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Abstract: Image vignetting is one of the major radiometric errors that occur in lens-camera systems.
In many applications, vignetting is an undesirable effect; therefore, when it is impossible to fully
prevent its occurrence, it is necessary to use computational methods for its correction. In probably the
most frequently used approach to the vignetting correction, that is, the flat-field correction, the use of
appropriate vignetting models plays a pivotal role. The radial polynomial (RP) model is commonly
used, but for its proper use, the actual vignetting of the analyzed lens-camera system has to be a
radial function. However, this condition is not fulfilled by many systems. There exist more universal
models of vignetting; however, these models are much more sophisticated than the RP model. In
this article, we propose a new model of vignetting named the Deformable Radial Polynomial (DRP)
model, which joins the simplicity of the RP model with the universality of more sophisticated models.
The DRP model uses a simple distance transformation and minimization method to match the radial
vignetting model to the non-radial vignetting of the analyzed lens-camera system. The real-data
experiment confirms that the DRP model, in general, gives better (up 35% or 50%, depending on the
measure used) results than the RP model.

Keywords: image vignetting; image shading; vignetting correction; single-image vignetting
correction; flat-field correction; vignetting modeling; approximation function; low-level vision

1. Introduction

Image vignetting, also called image shading, is a phenomenon in which the image
brightness is reduced from the optical center of this image toward its edges. The charac-
teristic of vignetting depends on the parameters, mainly geometrical and optical, of the
lens-camera system used and the parameters chosen during image acquisition, such as
aperture size (f-number) and lens focal length (in the case of the usage of a varifocal or
a zoom lens). Vignetting is usually unintentional and undesired. The appearance of this
effect is particularly undesirable when there is a need for radiometric or quantitative image
analysis, which is very common in different areas, e.g., astronomy [1,2]; microscopy [3–6];
and remote sensing applications using terrestrial [7,8], airborne [9–13] and spaceborne
sensors [14,15], to name just a few of them. This phenomenon is also undesirable in the
case of the use of computational imaging algorithms, such as the creation of high dynamic
range (HDR) images [16,17], the stitching of static images to create panoramic [18–20] or
mosaic images [3–6,21], as well as a panoramic real-time view [22]. Vignetting also affects
the results of image analysis, including the results obtained using neural networks [23,24].

The best way to reduce vignetting is to remove its causes. This aim can be reached by,
e.g., the usage of a lens with appropriate characteristics or setting appropriate exposure
parameters. However, in practice, such actions are not always possible or may not produce
the desired results. In such cases, hardware solutions can be supported by the usage of
computational vignetting correction methods. Based on the causes of vignetting, there exist
four main types of vignetting [25,26], that is:
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• Mechanical vignetting—the effect of this type of vignetting is the blockade of light
rays on their way from a scene through a lens to a camera sensor; the result of this is
a complete loss of information in certain areas of the image and a lack of data needed
for computational vignetting correction methods.

• Optical vignetting—is related to the optical characteristic of the used lens, its charac-
teristic can be change by change of the lens aperture size [27].

• Natural vignetting—refers to the loss of image brightness caused by a change of the
viewing angle Θ for individual image pixels, it is modeled by the cos4(Θ) law [28].

• Pixel vignetting—is related to the geometrical size and optical design (in the case of
the use of microlenses) of the image sensor of the camera [29].

The computational vignetting correction methods can be used to correct the last three of
them; that is, they cannot be used to correct mechanical vignetting. What is more, there
is not an easy way to correct each vignetting type independently; however, in practice
there is no need to distinguish the causes of vignetting because all mentioned types of
vignetting (apart from mechanical vignetting of course) are jointly corrected in a single
procedure. It is also worth noting that vignetting correction, the parameters of which are
very often calculated using reference images acquired from close distance, can be directly
used to correct images obtained for distant objects—such a procedure is typical, e.g., for
remote sensing applications. This advantage is due to the fact that the actual vignetting
characteristics for fixed parameters of the lens-camera system used do not depend on the
distance between the imaging system and an object, but on the viewing angle at which this
object is visible from this system.

During the years of development, many different approaches to the vignetting cor-
rection problem have been presented in the literature. The vignetting correction methods
can be roughly divided into two groups, that is, into the group of methods that do not use
the reference image or images, and the group of methods that use such data. The methods
which belong to the first group use, e.g.:

• Physically-based models of vignetting [28,30]—the usage of these methods requires
detailed knowledge about the parameters of the used lens-camera system, which is
often unavailable; however, this approach is very useful during the design process of
the optical system.

• A single image [31–34] or a sequence of images [18,19,25,26] of a natural scene or scenes
to estimate the vignetting—in the case of these methods, the vignetting estimation is
obtained as a result minimization of an objective function with the assumption that
vignetting is a radial function, which limits the number of lens-camera systems for
which these methods can be used. The effectiveness of these methods also depends
strongly on many other factors, such as the precision of localization of corresponding
pixels, uniformity of the analyzing scene, which limits their applicability. However,
and this is a significant advantage, these methods can be used for already acquired
images when the acquisition of new reference images is not possible; such situations
are common in the case of, e.g., historical images.

To the second group belong, among others, probably the most frequently used methods,
that is, those which are based on the idea of a “flat-field correction” approach.

In the “flat-field” approach, the vignetting is estimated based on a reference image
of vignetting IV , which presents a uniformly illuminated flat surface with a uniform color.
This approach assumes that the main source of brightness differences in IV is the vignetting
of the lens-camera system that was used; however, because the IV image is acquired by
a real lens-camera system, this image also contains noise. The formation of the IV image
can be described by the following formula

IV(i, j) = V(i, j) · I f lat(i, j) + ε(i, j), (1)

where V is a real vignetting of the analyzed lens-camera system and V(i, j) ∈ (0, 1] (where
1 means no vignetting at pixel (i, j) and 0 means complete blocking of light), I f lat is



Sensors 2023, 23, 1157 3 of 23

an ideal image of a scene with a reference flat surface, ε(i, j) is an image noise and (i, j)
are, respectively, horizontal and vertical pixel coordinates. The vignetting estimate Ṽ is
established during the approximation process, denoted as approx(·), using the assumed
vignetting model VM and the image IV as follows

Ṽ(i, j) = approx
(
VM, IV(i, j)

)
, (2)

where Ṽ ∈ (0, 1]. The corrected version of an acquired image I, that is, an image Ĩ, is
obtained using the following formula

Ĩ(i, j) = I(i, j) · Ṽ(i, j)−1. (3)

For the best correction results, the images IV and I should be acquired using the same
lens-camera system, its parameters (e.g., focal length for zoom lenses), and exposure
parameters (e.g., value of aperture f-number). It should also be mentioned that for
the most accurate vignetting correction results, this procedure should be preceded by
a dark frame correction, and the camera used for the acquisition of the IV and I images
should have a linear characteristic or both images, IV and I are linearized, that is, the re-
lationship between the R, G, B values of the (i, j) pixel and the luminous flux of light
incoming to the corresponding pixels of the camera sensor is proportional.

