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Abstract: Neuro mechanical time delay is inevitable in the sensorimotor control of the body due to
sensory, transmission, signal processing and muscle activation delays. In essence, time delay reduces
stabilization efficiency, leading to system instability (e.g., falls). For this reason, estimation of time
delay in patients such as people living with spinal cord injury (SCI) can help therapists and biome-
chanics to design more appropriate exercise or assistive technologies in the rehabilitation procedure.
In this study, we aim to estimate the muscle onset activation in SCI people by four strategies on EMG
data. Seven complete SCI individuals participated in this study, and they maintained their stability
during seated balance after a mechanical perturbation exerting at the level of the third thoracic
vertebra between the scapulas. EMG activity of eight upper limb muscles were recorded during the
stability. Two strategies based on the simple filtering (first strategy) approach and TKEO technique
(second strategy) in the time domain and two other approaches of cepstral analysis (third strategy)
and power spectrum (fourth strategy) in the time–frequency domain were performed in order to
estimate the muscle onset. The results demonstrated that the TKEO technique could efficiently
remove the electrocardiogram (ECG) and motion artifacts compared with the simple classical filtering
approach. However, the first and second strategies failed to find muscle onset in several trials, which
shows the weakness of these two strategies. The time–frequency techniques (cepstral analysis and
power spectrum) estimated longer activation onset compared with the other two strategies in the time
domain, which we associate with lower-frequency movement in the maintaining of sitting stability.
In addition, no correlation was found for the muscle activation sequence nor for the estimated delay
value, which is most likely caused by motion redundancy and different stabilization strategies in each
participant. The estimated time delay can be used in developing a sensory motor control model of the
body. It not only can help therapists and biomechanics to understand the underlying mechanisms of
body, but also can be useful in developing assistive technologies based on their stability mechanism.

Keywords: spinal cord injury; physiological time delay; Teager–Kaiser Energy Operator;
cepstral analysis; power spectrum; EMG

1. Introduction

During human sensory motor control, different sensory information is sent to the
Central Nervous System (CNS), which processes the data and sends motor commands
to various muscles in order to maintain body stability during activities. However, this
process is affected by time delays, including the feedback delay due to neural transmission,
the motor command delay due to the information process in the CNS [1] and finally an
electromechanical time delay due to muscle activation delays [2]. Estimation of these time
delays is crucial because higher values of total delay induce stabilization performance
degradation leading to system instability [3]. On the other hand, estimating the time delay
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can help us to understand the underlying mechanisms of sensory motor control of the
body. Many studies have shown that time delay changes with exercise [4] and is longer in
patients compared with healthy individuals as well as elderly people compared with young
individuals [5,6]. Specifically, time delay estimation allows therapists and biomechanics
to have better insight regarding designing exercise in addition to assistive development
that can be helpful in the rehabilitation process and in improving their performance during
daily activities. Various models or simulations have been developed to figure out the
sensory motor control mechanism. Using incorrect parameter values in the system can
lead to wrong results, interpretation and subsequently wrong rehabilitation decisions or
a nonfunctional assistive device. Physiological time delay is thus a crucial parameter in
modeling sitting stability.

