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Abstract: Tiny machine learning (TinyML) has become an emerging field according to the rapid
growth in the area of the internet of things (IoT). However, most deep learning algorithms are too
complex, require a lot of memory to store data, and consume an enormous amount of energy for
calculation/data movement; therefore, the algorithms are not suitable for IoT devices such as various
sensors and imaging systems. Furthermore, typical hardware accelerators cannot be embedded in
these resource-constrained edge devices, and they are difficult to drive real-time inference processing
as well. To perform the real-time processing on these battery-operated devices, deep learning models
should be compact and hardware-optimized, and hardware accelerator designs also have to be
lightweight and consume extremely low energy. Therefore, we present an optimized network model
through model simplification and compression for the hardware to be implemented, and propose a
hardware architecture for a lightweight and energy-efficient deep learning accelerator. The experi-
mental results demonstrate that our optimized model successfully performs object detection, and the
proposed hardware design achieves 1.25× and 4.27× smaller logic and BRAM size, respectively, and
its energy consumption is approximately 10.37× lower than previous similar works with 43.95 fps as
a real-time process under an operating frequency of 100 MHz on a Xilinx ZC702 FPGA.

Keywords: tiny machine learning (TinyML); internet of things (IoT); deep learning; hardware
accelerator; edge devices; object detection; field-programmable gate arrays (FPGA)

1. Introduction

Deep learning has been popular because of the availability of computing power and
the development of big data [1], and various reviews and discussions on deep learning
have been extensively conducted in recent years [2–6]. It has been widely applied in many
fields such as image recognition [7], object detection [8], autonomous driving [9,10], and
robotics [11]. Moreover, deep learning networks have been shown to be successful for these
fields [12], and nowadays it has become important even in the field of IoT with the rapid
development of IoT devices and network infrastructure [13]. Accordingly, deep learning
operation in real time with low energy on these resource-constrained edge devices has
emerged as essential work in the era of IoT [14].

However, deep learning models are generally too complex, and they also require
considerable amounts of data and their computation [15]. Model complexity in deep
learning is a fundamental issue in terms of model framework, model size, optimization
process, and data complexity. Most deep learning models have a complex model framework,
such as a convolutional neural network (CNN), and their model size is so huge owing
to numerous parameters, layers, and filters. In addition, the configuration, such as layer
width and filter size, also affects model size. As a result, running a deep learning model
requires so much memory to store those numerous parameters and a tremendous amount of
intermediate data. Furthermore, high energy consumption is inevitable for computing their
calculation and moving so much data from/to memory. Therefore, it is very challenging to
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implement the hardware to accelerate these deep learning models on the battery-operated
IoT devices.

Thus, TinyML is an important and emerging area for operating machine learning
applications on small embedded IoT devices, and hence it has been actively researched
recently [16–20]. It aims at designing and developing algorithms and hardware capable
of performing inferences on resource-constrained devices at extremely low energy. Ac-
cordingly, it takes into account the characteristics of hardware to be operated and tries to
optimize the model for the hardware and reduce computational load and memory demand
by deploying approximation and compression, like pruning. Moreover, the hardware de-
sign has to be implemented as lightweight to be embedded in low-cost resource-constrained
devices and energy-efficient so that the deep learning model works smoothly on the battery-
operated devices, and low-latency so as to run in real time on IoT edge devices, considering
the fast sensory data streams.

In this paper, we present the optimized network model for hardware to be imple-
mented. The proposed optimized model is based on SqueezeNet [21], which is a mobile-
oriented network. We perform model reduction and parameter simplification on the back-
bone model network through model simplification, and integer quantization is adopted
for activation and parameters through model compression. Furthermore, a lightweight
and energy-efficient hardware architecture is proposed, and an implemented design is able
to perform parallel processing between layers and channels deploying a 3D tensor-like
processing element (PE) structure. It results in low latency and reduction in energy con-
sumption. Besides, a small amount of on-chip memory is required owing to the proposed
on-chip memory management strategy, which makes the design lightweight and low-power.
As a result, the experimental results demonstrate that our optimized model successfully
performs object detection, and the proposed hardware design achieves 1.25× and 4.27×
smaller logic and BRAM size, respectively, and its energy consumption is approximately
10.68× lower than previous related works with 43.95 fps as a real-time process under an
operating frequency of 100 MHz on a Xilinx ZC702 FPGA.

The rest of this paper is structured as follows: Section 2 provides some background
of lightweight deep learning techniques with our backbone model and its related works.
Section 3 presents the proposed model optimization through model simplification and com-
pression for hardware to be implemented. In Section 4, the proposed hardware architecture
is presented for the hardware design to be lightweight and energy-efficient. Experimental
results for the performance of the proposed model and hardware architecture are shown in
Section 5. Lastly, Section 6 discusses the conclusion.