Adjusting the flat-field method to the analyzed system is a matter of using the vi-
gnetting model, which is appropriate for the actual vignetting occurring in this system. In
the literature, different parametric vignetting models have been presented, for example,
the polynomial 2D (P2D) model [25,35,36], the exponential 2D polynomial model [35],
the smooth non-iterative local polynomial (SNILP) model [37], the radial polynomial (RP)
model [38], the hyperbolic cosine model [39], and the Gaussian function [40]. The last three
mentioned vignetting models belong to a widely used approach, which assumes that the
actual vignetting V of the lens-camera system has a cylindrical symmetry. This means that
the vignetting V(i, j) can be modeled using a radial function Ṽ(r), that is, a function of
r, where

r =
√(

i− xC
)2

+
(

j− yC
)2 (4)

is the distance between the pixel with coordinates (i, j) and the optical center C of the
lens-camera system, with coordinates (xC, yC).

The use of the assumption of radial vignetting simplifies the process of searching
for the vignetting estimate because the approximation of the 2D function is replaced
by a much simpler approximation of the 1D function. The consequence of using a sim-
pler approximation function (vignetting model) is a reduction in the number of param-
eters needed to determine the vignetting estimate, for example, the P2D model needs
(s2 + 3s + 2)/2, where the RP model needs only s + 3 parameters; s is the degree of the
approximation function used. The usage of radial vignetting is convenient and therefore
very popular; however, because not every lens-camera system satisfies this assumption,
this approach to vignetting correction is not universal and should be used carefully. The
radial vignetting assumption is not satisfied by a large group of imaging systems, such as
industrial lenses designed with reducing vignetting in mind, perspective-control and focal
plane-control lenses (shift and tilt lenses), anamorphic lenses, etc.

Analyzing the information presented above, it can be concluded that in the literature
there is a lack of model proposals that combine the simplicity of use and a small number of
parameters, which are characteristic for the RP model, with the universality of, for example,
the P2D model or the SNILP model. In the article, we present a novel model of vignetting,
that is, the Deformable Radial Polynomial (DRP) model, which is our attempt to fill this gap.
The idea of the new model is based on the observation that the vignetting in many lens-
camera systems is not ideally radial, but is rather a radial vignetting, which is “squeezed”
in one direction. The contribution of the DRP method is the use of a simple function
for distance calculation, which is a slight modification of (4), to transform the non-radial
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vignetting observed in the image space into the radial vignetting in the distance space. This
step allows, for the price of adding only one parameter describing the non-radiality of the
vignetting, for the use of a radial vignetting model, e.g., a polynomial 1D model as in the
case of the DRP model, for modeling actual non-radial vignetting of a real lens-camera
system. To verify this idea, the vignetting correction results obtained from the DRP model
were compared with the results obtained using the models RP and P2D, which are well-
known from the literature, as well as the state-of-the-art model, that is, the SNILP model.
In the comparison, the data from five webcams with different vignetting characteristics,
including the degree of non-radiality of their vignetting, were used. The results obtained
show that the DRP model, in general, gives better results than the RP model. In the same
cases, these results are up 35% or 50%, depending on the measure used, better than the
results obtained from the RP model.

The rest of the article is organized as follows. The DRP model of vignetting is described
in Section 2. Section 3 presents the conditions of the real-data model comparison, as well as
its results. The discussion of the results is given in Section 4. The last, Section 5, contains
the conclusions and suggestions for future research.

2. The Deformable Radial Polynomial Model of Vignetting

As mentioned above, the concept of estimation of vignetting using the RP model
is very simple: it is assumed that the vignetting has cylindrical symmetry. Therefore,
when analyzing the vignetting problem in the image plane, the value of the vignetting
has rotational symmetry with respect to the optical image center C. This means that the
vignetting model also has rotational symmetry, which leads to the use of the radial function
as a vignetting model. In such a case, the vignetting value of all pixels that are at the same
distance r from C has the same value v(r), and hence the initial 2D problem of finding the
vignetting estimate can be solved as a much simpler 1D approximation problem. Thus,
when as the 1D approximation function the 1D polynomial function of degree s, denoted
as PolyRegs(·), is chosen, the radial polynomial (RP) model is obtained, which can be
formally written as follows

Ṽ = PolyRegs (v(r)). (5)

To solve this problem, that is, to find the parameters of the approximation polynomial,
assuming that v(r) does not contain outliers, the ordinary least squares (OLS) method
can be used.

When analyzing the images of vignetting IV (Figure 1), it can be seen that vignetting
often is not a really radial function, but rather is a “squeezed” radial function. From this
observation the founding idea of the DRP model has been derived, which is that the usage
of the distance function, which is used to calculate distance r between the pixel (i, j) and the
optical center C with coordinates (xC, yC), to transform the non-radial vignetting observed
in the image space into radial vignetting in the distance space r. This simple transformation
allows the use of a radial vignetting function, which in the case of the DRP model is a 1D
polynomial function, for modeling actual non-radial vignetting of a lens-camera system.

The method for a simple realization of non-radial to radial vignetting transformation
is taken from the method of modeling non-radial vignetting presented in [37]. According
to the solution presented there, to accomplish such transformation it is sufficient to slightly
modify Equation (4) by a parameter η, as follows

rη =

√
(i− xc)2 +

(
η(j− yc)

)2. (6)

The η can be treated as the measure of non-radiality of the vignetting, where, for ideal
radial vignetting η = 1, and for non-radial vignetting η 6= 1, e.g., for η > 1, the vignetting
in the vertical (y) direction is stronger than in the horizontal (x) direction.
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(a) CAM-E, η̃ = 1.0068 (b) CAM-D, η̃ = 1.0605

(c) CAM-A, η̃ = 1.0901 (d) CAM-B, η̃ = 1.1559

(e) CAM-C, η̃ = 1.2952

Figure 1. Comparison of the acquired images IV ; the images are presented in the order of the
increasing non-radiality degree of vignetting, which is described by the η̃ coefficient.