People living with a complete spinal cord injury (SCI) have numerous issues in
stabilizing their body due to a lack of sensory information and joint torques below their
injury level. Specifically, any injury in their lumbar level results in damage to their back and
intervertebral muscles, which are crucial in stabilizing the inherently unstable spine [7,8].
Thus, after an SCI, patients use their upper limbs and head rather than their muscles in
the lumbar level in order to maintain their stability [9]. Therefore, sitting stability will be
the first and most important goal of rehabilitation for them [10]. A better understanding
of the underlying mechanism of sitting stability can be helpful in employing the best
rehabilitation strategy or assistive technologies for SCI people. In addition, several studies
performed multiple experimental tests in the presence of perturbation and developed
different models to estimate joint torques, kinematic variables that can be effective in
identifying the employed stability mechanisms by SCI individuals. Blandeau et al. [11,12]
used a time-delayed 2 DOF H2AT model for sitting stability in SCI people such that the head
and both arms could slide relative to the trunk rotating at the lumbar level. In this study,
the trunk angle and the position of the head and arm center of mass (COM) were estimated
by a nonlinear observer tuned using classical optimization techniques based on Linear
Matrix Inequalities (LMI). Convergence towards the experimental trajectories is therefore
proven using such methodology. In another investigation [13], they designed a nonlinear
PI descriptor observer to estimate the body kinematics and unknown inputs in an H2AT
model. Guerra et al. [14] estimated the inputs in the H2AT model by an application-oriented
control law. This problem resumes in stabilizing an open-loop unstable underactuated
nonlinear system with a time-varying delayed control input, which is a difficult problem to
control, and was solved efficiently in [14]. Furthermore, in another study [15], a new model
was developed for SCI patients to understand the underlying mechanisms of their body
sensory motor control system. However, though these studies developed various models
to understand the stability mechanisms in SCI patients, these models cannot be used to
estimate the time delay value, which is crucial in stabilizing the employed models, and the
stability strategy can be changed with different values of time delay.

Other studies tried to estimate the physiological time delay in healthy people and in
patients by different approaches of simulation, experimental and combined strategies. The
authors of [16] used an experimental protocol and were able to estimate the time delay
between 66 to 99 milliseconds in healthy and lower back pain patients by analyzing the
electrical muscle activity (EMG) in the presence of an external perturbation in both anterior–
posterior and medio-lateral directions in seated balance. Other investigations were also
able to estimate the total physiological time delay by analyzing the EMG data for healthy
controls and patients [17–19] in seated balance and stance balance [4,20,20,21]. Instead
of EMG, other studies estimated longer time delays by focusing on COP and kinematic
data [22,23]. On the other hand, numerous investigations performed data analysis to
estimate the time delay by using multiple clinical data including EMG, center of pressure
or joint torque and kinematic data [24–33].

In addition, several studies [34–40] developed models to estimate not only the time de-
lay but also other parameters such as joint torques, stiffness, damping, etc. In these studies,
a model with multiple unknown parameters was developed in which the parameters were
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determined using experimental trajectories and an optimization approach. Furthermore,
some other investigations used different techniques such as Kalman filter [41], Cepstral
analysis in the time–frequency domain [42] and frequency analysis [43] to estimate the time
delay. Despite the fact that numerous studies estimate the time delay by different signal
processing approaches in healthy and varieties of patients, to the best of our knowledge, no
study was conducted for time delay estimation in SCI people during sitting stabilization.
Therefore, the main motivation of this study is to estimate the physiological time delay
in SCI patients during seated balance through four classical methodologies found in the
literature. Regarding the novelty of this work, to the best of our knowledge, we found no
study in the literature dealing with the following: 1. the time delay estimation in SCI people
during sitting stability and 2. the comparison of various methods for time delay estimation.
The article is organized as follows. Section 2 presents the Materials and Methods section
with participants’ characteristics, data acquisition and experimental protocol. Results and
all estimated values of time delay are shown in the Section 3. In the Section 4, results are
discussed and compared with other studies. Finally, the Section 5 presents perspectives
and closes the paper with a conclusion.

2. Materials and Methods
2.1. Participants

Seven complete SCI subjects (ASIA-A, level of injury above T6) with mean age
39.7 years (SD 12.4) participated in this study. Ethical approval was obtained from the
Research Ethics Committee of the Center for Interdisciplinary Research in Rehabilitation
of Greater Montreal (CRIR-1083-0515R). The participants read and signed the informed
consent form prior to initiating the measurements. Physical characteristics of participants
are shown in Table 1.

Table 1. Physical characteristics of participants.