2. Background

Operating deep learning models on edge devices is quite challenging because of their
limited resources and computational capabilities. Thus, it is important to make use of
lightweight deep learning models that are suitable for execution on resource-constrained
devices. Moreover, it is crucial to design lightweight and energy-efficient hardware owing
to the battery limitations of low-cost devices. Consequently, hardware/software (HW/SW)
co-optimization is critical to deploying deep learning models on these devices, and consid-
erable related research has been aggressively conducted as well [22–24].

Lightweight deep learning techniques are able to be classified into two categories:
lightweight deep learning algorithms and transforming existing models into compact/small
ones [25,26]. SqueezeNet [21], as a representative edge-device-oriented deep learning
model, is a lightweight deep learning algorithm. This category makes the structure of
the network model lightweight to reduce computational complexity and the number of
parameters by utilizing a residual block or bottleneck block. In addition, converting existing
models into compact ones is achieved by knowledge distillation or model compression, such
as pruning, quantization/binarization, and the weight-sharing method. These techniques
compress the model size and its computation by eliminating redundant parameters, sharing
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common values, and reducing data bits. Many studies [27–30] in this field have progressed
deploying deep learning models on the edge devices.

The design and implementation of hardware for algorithms, as well as the utilizing
of lightweight algorithms, are also crucial for the practical operation on the resource-
constrained IoT devices. It should work with low latency, power, and energy with
lightweight designs on these devices. Related studies [31–33] on efficient hardware design
have been actively conducted to determine the feasibility of running deep learning models
on edge hardware. Furthermore, hardware design, even in low-cost devices, should be
optimized and customized with optimal architectures. On-chip or external memory and
logic are unnecessarily able to be consumed with a general PE configuration that does not
consider the characteristics of the deep learning model for deployment.

2.1. SqueezeNet

SqueezeNet [21], shown in Figure 1, is a representative lightweight deep learning
model in terms of model size and the number of parameters for hardware with limited
resources, particularly memory, and computational capabilities. It preserves its accuracy
with fewer parameters than AlexNet [34].
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A micro-architectural view is shown in Figure 1a. The base unit structure, called the
fire module, comprises a squeeze layer with a 1 × 1 convolution filter and an expand layer
that has a mix of 1 × 1 and 3 × 3 convolution filters. A ReLU process is performed on the
output of the squeeze layer, which feeds into the expand layer, and the final output of the
fire module comes from a ReLU operation on the output of the expand layer. Figure 1b
shows the macro-architectural view. SqueezeNet consists of a series of fire modules and
several maxpool functions between the fire modules.

This model has 9× fewer parameters when replacing the generally used 3 × 3 filters
with 1 × 1 filters in the squeeze layer. In addition, the base unit fire module makes
it possible to reduce the number of channels by deploying a 1 × 1 convolution filter
instead of a 3 × 3 convolution filter, and the number of channels is expanded again by
deploying 3 × 3 convolution filters in the expand layer. Moreover, the effect of compressed
image information can be obtained through sparse down-sampling between a series of fire
modules, which reduces the range of the region of interest (RoI) at one glance and leads to
higher classification accuracy.

2.2. Related Works

Many studies on accelerating SqueezeNet on FPGA have been introduced in the litera-
ture [35–39]. In [35], the authors attempted to enhance the performance of the hardware
processing convolution operation through pipelining and loop unrolling and flattening.
However, it did not affect the performance owing to the bandwidth bound. In addition,
they fused convolution and maxpool operations as layer dimensions, but it had a trivial
impact on optimization because their implementation result for resource utilization was too
large, and the power dissipation was also too large to deploy the model on edge devices.

Another design and implementation of SqueezeNet, layer-based structured design,
was introduced in [36]. The purpose of this design is scalability in constructing CNNs,
and it allows the flexible and scalable deployment of the entire CNN. Owing to these
characteristics, a large amount of resource utilization was exploited, although a (8–16)-bit
fixed quantization strategy was adopted. Moreover, the power consumption was too high,
making the design difficult to be embedded and operated on resource-constrained devices.

In [37], they implemented their accelerator with eight multiply-accumulate (MAC)
−16 units, which performed 16 MACs in every clock cycle of its operation. In addition,
they employed a quantization strategy for parameters such as 8 bits weights, bias, and
16 bits feature maps to reduce their accelerators. In addition, they used various buffers
for the parameter and input feature map as an input feature map tile buffer (ITB) and
input feature map tile buffer window (ITBW), respectively, avoiding redundant memory
accesses that introduce additional power consumption. As a result of their efforts, the
power consumption was sufficient to operate on embedded devices, but the memory size
was very large, owing to the strategy of utilizing many buffers. Furthermore, the execution
time was too long, and therefore an enormous amount of energy was consumed, which
made it impracticable to deploy their accelerator on battery-operated edge devices in real
time.