The value of the coefficient η must be estimated. This can be found by solving the
following minimization problem

η∗ = arg min
η

(
1

MN

M

∑
i=1

N

∑
j=1

(
v
(
rη(i, j)

)
− PolyRegs

(
v
(
rη(i, j)

)))2
)

(7)

for the given coordinates (xc, yc) of the optical center C of the image; as mentioned earlier,
the parameters p of PolyRegs (rη(i, j)

)
can be effectively found using the OLS method.

When the optimal value of η∗ is determined, Ṽ is calculated using the parameters p

obtained from the PolyRegs
(

v
(
rη(i, j)

))
for η∗. Because the acquisition of IV should be

carried out in such a way that there is no saturation phenomenon in this image, this means
that max(IV) < 1; assuming that the values of the pixels are represented in the normalized
range [0, 1]. This leads to a situation where max(Ṽ) < 1; hence, it is necessary to normalize
the range of Ṽ to the range (0, 1], which is performed as follows

Ṽ(i, j) :=
Ṽ(i, j)

maxi,j

(
Ṽ(i, j)

) , (8)

where := is the assignment operator. The obtained Ṽ is the final result of the vignetting
estimate using the DRP model.
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In the described above algorithm, the coordinates of C must be known or at least
estimated before the DRP model can be used. However, these coordinates can also be
estimated by solving the following multivariate minimization problem

η∗, xc
∗, yc

∗ = arg min
η,xc ,yc

(
1

MN

M

∑
i=1

N

∑
j=1

(
v
(
rη,xc ,yc(i, j)

)
− PolyRegs

(
v
(
rη,xc ,yc(i, j)

)))2
)

. (9)

In this case, the final value of Ṽ is calculated analogously as in the previous variant of the

DRP model, that is, using the parameters p of PolyRegs
(

v
(
rη,xc ,yc(i, j)

))
estimated for the

obtained η∗, xc
∗, yc

∗ and then normalized according to (8).

3. Experimental Comparison of Vignetting Models
3.1. Assumptions of the Comparison and Methods of Evaluation

The purpose of the conducted experiment was a comparison, based on real data, of the
DRP model with the selected, known from the literature, vignetting models, that is, the RP
model and the P2D and the state of the art SNILP models. The quality of the vignetting
models can be evaluated by analyzing the image correction results

Ĩ f lat = IV · Ṽ−1. (10)

obtained using vignetting estimates Ṽ calculated using the compared vignetting models.
Ideal correction results should be flat, that is, all pixels in the corrected image Ĩ f lat

should have the same value. Of course, in the case of real data, this ideal result cannot be
achieved due to the presence of noise in the input image IV . In such cases, the pixels in the
Ĩ f lat image should have similar values with a possible minimal dispersion. Good dispersion
measures are the standard deviation (STD) and the interquartile range (IQR); therefore,
these measures were used for a quantitative evaluation of the results of the vignetting
correction. Hence, a lower value of STD

(
Ĩ f lat

)
or IQR

(
Ĩ f lat

)
means a better ability of the

analyzed vignetting model to adapt to the real vignetting.
Since the IV image contains noise and the estimation result Ṽ may differ significantly

from the vignetting of a given camera, it is possible that the Ĩ f lat image contains pixels with
values beyond the range of [0, 255], that is, the range of pixel values for cameras used in
the experiment. Therefore, the result of the correction, that is, the image Ĩ f lat, before its
evaluation, is subjected to the operation of truncation of the pixel values according to the
following formula

Ĩ f lat(i, j) :=


0 for Ĩ f lat(i, j) < 0

Ĩ f lat(i, j) for Ĩ f lat(i, j) ∈ [0, 255]
255 for Ĩ f lat(i, j) > 255

. (11)

3.2. Laboratory Setup and Data Acquisition Process

The data analyzed in the experiment were acquired using together five webcams,
namely Microsoft LifeCam Studio, Logitech C920, Hama C-600 Pro, and two Xiaomi
IMILAB CMSXJ22A webcams (Figure 2), which are indicated in the article, respectively,
from CAM-A to CAM-E. In the case of webcams, their manufacturers usually do not provide
detailed technical data, such as lens focal length, lens speed, etc. Despite this, a comparison
of the main technical data of the webcams used is presented in Table 1.

The webcams used in the comparison were selected to differ in their vignetting
characteristics. Such a selection of cameras allows for performing a comparison for different
examples of real vignetting with a different vignetting strength (also called vignetting
magnitude) and a different degree of non-radiality of the vignetting function, which is
essential in the case of this comparison. Vignetting strength can be measured using the
STD and IQR measure for the images IV acquired using individual cameras—the values
of these measures are presented in the second column of, respectively, Tables 3 and 4.
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The tested cameras are arranged in the order from the camera with the lowest vignetting
strength (CAM-A) to the camera with the highest vignetting strength (CAM-E). In Table 5,
the estimated values of parameter η are presented. For simplicity of results analysis, the η
value estimated during calculation of the best DRP-2 model for individual camera is in the
article used as coefficient of vignetting non-radiality of this camera, and denoted as η̃. If the
cameras were to be ranked in the order from the camera with the most radial vignetting to
the camera with the most non-radial vignetting, that is in the order of ascending η̃ values,
the order would be as follows: CAM-E, CAM-D, CAM-A, CAM-B, CAM-C.

Figure 2. Cameras used in the comparison, from left to right: Microsoft LifeCam Studio (CAM-A);
Logitech C920 (CAM-B); Hama C-600 Pro (CAM-C); and two Xiaomi IMILAB CMSXJ22A (CAM-D
and CAM-E).

Table 1. Main technical data of the cameras used in the comparison.

Parameters

Webcam

CAM-A CAM-B CAM-C CAM-D & CAM-E

Microsoft LifeCam Studio Logitech C920 Hama C-600 Pro Xiaomi IMILAB CMSXJ22A

Diagonal angle of view 75° 78° 90° 85°
Maximum video resolution 1920× 1080 1920× 1080 1920× 1080 1920× 1080
Maximal frame rate @ 1080p 30 fps 30 fps 30 fps 30 fps

Focus type auto focus auto focus auto focus fixed focus
Focus range >10 cm — — >60 cm

Remark: All data are provided by camera manufacturers.

