | 79 | 77 | 71 | 72 | 79 | 67 | 65 | |
% out of found 82 | 100 | 96.3 | 93.9 | 86.6 | 87.8 | 96.3 | 81.7 | 79.3 | ||
Mean value (s) | 0.06 | 0.07 | 0.11 | 0.12 | 0.13 | 0.14 | 0.18 | 0.21 | ||
SD (s) | 0.06 | 0.11 | 0.16 | 0.16 | 0.12 | 0.16 | 0.15 | 0.18 | ||
Consistent value | 61 | 56 | 63 | 63 | 65 | 64 | 58 | 59 | ||
% out of found values | 74.4 | 70.9 | 81.8 | 88.7 | 90.3 | 81 | 86.6 | 90.8 | ||
Range of EMG onset (s) | 0.245 ± 0.199 | |||||||||
Second strategy | Found value | 80 | 79 | 80 | 77 | 75 | 79 | 73 | 75 | |
% out of found 82 | 97.6 | 96.3 | 97.6 | 93.9 | 91.5 | 96.3 | 89 | 91.5 | ||
Mean value (s) | 0.08 | 0.05 | 0.07 | 0.11 | 0.10 | 0.1 | 0.11 | 0.13 | ||
SD (s) | 0.07 | 0.07 | 0.09 | 0.17 | 0.13 | 0.11 | 0.14 | 0.13 | ||
Consistent value | 70 | 53 | 63 | 64 | 56 | 64 | 58 | 63 | ||
% out of found values | 87.5 | 67.1 | 78.8 | 83.1 | 74.7 | 81 | 79.5 | 84 | ||
Range of EMG onset (s) | 0.274 ± 0.222 | |||||||||
Third strategy | Found value | 82 | 82 | 82 | 82 | 82 | 82 | 82 | 82 | |
% out of found 82 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
Mean value (s) | 0.24 | 0.22 | 0.22 | 0.22 | 0.24 | 0.21 | 0.24 | 0.24 | ||
SD (s) | 0.12 | 0.15 | 0.14 | 0.13 | 0.14 | 0.13 | 0.13 | 0.13 | ||
Consistent value | 81 | 80 | 81 | 81 | 77 | 79 | 80 | 80 | ||
% out of found values | 98.8 | 97.6 | 98.8 | 98.8 | 93.9 | 96.3 | 97.6 | 97.6 | ||
Range of EMG onset (s) | 0.351 ± 0.084 | |||||||||
Fourth strategy | Found value | 82 | 82 | 82 | 82 | 82 | 82 | 82 | 82 | |
% out of found 82 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
Mean value (s) | 0.21 | 0.2 | 0.21 | 0.2 | 0.23 | 0.24 | 0.25 | 0.21 | ||
SD (s) | 0.12 | 0.13 | 0.12 | 0.13 | 0.13 | 0.14 | 0.14 | 0.12 | ||
Consistent value | 78 | 77 | 79 | 79 | 78 | 72 | 75 | 75 | ||
% out of found values | 95.1 | 93.9 | 96.3 | 96.3 | 95.1 | 87.8 | 91.5 | 91.5 | ||
Range of EMG onset (s) | 0.307 ± 0.125 |
Independent Variable | Estimated Time Delay | |
---|---|---|
F-value | p-value | |
Main Effect | ||
Muscle | 3.79 | |
Strategy | 62.34 | |
Interaction | ||
Muscle × Strategy | 1.23 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokouhyan, S.M.; Blandeau, M.; Wallard, L.; Guerra, T.M.; Pudlo, P.; Gagnon, D.H.; Barbier, F. Sensorimotor Time Delay Estimation by EMG Signal Processing in People Living with Spinal Cord Injury. Sensors 2023, 23, 1132. https://doi.org/10.3390/s23031132
Shokouhyan SM, Blandeau M, Wallard L, Guerra TM, Pudlo P, Gagnon DH, Barbier F. Sensorimotor Time Delay Estimation by EMG Signal Processing in People Living with Spinal Cord Injury. Sensors. 2023; 23(3):1132. https://doi.org/10.3390/s23031132
Chicago/Turabian StyleShokouhyan, Seyed Mohammadreza, Mathias Blandeau, Laura Wallard, Thierry Marie Guerra, Philippe Pudlo, Dany H. Gagnon, and Franck Barbier. 2023. "Sensorimotor Time Delay Estimation by EMG Signal Processing in People Living with Spinal Cord Injury" Sensors 23, no. 3: 1132. https://doi.org/10.3390/s23031132
APA StyleShokouhyan, S. M., Blandeau, M., Wallard, L., Guerra, T. M., Pudlo, P., Gagnon, D. H., & Barbier, F. (2023). Sensorimotor Time Delay Estimation by EMG Signal Processing in People Living with Spinal Cord Injury. Sensors, 23(3), 1132. https://doi.org/10.3390/s23031132