A high-speed hardware accelerator was implemented in [38]. The researchers used
a ping-pong memory strategy and deployed several first-in, first-outs (FIFOs) in their
design to solve the memory bottleneck issue. By preparing a set of twin memories, data
from all the series of fire modules can be processed using this ping-pong memory and
alternating between a set of twin memories. Additionally, several intermediate FIFOs hold
the output data as some pixels of the squeeze layer and pass them to the expand layer when
3 × 3 window data have been filled. Besides, the authors made use of hardware resources
with different configurations in the squeeze and expand layers to speed up layer processing.
Consequently, they achieved quite low latency of their hardware accelerator, but their
resource utilization on logic and memory was quite high because of the twin memory and
FIFOs strategy. Accordingly, it was not suitable for embedding on resource-constrained
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edge devices. Furthermore, the power consumption was also high, making it difficult to
operate the deep learning model on low-power devices.

To deploy deep learning models for applications such as object detection and image
classification on IoT devices, the hardware accelerator embedded on these devices should be
lightweight, low-latency, low-power, and low-energy with real-time processing, considering
the characteristics of edge devices. To achieve these factors, HW/SW co-optimization is
necessarily required in algorithm and hardware.

3. Proposed Model Optimization

To obtain well-optimized hardware suitable for deployment on edge devices, trans-
forming deep learning models into compact or small ones is necessary, as well as making
use of lightweight deep learning algorithms. Data quantization is a representative method
of model compression for operating a model on hardware with limited resources. Addition-
ally, model simplification for optimizing and customizing the hardware to be implemented
is crucial for hardware to be more lightweight and energy-efficient. Therefore, we present a
model simplification by reducing the model and simplifying the parameter configuration
and model compression with data quantization.

3.1. Model Simplification

SqueezeNet, the mobile friendly deep learning model used as our backbone, is a
lightweight deep learning algorithm, but it is inevitable that additional optimizations such
as model reduction and parameter configuration simplification must be performed, making
it executable on low-cost edge devices. In general, the depth of the deep neural network
(DNN) is a fundamental issue in terms of the accuracy of the model, the complexity of
computation, and runtime. For instance, the deep network shown in Figure 1b involves
complex computations with many parameters and intermediate data with high latency and
energy consumption, which is not appropriate for low-cost resource-constrained devices.
There is a tradeoff between these performances, however; deeper networks or increasing
the depth of networks is not always good [40]. Inspired by this, we have conducted model
reduction for the model to be lightweight by reducing the depth of the model and involving
the intermediate maxpool functions in convolutions with less computation complexity and
low latency. Moreover, simplification of the parameter configuration was also performed
for the hardware-oriented structure. This is illustrated in Figure 2.

An overview of the simplified model is shown in Figure 2a. It consists of 14 convolu-
tions, 1 maxpool function, and 4 concatenation procedures with several intermediate ReLU
processes. One convolution with a ReLU as a squeeze layer and two convolutions with two
ReLUs as an expand layer and a final concatenation procedure constitute a fire module;
hence, the reduced model has four fire modules in contrast to the eight fire modules of
the backbone model in Figure 1b. However, we achieved a successful object detection
performance with this reduced model network, as shown in Section 5. In addition, several
convolutions have maxpool functions within by adopting stride 2 in the middle of the
convolution operation, as shown in Figure 2b. The convolution operations in conv6, conv7,
conv9, and con10 in Figure 2b are processed with stride 2 instead of additional maxpool
function operations after each convolution process, as shown in Figure 1b. This results in
low latency, less computation, and even low energy consumption by involving maxpool
functions in the convolution process. In addition, the configuration of the channel number
of the filter in Figure 2b indicates a multiple of four, except for the initial primary input,
which is three: R, G, and B. This is a constraint for the model to be hardware-oriented,
leading to lightweight and energy-efficient hardware with good optimization for resource-
constrained devices. The significance of the channel number of the filter to be a multiple of
four is described in Section 4.5.1 in detail.
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3.2. Model Compression

Data quantization, a representative model compression technique, is necessarily re-
quired to compress a model on resource-limited, low-latency, and low-energy devices
owing to the latter’s constraints on compactness and battery capability. Corresponding to
the limited memory, computation, and power of these devices, data moving from/to mem-
ory and to be processed should be quantized from floating point numbers for small size
and low computation and power. The quantization procedure is described in Equation (1):

Dataq = Data f ∗ SD

=
(

∑ Act f W f + B f

)
∗ SD

=
(
∑
(

Actq/SA
)(

Wq/SW
)
+

(
Bq/SB

))
∗ SD

= (SD/SASW) ∗
(

∑ Actq ∗ Wq +
(

SASW
SB

)
Bq

)
ording to the comment.cronyms.ai and about abbreviations and acronyms.