As a flat-field surface, which is needed to acquire the vignetting image IV , a uni-
formly back-lighted milky poly(methyl methacrylate) (PMMP, “plexiglass”) panel of size
50 cm× 100 cm and thickness 3 mm was used. As a light source, the NEC EA304WMI-
BK graphic monitor was used that displays a white screen with the brightness set to its
maximum, i.e., 350 lx. The plexiglass panel was carefully placed parallel to the surface
of the monitor screen, the distance between the monitor and the panel was constant and
equal to 15 cm. To position the camera parallel to the monitor screen each camera was
positioned in such a way that the geometric distortions of the reproduction of the test image
obtained from this camera were symmetric. The test image was displayed on a monitor
that served as panel illumination (NEC EA304WMI-BK), and the acquired images were
observed in real time on the second display Figure 3a. For the time to acquire the series of
images IV , the aforementioned plexiglass panel was inserted between the monitor and the
camera used Figure 3b.
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(a) (b)

Figure 3. Laboratory setups used during: (a) positioning of camera; and (b) aquisition of the test
images. The lighting in the laboratory was turned on only for taking the presented photographs.

To reduce the noise presented in the captured images, in the experiment, the IV
image was used, obtained as the average of 100 originally captured images IVe . Since the
experiment evaluates the availability of fitting of the compared vignetting models to the
real vignetting, there is no need to calculate the vignetting estimate for each color channel,
that is, R, G, and B, of the IV image. Therefore, in the experiment, for each camera, as the
input image,

IV = 0.2989R + 0.5870G + 0.1140B (12)

was used. The exposure parameters of each camera were automatically carried out for the
first image IV1 , and for the rest of the images, that is, IV2 , . . . , IV100 , the same parameters were
used. The IVe images were acquired in a dark laboratory room so that no additional lights
interfered with this process. Additionally, all signaling diodes with which the cameras are
equipped, as well as all contrasting inscriptions on the camera housings, were covered with
black opaque tape. In the case of cameras equipped with autofocus, that is, for CAM-A to
CAM-C, their focus has been set to infinity.

It is important to note that due to the objective of the comparison, eventually small
errors in, e.g., positioning of the monitor, the plexiglass panel, or the cameras, as well as
a small non-uniformity of screen illumination, do not influence the qualitative evaluation
of the experiment results. Of course, such errors can affect the quantitative results of the
estimation; however, these errors do not change the judgment of the ability of the vignetting
models tested to find the best approximation Ṽ based on the input image IV , and precisely
this property of the vignetting models is evaluated in the comparison.

3.3. Compared Vignetting Models and Their Implementations

The entire experiment, that is, from the image acquisition, through all calculations,
to data presentation, was carried out using the MATLAB R2021b software package with the
Image Acquisition Toolbox and the Optimization Toolbox. In the experiment, four vignetting
models have been compared, that is, the novel deformable radial polynomial (DRP) model;
known from the literature the radial polynomial (RP) [38] and polynomial 2D (P2D) [25]
models; and the model which in terms of the quality of the vignetting correction can
be treated as a state-of-the-art solution, that is, the smooth non-iterative local polyno-
mial (SNILP) model [37].

The RP and DRP models have been tested in two variants, that is, with the calculation
of coordinates (xc, yc) of the optical center of the image C performed before the vignetting
estimation procedure (these variants are denoted, respectively, RP-1 and DRP-1) and with
the estimation of (xc, yc) integrated into the vignetting estimation process (these variants
are hereafter denoted as RP-2 and DRP-2). The implementation of all variants tested for
the RP and DRP models uses the MATLAB functions polyfit and polyval, respectively,
to estimate the parameters of the approximation polynomial and calculate its values. In the
implementation of the RP-2, DRP-1, and DRP-2 models, the MATLAB function fminunc,
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which is a MATLAB procedure for solving unconstrained nonlinear optimization problems,
is used to find the optimal values of (xc, yc) in the case of the RP-2 and DRP-2 models,
and the values of η in the case of both variants of the DRP model. The coordinates of
the optical center needed for the RP-1 and DRP-1 models were determined by searching
for the coordinates of the maximum value of the 2D polynomial approximation of degree
s = 2 of the IV image. In the case of the RP-2 model for estimating (xc, yc) the optimization
procedure (9) with η set as a constant value 1 has been used. As the initial values for the
fminunc function, the following values were chosen: η0 = 1, xC0 = M

2 and yC0 = N
2 , where

M× N is the resolution of the analyzed image, which for all cameras used was the same,
that is, 1920× 1080. For the others parameters of the fminunc function their default values
have been used. The other two models, that is, the P2D and SNILP models, have been
implemented according to the information given in [37].

All models were compared for different degrees s of the approximation polynomials,
that is, for s ∈ {2, . . . , 10}. The tested range of the values s covers the value of the degree
of approximation polynomial proposed in the literature, that is, from s = 2, for tasks
that do not require exact correction, and up to s = 6 in the most demanding applications.
In Table 2, the comparison of type and number of parameters required to specify the
vignetting estimates determined using individual models is presented.

Table 2. The type and the number of parameters required for saving vignetting estimation results.

Model Type of Parameters Number of Parameters

RP parameters of 1D radial polynomial function +
coordinates of image optical center (xx, yc)

s + 3

DRP
parameters of 1D radial polynomial function +
coordinates of image optical center (xx, yc) +
coefficient of non-radiality of the vignetting η

s + 4

P2D parameters of 2D approximation polynomial 1
2
(
s2 + 3s + 2

)
SNILP parameters of 1D approximation of each line along the

longer side of the input image IV with the resolution M× N N(s + 1), where N ≤ M

3.4. Results of the Experiment

Figure 4 presents vignetting estimates Ṽ obtained from the RP-1, DRP-2, and P2D
models. These results are presented using pseudocolor and isolines, which allows for an
easier comparison of the obtained vignetting estimates. In addition, in Appendix A in
Figures A1–A10, the acquired vignetting images IV , vignetting estimates Ṽ, and corrected
images Ĩ f lat are presented in the form of 3D charts.