ID Age Sex Weight (kg) Height (cm) IMC Injury Level ASIA TIC Injury Age (Months)

1 33 F 58.5 162.6 22.1 T6 A 0.5 112
2 33 M 59.9 177.8 18.9 T4 A 0 126
3 35 M 76.2 178 24.0 T6 A 0 147
4 31 F 51.7 157.5 20.8 T6 B 0.5 95
5 44 M 63 165 23.1 T6 A 0.5 161
6 57 M 94.8 185 27.7 T4 A 0.5 185
7 45 F 72.1 168 25.5 T4 A 0 131

2.2. Experimental Protocol

Participants were asked to maintain their sitting stability on a height-adjustable table
without back support with hip and knees flexed to 90◦, feet resting on the floor and
upper limbs flexed to 90◦ at the elbow level. When sitting stability was achieved, a light
destabilizing force was randomly applied at the level of the third thoracic vertebra between
the scapulas. The destabilizing force was generated via an impact with a foam-coated
wooden pole such that a pressure sensor was added on the tip to define the contact instant
(see Figure 1). After one or two familiarization trials with the destabilizing force, each
subject completed a minimum of 11 acquisitions. The start time of the trial was vocally
announced to participants, at which time they rose their arms and maintained their stability
before the perturbation. Their stability was visually evaluated by the examiner, and the
time instant was recorded by a synchronized hand switch. Then, the perturbation was
exerted at a random time, and participants should have regained their stability. Their
status was again visually assessed, and the time instant recorded when they achieved
their stability.
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system (TeleMyo 900, Noraxon, Scottsdale, Arizona, USA). All EMG signals and hand
switch data were sampled at 1200 Hz.
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Figure 1. Experimental setup. The perturbation was applied at the level of the third thoracic vertebra.

The experimental protocol total duration was about one hour. The first half hour
was dedicated to welcoming the subject, receiving his/her agreement for participating in
the experiment and finally installing the EMG. The acquisition lasted for approximately
20 min with up to 1 min break between each acquisition. The last 10 min were dedicated to
instrumentation removing and obtaining feedback from the subject.

2.3. Instruments and Data Acquisition

EMG signals were recorded from the following eight upper limb and trunk muscles:
Deltoid Anterior (DA), Deltoid Posterior (DP), Pectoralis Major Clavicular (PMC), Pectoralis
Major Sternal (PMS), Biceps Brachii (BB), Triceps Brachii (TB), Trapezius Descending
(TD) and Latissimus Dorsi (LD). The skin area was cleaned with alcohol wipes and the
electrodes were attached in pairs with a center-to-center distance of 25 mm, based upon
recommendations reported in the previous literature [44]. After similar skin preparations,
a ground electrode was attached to the anterior aspect of the leg over the tibial bone. The
EMG signals were recorded with a commercially available EMG system (TeleMyo 900,
Noraxon, Scottsdale, Arizona, USA). All EMG signals and hand switch data were sampled
at 1200 Hz.

2.4. Data Analysis

In this study, two strategies in the time domain (first and second strategies) and two
strategies (third and fourth strategies) in the time–frequency domain were used in order to
estimate the time delay in SCI patients by analyzing the EMG data. In addition, the time
between the earliest and latest muscle onset was computed as the range of muscle onset.
All data analyses were performed with Matlab R2022b software.

2.4.1. First Strategy

At first, all EMG signals were analog filtered using a band pass filter between
30 to 500 Hz by 6th order Butterworth filter, rectified and then low-pass filtered at
100 Hz [45]. The mean and standard deviation (SD) of the signal were computed be-
tween 1.5 to 0.5 s immediately before the perturbation. Response onset latencies were
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determined as the time at which the rectified EMG signal exceeded a threshold of 2×SD
above the mean baseline for a period of at least 25 data points [4,46,47]. EMG onset latencies
were computed for all muscles and then the average and SD were calculated for all trials in
all subjects.