(1)

This is a convolution operation utilizing symmetric quantization. Data comprises
activation, weight, and bias components denoted as Act, W, and B, respectively. S indicates
a scale factor, and D, f , and q denote data, floating point, and quantization, respectively.
Floating point elements are able to be classified into quantized elements and their respective
scale factors. For instance, Act f , floating point activation, is classified into Actq, quantized
activation, and SA, scale factor of activation. Additional calculations using the zero point
in this equation are required for asymmetric quantization. The asymmetric quantization
typically has a higher resolution than the symmetric quantization. Thus, the weight
parameters were quantized by the symmetric quantization, and the asymmetric technique
was adopted for activation quantization.

Data quantization for the convolution operation is shown in Figure 3. It describes the
quantized bit of each component with configurations. The weight parameter was quantized
to integer 8 bits, and bias, multi-scale, and shift-scale factors were quantized to integer
32, 12, and 8 bits, respectively, in the order of BQ, that is, bias and quantization, as shown
in Figure 3. In addition, the activation component was also quantized as 8 bits. These
quantized parameters are able to be obtained offline so that employing these quantized
elements is sufficient to operate inference process for deploying the deep learning model
on devices. Consequently, memory size and computational complexity can be reduced,
leading to the feasibility of model deployment on low-cost edge devices.
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4. Proposed Hardware Architecture

The design and implementation of hardware are very important for deep learning mod-
els to be deployed on resource-constrained edge devices, even if the model has a lightweight
algorithm that adopts model compression and simplification. In other words, it is diffi-
cult to deploy a lightweight model on such devices when the implemented hardware is
bulky with redundant logic and memory requirements and does not have a well-optimized
architecture, which leads to the huge size of the hardware resource, high latency, power,
and energy consumption. Therefore, we propose a hardware architecture with an optimal
design for the presented lightweight deep learning model by utilizing parallel processing
between layers and channels through a 3D tensor-like PE structure, and a memory-efficient
on-chip memory management strategy.

An overview of the proposed hardware architecture is shown in Figure 4. We per-
formed a customized direct memory access (DMA) design that interacts with an external
memory through advanced extensible interface 4 (AXI4) protocol. The inform layer unit
controls the order of the layer, and the ifmap (input feature map) driver unit fetches the
input feature map data from an external memory through DMA and conducts read/write
operations from/to on-chip memories for the ifmap, feeding into an arithmetic core unit.
In addition, parameter data such as weights, bias, multi-scale factors, and shift-scale factors
are fetched by the parameter driver unit, which reads and writes the fetched parameter
data from/to on-chip memories for the parameters. The arithmetic core unit performs
convolution and maxpool operations with ifmap data from the ifmap driver unit and
parameter data from the parameter driver unit, and the result of the arithmetic core unit is
fed into the ofmap (output feature map) driver unit. Finally, the ofmap driver unit performs
read/write operations of data output from the arithmetic core unit from/to the on-chip
memories for ofmap. The detailed operation of each unit is as follows.
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4.1. Inform Layer Unit

The layer order is controlled by the inform layer unit, considering the status signal
from the ifmap driver unit. The status signal includes information if the loading ifmap
data in the current layer has been finished, indicating the availability of the next layer. As
a result, the ifmap driver unit and parameter driver unit can be synchronized using the
attribute signal as the output signal of the inform layer unit.

4.2. Ifmap Driver Unit
4.2.1. Ifmap Read Control (IRC) Unit

The ifmap read control (IRC) unit fetches ifmap data line by line from an external
memory through DMA with a ready signal. The IRC unit passes the loaded ifmap line data
to the matrix generation (MG) unit, as described in Section 4.2.2, considering the status
signal from the MG unit. Accordingly, this unit enables the MG unit to transform ifmap
data to matrix-type.