The numerical results of the experiment—that is, the values of the STD and IQR
measures calculated for the images Ĩ f lat, which are the results of vignetting correction—are
presented in Tables 3 and 4. In Figure 5, a comparison of the best results of the vignetting
correction obtained for each model is presented. In this comparison, the STD and IQR values
mentioned above are related to the values of the respective measures of the vignetting
strength of the input images IV ; these values are presented in the second columns of,
respectively, Tables 3 and 4. Table 5 presents the estimated values of the coefficient η
obtained for the DRP-1 and DRP-2 models.
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(a) CAM-A, RP-1 (b) CAM-A, DRP-2 (c) CAM-A, P2D

(d) CAM-B, RP-1 (e) CAM-B, DRP-2 (f) CAM-B, P2D

(g) CAM-C, RP-1 (h) CAM-C, DRP-2 (i) CAM-C, P2D

(j) CAM-D, RP-1 (k) CAM-D, DRP-2 (l) CAM-D, P2D

(m) CAM-E, RP-1 (n) CAM-E, DRP-2 (o) CAM-E, P2D

Figure 4. Comparison of the vignetting estimates Ṽ obtained form the RP-1 (left column), DRP-2
(central column), and P2D (right column) models.
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Figure 5. Comparison of the quality of the vignetting correction obtained for the compared vignetting
models and used cameras. The values of measures of vignetting correction quality are presented in
the relation to the initial values of the (a) STD and (b) IQR measures of the IV images obtained from
the corresponding camera.

Table 3. Comparison of STD
(

IVṼ−1) values.

Camera STD
(

IV
)

Model
Degree of Approximation Polynomials s

2 3 4 5 6 7 8 9 10

CAM-A 0.3028

RP-1 0.0553 0.0551 0.0550 0.0548 0.0548 0.0547 0.0545 0.0545 0.0545
RP-2 0.0553 0.0550 0.0549 0.0547 0.0547 0.0546 0.0545 0.0545 0.0544

DRP-1 0.0541 0.0538 0.0536 0.0533 0.0533 0.0533 0.0531 0.0531 0.0531
DRP-2 0.0541 0.0537 0.0536 0.0533 0.0533 0.0532 0.0531 0.0531 0.0530

P2D 0.0606 0.0585 0.0440 0.0429 0.0402 0.0398 0.0371 0.0368 0.0346
SNILP 0.0540 0.0520 0.0410 0.0408 0.0377 0.0375 0.0349 0.0346 0.0337

CAM-B 3.7551

RP-1 0.5750 0.5749 0.5743 0.5634 0.5436 0.5379 0.5219 0.5189 0.5165
RP-2 0.5630 0.5629 0.5628 0.5520 0.5331 0.5259 0.5068 0.5048 0.5010

DRP-1 0.4549 0.4549 0.4543 0.4412 0.4170 0.4032 0.3681 0.3674 0.3552
DRP-2 0.4549 0.4549 0.4542 0.4411 0.4167 0.4026 0.3676 0.3670 0.3547

P2D 0.4533 0.4474 0.4201 0.4101 0.4005 0.3854 0.3732 0.3640 0.3523
SNILP 0.4314 0.4219 0.4143 0.3970 0.3729 0.3553 0.3340 0.3128 0.2962

CAM-C 7.0446

RP-1 2.1372 2.0961 1.8347 1.7934 1.7297 1.7213 1.6779 1.6869 1.6742
RP-2 2.1317 2.0870 1.8248 1.7840 1.7242 1.7185 1.6778 1.6866 1.6740

DRP-1 1.4453 1.4042 1.2594 1.2135 1.1431 1.1207 1.0955 1.1008 1.0894
DRP-2 1.4452 1.4016 1.2568 1.2120 1.1424 1.1190 1.0922 1.0974 1.0852

P2D 1.4144 1.2838 1.2487 1.1791 0.9663 0.8157 0.7063 0.6197 0.5633
SNILP 1.3209 1.1917 1.0207 0.9061 0.6955 0.6216 0.5582 0.5163 0.4813

CAM-D 9.9096

RP-1 0.9398 0.8891 0.8698 0.8339 0.8262 0.8014 0.7970 0.7953 0.7977
RP-2 0.9308 0.8810 0.8641 0.8298 0.8217 0.7969 0.7927 0.7909 0.7933

DRP-1 0.8353 0.7987 0.7945 0.7630 0.7554 0.7310 0.7252 0.7221 0.7243
DRP-2 0.8267 0.7904 0.7860 0.7507 0.7434 0.7163 0.7105 0.7066 0.7087

P2D 1.3315 1.3246 0.6429 0.6104 0.5923 0.5849 0.4956 0.4736 0.4396
SNILP 1.1475 1.1377 0.6123 0.5962 0.5263 0.5035 0.4284 0.4188 0.4079

CAM-E 20.2225

RP-1 1.4188 1.1542 1.0754 0.8656 0.8570 0.8337 0.8349 0.8067 0.7646
RP-2 1.4106 1.1428 1.0615 0.8393 0.8295 0.8074 0.8090 0.7811 0.7364

DRP-1 1.3656 1.1200 1.0616 0.8582 0.8499 0.8247 0.8255 0.7998 0.7600
DRP-2 1.3534 1.1047 1.0451 0.8294 0.8198 0.7956 0.7968 0.7717 0.7297

P2D 2.8814 2.8686 1.0042 0.9923 0.9913 0.9857 0.6750 0.6726 0.6339
SNILP 2.1547 2.1492 0.9763 0.9696 0.7148 0.7104 0.6072 0.6026 0.5926

Remarks: (i) background colors (from blue, through light blue, light red to red) of Table cells represent range
(respectively, from the best to the worst one) of the model results based on the STD

(
Ĩ f lat

)
values obtained for each

camera-s value combination; (ii) for each camera-model combination the values written with bold text represents
the best approximation result obtained for the each of these combinations according to the STD

(
Ĩ f lat

)
measure.
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Table 4. Comparison of IQR
(

IVṼ−1) values.

Camera IQR
(

IV
)

Model
Degree of Approximation Polynomials s

2 3 4 5 6 7 8 9 10

CAM-A 0.3985

RP-1 0.0711 0.0706 0.0704 0.0708 0.0708 0.0711 0.0710 0.0710 0.0710
RP-2 0.0704 0.0698 0.0694 0.0698 0.0698 0.0702 0.0702 0.0702 0.0702

DRP-1 0.0687 0.0681 0.0677 0.0678 0.0678 0.0680 0.0679 0.0679 0.0680
DRP-2 0.0690 0.0683 0.0680 0.0681 0.0681 0.0682 0.0682 0.0682 0.0683

P2D 0.0749 0.0695 0.0572 0.0563 0.0522 0.0517 0.0456 0.0450 0.0431
SNILP 0.0700 0.0678 0.0540 0.0536 0.0478 0.0474 0.0436 0.0432 0.0419