2.4.2. Second Strategy (TKEO)

In this strategy, the raw data were first rectified and high pass filtered at 20 Hz by 6th
order Butterworth filter to remove motion and electrocardiogram (ECG) artifacts. Then, the
nonlinear Teager–Kaiser Energy Operator (TKEO) [48] was employed and the data were
filtered again (6th order, zero-phase low-pass filter at 50 Hz) for smoothing the signal. The
TKEO function (T) is defined as below:

T[x(n)] = x2(n)− x(n + 1)x(n− 1) (1)

where x represents the rectified and filtered EMG signal and n the sample value. The onset
of the muscles defined when the mean value of the smoothed signal exceeded a threshold of
the mean plus two standard deviations away from the baseline for more than 25 consecutive
samples [32,49]. The mean and SD of baseline were computed from 1.5 to 0.5 s right before
the perturbation. Eventually, the response latency was defined as the time between the
perturbation instant and onset of each muscle. The response latencies were measured for
all muscles and then averaged, and the standard deviations were calculated for all trials
and participants. For some acquisitions, the threshold of mean ± 2SD of baseline was not
reached by the EMG signal, yielding no onset found. Moreover, when the onset was found
below 20 ms, the delay was considered as not found because it was inconsistent with the
physiological signal.

2.4.3. Third Strategy (Cepstral Analysis)

The feature of neutral delay-differential equations is mainly that the delay of the
neutral part can be detected in the cepstrum of the output signal, which motivated one
study [42] to estimate the delay of the acceleration feedback term in stick balancing tasks on
kinematic data for healthy individuals. Thus, the cepstral analysis was used in this study as
the third strategy for time delay estimation in SCI people. At first, the cepstral transformed
signal of each EMG signal was obtained from the smoothed signals of the second strategy
(TKEO) as shown in equation 2, in which F and F−1 represent Fourier transform and T(n)
is the signal time series after performing the TKEO technique. The frequency domain of
0–0.5 s was examined to find the sharp peaks. The instant of the maximum value was
defined as the response onset and the response delay was identified as the time between
the perturbation instant and response onset for each muscle. Mean and SD of all muscle
onsets were then computed for all trials and subjects.

Cp = F−1{log[F{T(n)}]} (2)

2.4.4. Fourth Strategy (Power Spectrum)

In this approach, the power spectrum analysis was used to estimate the physiological
time delay in SCI patients. The power spectrum of each smoothed signal [43] from the
second strategy (TKEO) was extracted over time and frequency as shown in Equation (3),
where |P( f )|2 equals the energy density function over frequency. It was observed that
most of the signal power is less than 10 Hz, thus the signal power was averaged between
0 to 10 Hz. It was assumed that the instant of power peaks could demonstrate the response
onset. Therefore, the time domain of 0 to 0.5 s was investigated to find the instant of the
maximum value. Eventually, the physiological time delay was defined as the time between
the perturbation instant and when the averaged power signal reaches its maximum value.
Mean and SD of the estimated values were then computed for all trials and participants. In
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addition, in all strategies, the number of estimated muscle onsets higher than 20 ms and
less than 500 ms were found as consistent values with physiological time delay.

E =
∫ ∞

−∞
|T(n)|2dt =

∫ ∞

−∞
|P( f )|2d f (3)

The algorithm of each strategy is shown in the Figure 2.
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2.5. Statistical Analysis

For evaluation of the ECG removing artifacts to form the EMG signals, a statistical
metric of the Robust Measures of Kurtosis (KR2) [50–52] was used in this study using the
equation below:

KR2 =
F−1(0.975)− F−1(0.025)
F−1(0.75)− F−1(0.25)

− 2.91 (4)

where F−1 is the inverse cumulative distribution function (quantile function) of the time
series data x. Values F−1 (0.975) =−F−1 (0.025) = 1.96 and F−1 (0.75) =−F−1 (0.25) = 0.6745
were obtained for the standard Gaussian distribution. Thus, KR2 is zero if the data x has
Gaussian distribution. The methods to evaluate statistical characteristics in estimating the
Probability Density Function (PDF) shapes of EMG signals were composed of two stages.
First, the PDF was estimated by kernel smoothing with a Gaussian kernel [53] from all time
points, and this smooth density was discretized to 1001 bins of width 0.01 that partitioned
the range from −1 to +1. Eventually, the average and standard deviation of KR2 were
calculated over all trials and subjects. Spearman and Pearson correlation coefficients were
calculated to evaluate correlation in muscle activation sequence and delay value in all trials
and subjects, respectively [54]. In addition, the hypothesis of distribution in the normal
family was examined for the values of all estimated values for 8 muscles and 4 strategies.
Significant effects of muscles and strategies (8 × 4) were evaluated by a two-way ANOVA
on the dependent variable of estimated time delay. The effect was considered significant if
the p-value was less than 0.05.