4.2.2. Matrix Generation (MG) Unit

The MG unit transforms ifmap data to matrix-type for parallel processing between
layers, leading to a reduction in latency. In other words, this unit makes it possible to
process 3 × 3 and 1 × 1 convolutions in an expand layer simultaneously. The matrix
generation process in the MG unit is illustrated in Figure 5. The ifmap stream comes to
the MG unit line by line from top to bottom of the input feature map in the order of blue,
grey, orange, and green. The first line of the ifmap, the blue one in Figure 5, is stored in
on-chip memory 0, while on-chip memories 1 and 2 are idle because they are waiting for
the next two lines of ifmap, grey and orange in Figure 5. When the second line, the grey
one in Figure 5, streams, the first 3 × 3 matrix output, the dark blue one in Figure 5, comes
out with the read state of on-chip memory 0 for the blue ifmap and the read/write state
of on-chip memory 1 for the grey ifmap in the case of zero padding on the top line of the
3 × 3 matrix, which finally consists of zeros on top and blue ifmap data in the middle, and
grey ifmap data on the bottom. The second 3 × 3 matrix output, the dark grey one in
Figure 5, is generated when the third ifmap, the orange one in Figure 5, stream comes with
read/write operations on on-chip memory 2. This second 3 × 3 matrix consists of blue
ifmap data on top and grey ifmap data in the middle, and orange ifmap on the bottom.
Finally, the third 3 × 3 matrix output, the dark brown one in Figure 5, comes out with
overwrite and read operations of the fourth ifmap line, the green one in Figure 5, on on-chip
memory 0. In this third 3 × 3 matrix, grey, orange, and green ifmap data are located on top,
middle, and bottom, respectively. Accordingly, the generated 3 × 3 ifmap matrix includes
ifmap data for both 3 × 3 and 1 × 1 convolutions at the center of the matrix.
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By this parallel processing between layers with 3 × 3 matrix generation, external
memory access can be reduced by half compared to the process in the order of 1 × 1
and 3 × 3 convolutions in an expand layer because the external memory access needs
double for feeding the inputs to the 1 × 1 and 3 × 3 convolutions, respectively, at different
times. However, this external memory access is the representative issue degrading the
performance of the system because it relatively requires so much time and power. Thus,
this 3 × 3 ifmap matrix generation enables the embedded hardware to operate in real time
with low latency and low energy. In addition, it can also reduce the space for external
memory and on-chip memory. If the two layers in an expand layer are processed in
sequence, the ifmap as an input of the expand layer has to be stored in memory by the end
of the 1 × 1 convolution process because the 3 × 3 convolution should take the same input,
resulting in a redundant use of reusable memory. Therefore, redundant memory use or
occupancy can be eliminated by the MG unit.

4.3. Parameter Driver Unit
4.3.1. Parameter Read Control (PRC) Unit

The parameter read control (PRC) unit fetches parameter data, such as weights, bias,
mult-scale, and shift-scale, from an external memory through DMA with a ready signal.
The PRC unit passes the loaded parameter data to the parameter set (PS) unit, as described
in Section 4.3.2, considering the status signal from the PS unit. Accordingly, this unit helps
the PS unit set the parameter data on time.

4.3.2. Parameter Set (PS) Unit

Parameter data are set in advance as registers for each layer by the PS unit, fed into an
arithmetic core unit. The PS unit is synchronized with the MG unit for layer order by the
inform layer unit, and the data of each parameter to the arithmetic core unit are also fed at
the same time as the ifmap matrix data from the MG unit to the arithmetic core unit. In
addition, this PS unit performs a read operation to load parameter data from an external
memory through the DMA and a write operation on its own on-chip memories, leading to
less external memory access.

4.4. Arithmetic Core Unit
4.4.1. Conv Unit

All convolution operations are conducted in a conv unit. The synchronized ifmap
matrix data from the MG unit and quantized parameter data from the PS unit are fed into
3D tensor-like PEs, as shown in Figure 6, indicating a 3 × 3 convolution case. It has channel
(C), height (H), and width (W) components, as CxHxW type, and comprises 3 × 3 PEs
with four numbers of channels in detail, as mentioned in Section 3.1. These 3D tensor-
like PEs enable parallel processing between channels, leading to low-latency hardware,
and memory-efficient architectures, as discussed in Section 4.5.1. Moreover, the detailed
operation on convolution with the quantized data, inside one PE in 3D tensor-like PEs, is
shown in Figure 7. Unsigned 8-bit input activation, signed 8-bit weight parameter, signed
32-bit bias parameter, unsigned 12-bit multi-scale factor, and unsigned 8-bit shift-scale
factor enter the PE, having multipliers, adders, accumulator, and shifter with a clamping
operation.
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4.4.2. Pool Unit

The pool unit operates as a maxpool function in the sequence of layers. It takes
3 × 3 ifmap matrix data and performs maxpooling among 9 ifmap data within a 3 × 3 matrix.
The output comes into the ofmap write (OW) unit, as described in Section 4.5.1, in the
ofmap driver unit in the maxpool layer.