CAM-B 5.8670

RP-1 0.6895 0.6870 0.6887 0.7092 0.6474 0.6646 0.6088 0.6045 0.5947
RP-2 0.6843 0.6814 0.6816 0.7046 0.6503 0.6672 0.6116 0.6075 0.5952

DRP-1 0.5949 0.5949 0.5782 0.5891 0.5014 0.5157 0.4328 0.4302 0.3953
DRP-2 0.5943 0.5945 0.5777 0.5882 0.4994 0.5138 0.4328 0.4303 0.3961

P2D 0.6065 0.6030 0.5519 0.5341 0.5194 0.4996 0.4880 0.4803 0.4437
SNILP 0.5670 0.5566 0.5524 0.5150 0.4817 0.4632 0.4199 0.3874 0.3571

CAM-C 10.1281

RP-1 2.4483 2.5710 2.2063 2.2129 2.2446 2.1988 2.1458 2.1781 2.1546
RP-2 2.4640 2.6363 2.2521 2.2438 2.2693 2.2108 2.1490 2.1742 2.1480

DRP-1 1.0902 1.1150 1.1001 1.1050 1.0742 1.0628 1.0471 1.0610 1.0488
DRP-2 1.0903 1.1275 1.1127 1.1124 1.0709 1.0464 1.0261 1.0361 1.0192

P2D 1.1020 0.9574 0.8716 0.8949 0.7357 0.6782 0.6468 0.6107 0.5950
SNILP 1.0439 0.9015 0.7671 0.7554 0.6204 0.5927 0.5807 0.5536 0.5346

CAM-D 15.1372

RP-1 1.1225 1.1434 1.1373 0.9859 0.9875 0.9488 0.9515 0.9562 0.9616
RP-2 1.0876 1.1134 1.1192 0.9662 0.9727 0.9373 0.9402 0.9454 0.9505

DRP-1 1.0026 1.0831 1.0787 0.8987 0.8891 0.8373 0.8358 0.8427 0.8439
DRP-2 1.0375 1.1085 1.1042 0.9478 0.9302 0.8815 0.8785 0.8847 0.8871

P2D 1.6181 1.6353 0.9089 0.8706 0.8626 0.8409 0.6245 0.5941 0.5837
SNILP 1.7324 1.7259 0.8850 0.8710 0.7243 0.6841 0.5549 0.5457 0.5315

CAM-E 31.6573

RP-1 1.1478 1.2411 1.2495 0.9811 0.9868 0.9932 0.9896 0.9831 0.9224
RP-2 1.1565 1.2377 1.2452 0.9916 0.9915 1.0049 1.0004 0.9872 0.9216

DRP-1 1.1485 1.2233 1.2289 0.9702 0.9735 0.9819 0.9800 0.9730 0.9105
DRP-2 1.1773 1.2210 1.2219 0.9787 0.9797 0.9949 0.9916 0.9763 0.9102

P2D 2.4993 2.4501 1.3367 1.3028 1.2036 1.1943 0.8063 0.8079 0.8022
SNILP 3.1473 3.1417 1.2073 1.1982 0.9066 0.9005 0.7716 0.7674 0.7560

Remarks: (i) background colors (from blue, through light blue, light red to red) of Table cells represent range
(respectively, from the best to the worst one) of the model results based on the IQR

(
Ĩ f lat

)
values obtained for each

camera-s value combination; (ii) for each camera-model combination the values written with bold text represents
the best approximation result obtained for the each of these combinations according to the IQR

(
Ĩ f lat

)
measure.

Table 5. Comparison of the obtained η values for the DRP-1 and DRP-2 models.

Camera Model
Degree of Approximation Polynomials s

2 3 4 5 6 7 8 9 10

CAM-A DRP-1 1.0746 1.0775 1.0806 1.0832 1.0832 1.0834 1.0831 1.0832 1.0824
DRP-2 1.0812 1.0859 1.0876 1.0892 1.0893 1.0895 1.0905 1.0905 1.0901

CAM-B DRP-1 1.1473 1.1473 1.1511 1.1474 1.1490 1.1488 1.1512 1.1512 1.1542
DRP-2 1.1469 1.1470 1.1509 1.1477 1.1507 1.1505 1.1527 1.1527 1.1559

CAM-C DRP-1 1.3260 1.3220 1.2990 1.2903 1.2927 1.2964 1.2962 1.2946 1.2936
DRP-2 1.3260 1.3214 1.2983 1.2899 1.2930 1.2976 1.2977 1.2962 1.2952

CAM-D DRP-1 1.0602 1.0563 1.0541 1.0509 1.0500 1.0493 1.0495 1.0500 1.0499
DRP-2 1.0692 1.0649 1.0626 1.0609 1.0594 1.0596 1.0598 1.0605 1.0606

CAM-E DRP-1 1.0209 1.0162 1.0119 1.0078 1.0079 1.0086 1.0086 1.0078 1.0061
DRP-2 1.0216 1.0169 1.0126 1.0086 1.0087 1.0094 1.0093 1.0085 1.0068

Remarks: (i) in each row the value written with bold text indicate value of η obtained for the best approximation
result according to the STD

(
Ĩ f lat

)
measure for a given camera-model pair; (ii) values with a gray background

show the η̃ value of the individual camera.
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4. Discussion of the Results
4.1. Evaluation of the Models in Terms of the Accuracy of the Obtained Vignetting Estimates

The purpose of the performed experiment was a comparison of the vignetting cor-
rection results obtained from the DRP model with the results obtained from the models
known from the literature. Due to the large differences in the vignetting characteristics of
the individual cameras used in the experiment, both in terms of the vignetting strength
and the degree of non-radiality, the obtained correction results have been analyzed from
the perspective of the influence of these factors on the correction results.

Analyzing the influence of the vignetting strength on the results of the vignetting
correction, measured both with the STD (Table 3) and IQR (Table 4) measures, it can be seen
that both tested variants of the novel DRP model, i.e., DRP-1 and DRP-2, practically always
fall between the results obtained from the RP model and those obtained from the P2D and
SNILP models. Slight exceptions to this general rule apply when low degree polynomials
are used (s ≤ 3) or when the correction was made for the image from the camera with
near-ideal radial vignetting, that is, CAM-E with η̃ = 1.0068, where ideal radial vignetting
has η = 1. The same relationship between the results obtained from individual models also
applies to the relative evaluation of the vignetting correction (Figure 5).