3. Results

The EMG signal and power spectrum of one subject are shown in Figures 3 and 4,
respectively, and all dashed lines represent the perturbation instant. During the first 4 s,
the subject keeps his arms down on his lower limbs, which explains the low EMG activity.
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Mean and SD values of all estimated time delays based on four strategies are demonstrated
in Figure 5. The results show that the third and fourth strategies estimated longer time
delays compared with the other strategies in most muscles. In addition, the sequence
of muscle activation is shown by numbers in each column bar of mean value. It is clear
that the sequence of muscle activation changes based on the employed strategies for the
estimation. However, the Trapezius Descending and Deltoid Anterior are activated later
than other muscles during the posture stabilization for each strategy.

The results of Kurtosis robustness analysis are shown in Figure 6. It can be observed
that the TKEO technique could appropriately remove the ECG and motion artifacts in
muscle activities. In contrast, the results for the first strategy showed that the KR2 value
is far from zero as well for the Gaussian distribution, and its value is even closer to the
unfiltered data, which shows less performance in removing ECG and motion artifacts
compared with the TKEO strategy.

Descriptive results of four strategies are shown in Table 2. It can be seen that the first
and second strategies sometimes failed to find the muscle onset. Furthermore, the result
shows that more detections of Latissimus Dorsi onset were found compared with other
muscles in the first and second strategies. On the other hand, the third and fourth strategies
were able to estimate more time delays consistent with the actual physiological value.
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Figure 3. Raw and band pass filtered EMG data for one trial of subject number 7. EMG1 to EMG8
represent Deltoid Anterior, Pectoralis Major Clavicular, Pectoralis Major Sternal, Biceps Brachii,
Trapezius Descending, Deltoid Posterior, Latissimus Dorsi and Triceps Brachii, respectively. The
black dashed line represents the perturbation instant.
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Figure 4. Power spectrum for one trial of subject number 7. EMG1 to EMG8 represent Deltoid
Anterior, Pectoralis Major Clavicular, Pectoralis Major Sternal, Biceps Brachii, Trapezius
Descending, Deltoid Posterior, Latissimus Dorsi and Triceps Brachii, respectively. The red dashed
line represents the perturbation instant.

Figure 4. Power spectrum for one trial of subject number 7. EMG1 to EMG8 represent Deltoid
Anterior, Pectoralis Major Clavicular, Pectoralis Major Sternal, Biceps Brachii, Trapezius Descending,
Deltoid Posterior, Latissimus Dorsi and Triceps Brachii, respectively. The red dashed line represents
the perturbation instant.
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Table 2. Descriptive results for all 4 strategies.

Parameters
Muscles

LD * TB * DP * BB * PMC * PMS * TD * DA *

Fi
rs

ts
tr

at
eg

y

Found value 82 79 77 71 72 79 67 65
% out of found 82 100 96.3 93.9 86.6 87.8 96.3 81.7 79.3

Mean value (s) 0.06 0.07 0.11 0.12 0.13 0.14 0.18 0.21
SD (s) 0.06 0.11 0.16 0.16 0.12 0.16 0.15 0.18

Consistent value 61 56 63 63 65 64 58 59
% out of found values 74.4 70.9 81.8 88.7 90.3 81 86.6 90.8
Range of EMG onset (s) 0.245 ± 0.199

Se
co

nd
st

ra
te

gy

Found value 80 79 80 77 75 79 73 75
% out of found 82 97.6 96.3 97.6 93.9 91.5 96.3 89 91.5

Mean value (s) 0.08 0.05 0.07 0.11 0.10 0.1 0.11 0.13
SD (s) 0.07 0.07 0.09 0.17 0.13 0.11 0.14 0.13

Consistent value 70 53 63 64 56 64 58 63
% out of found values 87.5 67.1 78.8 83.1 74.7 81 79.5 84
Range of EMG onset (s) 0.274 ± 0.222
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Table 2. Cont.