4.5. Ofmap Driver Unit
4.5.1. Ofmap Write (OW) Unit

The output feature map data from the arithmetic core unit are fed into the OW
unit, storing this output feature map on its own on-chip memory, as shown in Figure 8.
Figure 8a,b show the on-chip memory status of the OW unit at conv1 and maxpool layer,
respectively. The physical on-chip memory has a 256 × 64 configuration as height (address)
× width (bit). As for C1_L0_0, C1 and L0 stand for the first channel and line of output
feature map, respectively, and the last number 0 indicates the first output feature map
data. In other words, C1_L0_0 indicates the first output feature map data in the first line
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of the output feature map at the first channel, which is generated one by one, in the order
of channel number from C1 to C16 and the order of output feature map width direction
from 0 to 127 within a channel, by the arithmetic core unit in the convolution operation, as
shown in Figure 8a. Similarly, four output feature map data, C1_L0_0, C2_L0_0, C3_L0_0,
and C4_L0_0, are generated at the same time in a maxpool operation as shown in Figure 8b.
By gathering the next output feature map data, the data packet {C1_L0_0, C1_L0_1} can
be written in the on-chip memory at the conv1 layer and {C1_L0_0, C1_L0_1, C2_L0_0,
C2_L0_1, C3_L0_0, C3_L0_1, C4_L0_0, C4_L0_1} can be stored in the on-chip memory at
the maxpool layer.
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As shown in Figure 8, the entire data in all channels for one line of the feature map are
stored in the on-chip memory and split into four channel sections. This indicates that the
arithmetic core unit is able to generate the output feature map data without any bottleneck
by fetching the entire data of the input feature map in one line across all channels in the
next layer because the entire data across all channels are needed to generate the output
feature map data. If the entire data are not able to be provided continuously across all
channels, several on-chip memories are additionally required to store the partial sum result.
This sequential provision across all channels can be obtained by fetching the data in the
order of on-chip memory address owing to the split four-channel section. If the channel
section is split into more pieces, for example, eight channel sections, lots of data can be
loaded at the same time, but that reduces the flexibility and performance of an algorithm.
Similarly, if the channel section is split into fewer pieces, for example, two channel sections,
the flexibility of an algorithm can be improved, but some data can be fetched at the same
time, leading to the low latency of the hardware. Therefore, the significance of the channel
number of the filter to be a multiple of four is on HW/SW co-optimization.

As a result, this configuration of data storage on the on-chip memory of the output
feature map is maintained in an external memory so that the input feature map with the
same data configuration can be loaded on the on-chip memory of the input feature map.
The OUT (IN) on top of the on-chip memory in Figure 8 indicates that the configuration of
the output data stored in memory in the current layer is maintained at the input feature map
fetch in the next layer. This on-chip memory management strategy enables incremental
external memory access, thereby reducing the latency and power consumption caused by
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frequent and irregular external memory access. As a result, low latency and low energy
consumption can be achieved with a small amount of on-chip memory, enabling the
implemented hardware to be more lightweight and suitable for the resource-constrained
and battery-operated edge devices.

Figure 9 shows the overall process flow of the implemented hardware, which is related
to the data read/write through on-chip memories as described in Figure 8. As shown in
Figure 9a, the configuration is 16 × 96 × 128 as channel × height × width, and the first
line of the output feature map in the first channel is written first in the order of output
feature map width direction from 0 to 127 within a channel in the on-chip memory. Next,
the first line of the output feature map in the second channel is written in the same order
as the first channel in the on-chip memory. As a result, the entire data in the first line of
the output feature map across all channels are written in 16 iterations in the conv1 layer.
Moreover, this output feature map data is the same as the input feature map data at the
same time in Figure 9b, which indicates the ifmap read operation at maxpool layer as
the next layer of conv1. Therefore, the input feature map data across four channels can
be loaded incrementally without irregular memory access at the maxpool layer, and the
input feature map across all 16 channels is able to be fetched in four iterations, as shown in
Figure 9b. In addition, these data as matrix-type are fed into the 3D tensor-like PEs in the
arithmetic core unit.
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4.5.2. Ofmap Read/Write Control (ORWC) Unit

Output feature map data written in their on-chip memories are loaded by the ofmap
read/write control (ORWC) unit, which writes the loaded data in an external memory
through DMA. A pair of on-chip memories for the output feature map data prevents the
data from being overwritten before being loaded by the ORWC unit. In other words, the
ORWC unit starts to load the written output feature map data when the write operation of
the output feature map data in the OW unit is completed, and then the OW unit performs a
write operation on another on-chip memory, while the ORWC unit loads the written data
from the first on-chip memory. This makes the hardware operate with low latency, and
without any bottleneck on resource-constrained edge devices because the on-chip memory
is small owing to the on-chip memory management strategy.
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5. Experimental Results

Qualitative and quantitative evaluations of the model presented in Section 3 were
performed, which indicated that the model successfully carried out object detection regard-
less of the shape, number, color, and angle of the objects. Moreover, the hardware with
the proposed architecture in Section 4 has been implemented in FPGA with less resource
utilization and energy consumption compared to related studies, which indicates that
the implemented hardware accelerator enables the presented model to be operated with
low resource use and energy consumption in real time on the resource-constrained and
battery-operated edge devices.