Among the cameras used for the experiment, only the CAM-E camera has an almost
ideal radial vignetting (η̃ = 1.0068), while for the other cameras, the image brightness in
the vertical direction decreases faster than in the horizontal direction (radial vignetting
is ”squeezed” in the vertical direction). The speed of brightness decreasing in the case of
other cameras varies from about 6% (CAM-D, η̃ = 1.0605), through about 9% (CAM-A,
η̃ = 1.0901) and about 15% (CAM-B, η̃ = 1.1559) to almost 30% (CAM-C, η̃ = 1.2952).
Evaluating the vignetting correction results obtained for CAM-E, the results obtained from
all models are comparable. However, it can be noticed that for small values of s ≤ 5, the RP
and DRP models achieve better results than both more universal models, i.e., P2D and
SNILP. This advantage decreases with increasing s and finally for s ≥ 8 the P2D and SNILP
models give better correction results than the RP and DRP models. It is worth noting that
even in such a favorable situation for the RP model (almost ideal radial vignetting) for most
values of s, any variant of the RP model does not give better results than the corresponding
variant of the DRP model. These results indicate that it is worth considering using the DRP
model instead of the RP model, even if the vignetting is almost ideal radial.

Interestingly, in the case of the CAM-E camera and the STD measure, the variants RP-1
and DRP-1, i.e., those that use the previously calculated coordinates (xC, yC) of the center C,
give better results than the RP-2 and DRP-2 variants, in which these coordinates are sought
within one optimization problem. A similar situation also occurs in the case of the CAM-A
and CAM-D cameras, but only in the case of the IQR measure. Such an effect seems to be
counter-intuitive, but it should be noted that the applied optimization procedure does not
guarantee to find a global minimum, and no studies have been conducted on the influence
of the selection of parameters of the optimization method on its results.

For each camera, which has a noticeable non-radial vignetting, that is, from CAM-A to
CAM-D, the results obtained for any variant of the DRP model and for any value of s are
always better than the results obtained for any variant of the RP model. With the increase in
the degree of non-radiality (increasing η̃), this difference grows. In the case of the CAM-C
(η̃ = 1.2952), the use of the DRP model in relation to the RP model, when comparing the
corresponding variants of both models, gives about 35% improvement in the correction
quality when the STD measure is used, and over 50% improvement in the case of the use of
the IQR measure.

The influence of the degree of non-radiality on the results of vignetting correction
is particularly well visible if one looks at the graphs in Figure 5. For the camera with
almost radial vignetting (CAM-E), each tested model corrects the vignetting of this camera
to a similar extent. However, with the increase in the non-radiality of camera vignetting,
the more noticeable is the predominance of models that allow the occurrence of non-radial
vignetting over the RP model. Of course, the DRP model is inferior to the P2D and SNILP
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models in terms of the obtained quality, but these models are much more complex. The
difference in model complexity can be seen by comparing the number of parameters
necessary to save the vignetting estimate obtained from each of these models (Table 2).

4.2. Computation Time

Another analyzed issue is the computation time, which is required to determine the
vignetting estimate using individual models. In the vast majority of cases, even relatively
long calculation times of the vignetting estimate are not a serious problem. The reason
for this is that there is rarely a need to derive a vignetting estimate. Such situations occur
occasionally, for example, when the new lens is used or periodically (e.g., every month)
in order to ensure the highest quality of vignetting correction of the acquired images.
Moreover, even if vignetting needs to be estimated for many parameters of the analyzed
lens-camera system (e.g., for many aperture size values and many focal lengths of the
varifocal lens), the calculations can be carried out in the background without involving the
human operator.

In Figure 6 the median of the computational times for all models tested and for
polynomial degrees s ∈ {2, . . . , 10} are presented. In the test, the acquired images IV with
resolution 1920× 1080 were used and 25 repetitions (5 repetitions for each of the IV images
acquired using tested cameras) were performed for each model-s value combination. The
measurements were carried out on a computer equipped with an AMD Ryzen 7 3800X
processor, 16 GB RAM, and a M.2 PCIe NVMe SSD disk using MATLAB 2021b software.
The results obtained show that the DRP-2 model requires the longest computation time.
This model is followed by the RP-2 and DRP-1 models. This situation results from the use
of the minimization procedure, which is much slower than the OLS method used many
times for individual lines of the image, as in the case of the SNILP model, or once, but for
a larger number of data, as in the case of the P2D model.

It is also worth noting that the calculation times will vary as the degree of the polyno-
mial increases. This is because that increasing the value of s increases also the size of the
data matrix, and thus the number of mathematical operations that must be performed.

2 3 4 5 6 7 8 9 10
Degree of approximation polynomials s
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Figure 6. Comparison of vignetting estimation times for individual models.

5. Conclusions and Future Research

The intention of the authors during the development of the DRP model was to combine
the simplicity of the RP model with the universality of more complex models such as P2D
and SNILP. The tests carried out for cameras, from which the acquired images differ in both
the amount of vignetting and the degree of fulfillment of the radial vignetting assumption,
fully confirm that this assumed goal has been achieved. The DRP model uses only one more
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parameter than the RP model, but according to the results obtained, it can give up to 35%
better correction results in terms of the STD measure and up to over 50% better correction
results in terms of the IQR measure.

It should be noted that the results obtained from the DRP model are better than those
obtained from the RP model for all tested cameras, including the camera with almost
perfect radial vignetting (CAM-E, η̃ = 1.0068), i.e., in conditions for which the RP model
was designed. This observation leads to the essential conclusion that from the perspective
of the quality of the vignetting correction, the DRP model can be successfully used as the
default vignetting model instead of the RP model. Such a statement results from the fact
that the results obtained from the DRP model in the case of radial vignetting are not worse
than the results obtained from the RP model, and in the case of non-radial vignetting, they
are better or much better than those obtained from the existing model. The expected quality
improvement of the vignetting correction results increases with the increase in the degree
of non-radiality of the analyzed vignetting.

The use of a polynomial function as a radial vignetting model is one of the few
approaches to radial vignetting correction proposed in the literature (e.g., [39,40]). An
interesting direction of research would therefore be to check how the usage of the distance
transform (6) used in the DRP model would increase the flexibility of other than polynomial
radial vignetting models. An important part of these studies should be the comparison of
minimization methods in terms of their usefulness in the process of estimating the model
parameters, the coordinates of the optical center C and the value of the η∗ coefficient.