Parameters
Muscles

LD * TB * DP * BB * PMC * PMS * TD * DA *

Th
ir

d
st

ra
te

gy

Found value 82 82 82 82 82 82 82 82
% out of found 82 100 100 100 100 100 100 100 100

Mean value (s) 0.24 0.22 0.22 0.22 0.24 0.21 0.24 0.24
SD (s) 0.12 0.15 0.14 0.13 0.14 0.13 0.13 0.13

Consistent value 81 80 81 81 77 79 80 80
% out of found values 98.8 97.6 98.8 98.8 93.9 96.3 97.6 97.6
Range of EMG onset (s) 0.351 ± 0.084

Fo
ur

th
st

ra
te

gy

Found value 82 82 82 82 82 82 82 82
% out of found 82 100 100 100 100 100 100 100 100

Mean value (s) 0.21 0.2 0.21 0.2 0.23 0.24 0.25 0.21
SD (s) 0.12 0.13 0.12 0.13 0.13 0.14 0.14 0.12

Consistent value 78 77 79 79 78 72 75 75
% out of found values 95.1 93.9 96.3 96.3 95.1 87.8 91.5 91.5
Range of EMG onset (s) 0.307 ± 0.125

* LD (Latissimus Dorsi), TB (Triceps Brachii), DP (Deltoid Posterior), BB (Biceps Brachii), PMC (Pectoralis Major
Clavicular), PMS (Pectoralis Major Sternal), TD (Trapezius Descending) and DA (Deltoid Anterior).

Results of ANOVA test are shown in Table 3. Both muscle and strategy main effects
were significant, although their interaction did not show any significant difference.

Table 3. ANOVA analysis result.

Independent Variable Estimated Time Delay

F-value p-value
Main Effect

Muscle 3.79 p < 0.05
Strategy 62.34 p < 0.05

Interaction
Muscle × Strategy 1.23 0.21

In the muscle main effect, the estimated time delay of Triceps Brachii was significantly
different with Deltoid Anterior, Pectoralis Major Clavicular and Trapezius Descending
muscles. Figure 7 presents mean and SD values of all estimated time delays for all muscles
in each strategy. The estimated time delay values by each the first and second strategies are
significantly different compared to the third and fourth strategies.
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4. Discussion

As previously specified, the aim of this study was to estimate the muscle onset acti-
vation in SCI people by EMG data. To the best of our knowledge, no study has evaluated
different EMG signal processing for muscular onset estimation during seated stability
of people living with an SCI. According to our analysis, the first and second strategies
estimated shorter time delays (mean = 130 ms and 90 ms, respectively) compared with
the third and fourth strategies (mean = 230 ms and 220 ms, respectively) in all muscles. It
can be interpreted that third and fourth strategies identify the muscle onset in the time–
frequency domain and estimate it by using frequency analysis. In addition, the power
spectrum showed that the signal power is less than 10 Hz, thus the movement during
stability maintenance occurs in low frequency and it takes more time to reach its peak value.
Furthermore, the first and second strategies failed to find the onset threshold, showing
that the activity of these muscles does not change much compared to the baseline. Hence,
these two strategies may not be appropriate in the estimation of time delay in only the time
domain during seating stability in patients with an SCI. The EMG signal contains both ECG
artifacts and measurement noise. ECG artifacts can affect the first and second strategies
more than the others, because any artifacts within the signal frequency bandwidth can in-
crease the amplitude of the measurement and can be mistakenly identified as muscle onset.
The measurement noise frequency is much higher than the activation signal frequency, thus
the muscle onset can be detected accurately. It seems that the motor control time delay
may be identified better in the time–frequency domain compared with the time domain,
which is more vulnerable to noises and artifacts. Other studies in the literature also used
different multiples of the SD (1, 3 or 4) [17,47,55] to determine the muscle onset, which can
change the value of the time delay. In this regard, the third and fourth strategies may be
appropriate for time delay estimation with less variability in identifying the muscle onset.
However, we found no study estimating the time delay in SCI people, and the results of
this study are consistent with the fact that muscle onset happens earlier than torque or
body angle response [33]. In addition, the results showed that the estimated time delay in
SCI patients is mostly higher compared with healthy individuals [40].