5.1. Performance of Proposed Model

The presented model conducted object detection on a dataset with 13,041 GT, as
shown in Table 1. It manifests a recall performance of 93.1% with true positive (TP) and
false negative (FN) components, and a precision of 82.6% with TP and false positive (FP)
components, as described in Equations (2) and (3), respectively. In addition, an F1 score of
87.5 is obtained according to F-measure, the metric considering both recall and precision, as
described in Equation (4). In addition, the model was quantized with an unsigned integer
of 8 bits for activation, integer of 8 bits for weight, integer of 32 bits for bias, and unsigned
integer of 12/8 bits for the mult/shift scale, as shown in Table 2. Besides, the presented
model has shown successful performance of qualitative evaluation, as shown in Figure 10,
which demonstrates that the model can detect objects in diverse conditions.

Recall =
TP

TP + FP
(2)

Precision =
TP

TP + FP
(3)

F1 = 2 ∗ Precision × Recall
Precision + Recall

(4)

Table 1. Quantitative evaluation of the performance on object detection of the proposed model with
an IoU threshold of 0.5 and a detection threshold of 0.697.

TP FP FN GT Recall Precision

12,143 2561 898 13,041 93.1% 82.6%

Table 2. Quantization information for each component in the proposed model.

Activation Weight Bias Scale

uint 8 int 8 int 32 uint 12/8 (mult/shift)
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Figure 10. Qualitative evaluation of the performance on object detection of the proposed model. There
are different objects in horizontal, and different number of objects and angle in vertical: (a) small
objects with red and black color; (b) middle size of objects with blue, white, and black color; (c) big
size of objects with white color; (d) middle size of objects with pink and purple color.

5.2. Implementation Results and Comparison

The hardware based on the architecture proposed in Section 4 was designed using
Verilog hardware description language (HDL) and verified by the coincidence of results
between the C model of the presented model in Section 5.1 and register transfer level (RTL)
simulation. Furthermore, it was implemented on an FPGA and verified in KU085 with the
C model.

The system configuration for the experiment is illustrated in Figure 11. The camera
sends pixel data to the MPSoC board, resizing the image to the size required by the model
on the FPGA. In addition, the camera viewer software in the PC provides the parameter
and base address to the MPSoC board and sends them to the FPGA using a serial peripheral
interface (SPI). The proposed design on the FPGA starts to operate by fetching pixel data
and parameters from an external memory on the FPGA board, and the design is verified by
a Vivado logic analyzer utilizing an integrated logic analyzer (ILA) on the FPGA.
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Table 3 presents a performance comparison with related works. The hardware resource
utilization, particularly in BRAM and DSP, in [35] is quite high compared to those of [37],
leading to high power consumption according to the total on-chip power in [38]. The
BRAM and DSP consumed approximately 60% of the total power. In addition, the runtime
is so slow that it is impossible to deploy a deep learning model on this hardware in real
time owing to the performance of only 1 fps, although the logic size is also large in contrast
to [37]. Consequently, the energy consumption is too high, making it unsuitable for edge
devices.

Table 3. Performance comparison with related works.

[35] [36] [37] [38] Proposed 1

Platform ZC702 VC709 ZC702 VC709 ZC702

Frequency (MHz) - 110 100 100 100

Resource
Utilization

LUT 54 k (102%) 324.7 k (75%) 20.2 k (37.8%) 83.6 k (19.32%) 18.3 k (34.5%)

LUTRAM - - 1.2 k (7.3%) - 5 (1%)

FF 51 k (48%) 315.4 k (36%) 29.5 k (27.7%) 135.5 k (15.47%) 21.5 k (20.2%)

BRAM 226 (80%) 2.7 k (92%) 134.5 (96.1%) 1.8 k (61.77%) 31.5 (23%)

DSP 209 (95%) 1.8 k (53%) 192 (87.2%) 2.6 k (73.8%) 7 (3%)

Power (Watt) 7.95 27.7 2.23 8.9 2.11

Latency (ms) 1030 3.65 223.18 4.02 22.75

FPS (frame/sec) 1 273.97 2.62 248.76 43.95

Energy (mJ) 8188 101.11 497.6 35.78 48
1 Results in ZC702 for a fair comparison with [35,37].