In the conducted research, relatively simple lens-camera systems in the form of web-
cams were used. An important observation resulting from their application is the noticing
of the prevalence of non-radial vignetting among the imaging systems used. Only one of
the five cameras used has a vignetting that can be considered as radial (CamE) and only the
other two have less than 10% differences in their vignetting in the vertical and horizontal
directions (CAM-C and CAM-D). The question then arises to what extent the non-radial
vignetting is widespread among more complex camera systems and how the developed
DRP model will work in such systems. The analysis of these issues will be the subject of
further research.

An important contribution made by the development of the DRP model—apart from
making the RP model more flexible at the price of adding only one, easy to determine
parameter η, which represents the degree of non-radial of actual vignetting—is that it opens
the possibility of using methods adapted to images with radial vignetting for its use in the
case of images with non-radial vignetting. Good examples of such methods are methods
based on the idea of single-image vignetting correction [31–34]. This is possible because
the DRP model uses transformation (6) of distance calculation between a pixel and optical
image center C to transform the non-radial vignetting that occurs in most lens camera
systems into an ideal radial vignetting model. As part of future research, it is planned to
implement this idea in practice.
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Abbreviations
The following abbreviations are used in this article:

DRP Deformable Radial Polynomial vignetting mode
IQR Inter Quartile Range
OLS Ordinary Least Squares method
P2D Polynomial 2D vignetting model
PolyRegs Polynomial Regression of degree s
RP Radial Polynomial vignetting model
SNILP Smooth Non-Iterative Local Polynomial vignetting model
STD STandard Deviation
VM Vignetting Model

Appendix A. 3D Charts of the IV , Ṽ , and Ĩ f lat Images

In Figures A1, A3, A5, A7 and A9 the normalized IV images obtained from each
camera and its estimates obtained from the compared models are presented. Normalized
images norm(IV) are calculated as follows:

norm
(

IV(i, j)
)
= IV(i, j) ·max

∀i,j

(
smooth

(
IV(i, j)

))−1
, (A1)

where smooth
(

IV(i, j)
)

is the result of the smoothing of the IV image with 2D Gaussian
filter with standard deviation σ = 0.5 and size 10× 10; the images norm(IV) are used only
for visualization (these images are not used during the calculation of Ṽ). Figures A2, A4,
A6, A8 and A10 show the best correction results of the IV images, that is, the Ĩ f lat images.
The best results are usually obtained for s = 10, however, in the case of CAM-D and both
variants of the RP and DRP models, the best results have been obtained for s = 9. The
correction results in these images are presented as the normalized Ĩ f lat images, which are
calculated as follows

norm
(

Ĩ f lat(i, j)
)
=

Ĩ f lat(i, j)
1

M·N ∑M
i=1 ∑N

j=1 Ĩ f lat(i, j)
. (A2)

This solution makes it easier to compare the correction results for different cameras.
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(a) norm(IV) for CAM-A

(b) Ṽ, CAM-A, RP-1 (c) Ṽ, CAM-A, DRP-1 (d) Ṽ, CAM-A, P2D

(e) Ṽ, CAM-A, RP-2 (f) Ṽ, CAM-A, DRP-2 (g) Ṽ, CAM-A, SNILP

Figure A1. Comparison of vignetting image IV and vignetting estimates Ṽ obtained for the tested
models and CAM-A.

(a) CAM-A, RP-1 (b) CAM-A, DRP-1 (c) CAM-A, P2D

(d) CAM-A, RP-2 (e) CAM-A, DRP-2 (f) CAM-A, SNILP

Figure A2. Comparison of vignetting corrections of flat-field image IV for CAM-A.
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(a) norm(IV) for CAM-B

(b) Ṽ, CAM-B, RP-1 (c) Ṽ, CAM-B, DRP-1 (d) Ṽ, CAM-B, P2D

(e) Ṽ, CAM-B, RP-2 (f) Ṽ, CAM-B, DRP-2 (g) Ṽ, CAM-B, SNILP

Figure A3. Comparison of vignetting image IV and vignetting estimates Ṽ obtained for the tested
models and CAM-B.

(a) CAM-B, RP-1 (b) CAM-B, DRP-1 (c) CAM-B, P2D

(d) CAM-B, RP-2 (e) CAM-B, DRP-2 (f) CAM-B, SNILP

Figure A4. Comparison of vignetting corrections of flat-field image IV for CAM-B.
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(a) norm(IV) for CAM-C

(b) Ṽ, CAM-C, RP-1 (c) Ṽ, CAM-C, DRP-1 (d) Ṽ, CAM-C, P2D

(e) Ṽ, CAM-C, RP-2 (f) Ṽ, CAM-C, DRP-2 (g) Ṽ, CAM-C, SNILP

Figure A5. Comparison of vignetting image IV and vignetting estimates Ṽ obtained for the tested
models and CAM-C.

(a) CAM-C, RP-1 (b) CAM-C, DRP-1 (c) CAM-C, P2D

(d) CAM-C, RP-2 (e) CAM-C, DRP-2 (f) CAM-C, SNILP

Figure A6. Comparison of vignetting corrections of flat-field image IV for CAM-C.
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(a) norm(IV) for CAM-D

(b) Ṽ, CAM-D, RP-1 (c) Ṽ, CAM-D, DRP-1 (d) Ṽ, CAM-D, P2D

(e) Ṽ, CAM-D, RP-2 (f) Ṽ, CAM-D, DRP-2 (g) Ṽ, CAM-D, SNILP

Figure A7. Comparison of vignetting image IV and vignetting estimates Ṽ obtained for the tested
models and CAM-D.

(a) CAM-D, RP-1 (b) CAM-D, DRP-1 (c) CAM-D, P2D

(d) CAM-D, RP-2 (e) CAM-D, DRP-2 (f) CAM-D, SNILP

Figure A8. Comparison of vignetting corrections of flat-field image IV for CAM-D.
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(a) norm(IV) for CAM-E

(b) Ṽ, CAM-E, RP-1 (c) Ṽ, CAM-E, DRP-1 (d) Ṽ, CAM-E, P2D

(e) Ṽ, CAM-E, RP-2 (f) Ṽ, CAM-E, DRP-2 (g) Ṽ, CAM-E, SNILP

Figure A9. Comparison of vignetting image IV and vignetting estimates Ṽ obtained for the tested
models and CAM-E.

(a) CAM-E, RP-1 (b) CAM-E, DRP-1 (c) CAM-E, P2D

(d) CAM-E, RP-2 (e) CAM-E, DRP-2 (f) CAM-E, SNILP

Figure A10. Comparison of vignetting corrections of flat-field image IV for CAM-E.
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