Otherwise, the Kurtosis robustness analysis demonstrated that the TKEO technique
could efficiently remove the ECG and motion artifacts from the EMG signal, thus resulting
in an accurate muscle onset identification. On the other hand, the results have shown
that the first strategy could not remove these artifacts appropriately. Artifacts can then be
detected as muscle onset, leading to an erroneous reading of the data, in particular at the
level of the command–contraction temporality. In addition, the ANOVA test demonstrated
significant differences in each main effect of muscles and strategy on the value of estimated
time delay. Each of the first and second groups were significantly different regarding the
third and fourth strategies, and the value of estimated time delay in the Triceps Brachii
was significantly different compared to the Deltoid Anterior, Pectoralis Major Clavicular
and Trapezius Descending muscles. No Spearman correlation coefficient more than 0.5
was found for the sequence of muscle activation in each pair of different strategies. No
significative Pearson correlation coefficient was found between the different methods.
This can be due to employing different sequence muscle activations for each participant,
resulting in different muscle synergies to compensate for the disruption achieved. There
was no restriction in the arms motion so that everyone could maintain his/her stability
by moving arms in sagittal or axial planes. Thus, it seems rational that no correlation was
found due to motion redundancy. The range of EMG onset mean value was highest for the
third strategy and lowest for the first strategy.

Several limitations should be mentioned. At first, it should be reminded that only
seven persons participated in this study. A high number of repetitive trials were therefore
chosen to cope with this small population. Secondly, the perturbation amplitude may
change the stabilization strategy employed by the participants; for example, a high ampli-
tude of perturbation can be detected at the cortical level where the time delay is shorter
compared with response from CNS. The perturbation amplitude was not normalized in
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this study as performed in [32,49], and this methodological choice was made in our study
to cope with the subjects’ high variability in injury level thus in stabilization performance,
which can change the results. Furthermore, participants did not use specific instructions on
how to stabilize their body during seated balance, which caused variability in upper limb
motion. Last, each participant performed at least 11 trials, which can increase the learning
effect. For future works, the value of the estimated time delay will be used in developing
models of people living with SCI maintaining their sitting stability. Stability analysis will be
studied using a different controller for the CNS. In addition, time delay and other passive
elements of their bodies will be estimated by developing a model so that its trajectory is
optimized using experimental data, which can help us to estimate more accurate values.

5. Conclusions

Two strategies in time domain and two strategies in time–frequency domain were
investigated in this study for time delay estimation for people living with an SCI. The
TKEO technique efficiently reduced the ECG and motion artifacts compared to the classical
filtering approach. However, the first and second strategies failed to find muscle onset
in several trials. Time–frequency techniques of cepstral and power spectrum estimated
longer time delays due to the lower frequency of motion compared with the two other
strategies in the time domain during seated balance. The time–frequency approach appears
as a better option when the EMG signal includes artifacts and noises. No Spearman or
Pearson correlation coefficient was found in the muscle sequence or delay value in each
pair of strategies, which shows each participant used a different strategy and different
sequence of muscle activation in maintaining the seated stability. The estimated time delay
can help therapists and biomechanics to design more appropriate exercise and develop
assistive technologies during or after rehabilitation procedures by better understanding the
underlying mechanism of the body sensorimotor control system.
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