To deploy deep learning hardware accelerators on edge devices, the hardware size
must be small with a lightweight design owing to limited resource constraints. However,
the hardware size of [36] and [38] is too large over thousands for all components, 324.7 k
and 315.4 k as LUT, FF for [36], and 135.5 k as FF for [38] in VC709. The BRAM and DSP
utilization is also high, so their power consumption is quite high as 27.7 W for [36] and 8.9 W
for [38]. They are not able to be embedded in resource-constrained edge devices because of
an enormous amount of hardware utilization and cannot be operated on battery-operated
IoT devices because they require high power consumption.

The hardware utilization for [37] in ZC702 is reasonable to be executed on low-cost
devices, but the latency performance is quite poor. Therefore, it performs at only 2.62 fps,
and it cannot be deployed in real time on IoT devices. Furthermore, its energy consumption
is 497.6 mJ owing to its slow run time. Battery-operated devices cannot endure this
hardware, which consumes high energy even though it is capable of being embedded on
edge devices.

However, the proposed hardware design has extremely low utilization in BRAM
and DSP owing to a memory-efficient on-chip memory management strategy and simple
but powerful 3D tensor-like PE structure with a matrix generation scheme of the input
feature map. Specifically, it achieves 1.25× and 4.27× smaller logic and BRAM size,
respectively, and its energy consumption is approximately 10.37× lower than the previous
low-cost hardware [37] with 43.95 fps as a real-time process under an operating frequency
of 100 MHz on ZC702. This indicates that the proposed hardware can be embedded in
resource-constrained edge devices and deployed in the battery-operated IoT devices for
object detection in real time.
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By applying parallel processing between layers and involving the maxpool function
in convolution operation, latency is significantly reduced, as shown in Table 4. It was
experimented in RTL simulations at conv6 and conv7 in an expand layer. This demonstrates
that the proposed method achieves 2.19× faster latency than the conventional method of
performing convolutions in series with an additional maxpool operation. In addition, the
throughput performance was improved by 2.18× as well. It indicates that low-latency and
high-throughput hardware with small size can be obtained with the proposed methods.

Table 4. Improvement of latency and throughput performance by applying parallel processing
between layers and involving maxpool layer in convolution operation.

Conventional Proposed

Latency (us) 271.2 124.4

Throughput (activation/us) 90.6 197.5

Table 5 presents values indicating that the proposed hardware is capable of performing
increased high-speed operations with an increase in its clock frequency, resulting in a higher
fps performance as well. Based on the characteristics and environment of the devices to
be utilized, the proposed hardware can be executed with optimal performance on such
devices.

Table 5. Results of latency and fps performance according to various clock frequencies.

Frequency (MHz) Latency (ms) FPS (frame/sec)

167 13.62 73.4

200 11.3 88.5

220 10.15 98.5

6. Conclusions

With the development of deep learning technology and rapid growth in the area of
IoT, deploying deep learning models on IoT devices has become an emerging field with
TinyML. However, most deep learning algorithms are too complex to be executed on these
resource-constrained edge devices. The algorithms are not suitable for battery-operated IoT
devices owing to their high computation and energy consumption requirements. Therefore,
a lightweight deep learning model and its well-optimized hardware through HW/SW
co-optimization are required; hence, we proposed an optimized model for the hardware to
be implemented and a lightweight and energy-efficient hardware architecture in this paper.

We presented an optimized model based on a backbone network by employing
model simplification and compression. Model reduction techniques, such as involving
maxpool operations in convolution, alleviates the computation complexity and latency,
and hardware-oriented parameter simplification enables software and hardware to be
co-optimized. Additionally, data quantization, as a model compression technique, was
performed to reduce the storage space requirement for the parameters. Experiment re-
sults showed that the optimized model successfully performed object detection and was
subjected to both qualitative and quantitative evaluations.

Furthermore, a lightweight and energy-efficient hardware architecture was proposed
with a 3D tensor-like PE structure, generation of input feature map matrix, and a memory-
efficient on-chip memory management strategy. The 3D tensor-like PE structure deals with
several input feature map matrices at the same time, leading to low latency and eventually
low energy consumption. In addition, logic size can be reduced owing to parallel processing
between layers and channels through combination of the 3D tensor-like PE structure and
input feature map matrix generation. Besides, the on-chip memory management strategy
enables incremental access to an external memory without frequent and irregular data
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read/write operations, leading to the use of a few and small on-chip memories, and also low
power consumption owing to the simple access to the memories. As a result, the proposed
hardware design achieves 1.25× and 4.27× smaller logic and BRAM sizes, respectively,
and consumes approximately 10.37× less energy than those of previous similar works
with 43.95 fps as a real-time process under an operating frequency of 100 MHz on a Xilinx
ZC702 FPGA. It indicates that the proposed hardware is capable of being embedded in the
resource-constrained edge devices and can be applied to the battery-operated IoT devices.
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