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Abstract: An accurate estimation of pipe attributes, pose of pipeline inspection gauge (PIG), and
downstream pipeline topology is essential for successful in-line inspection (ILI) of underground
compressible gas pipelines. Taking a 3D point cloud of light detection and ranging (LiDAR) or
time-of-flight (ToF) camera as the input, in this paper, we present the simultaneous pipe-attribute
and PIG-pose estimation (SPPE) approach that estimates the optimal pipe-attribute and PIG-pose
parameters to transform a 3D point cloud onto the inner pipe wall surface: major- and minor-axis
lengths, roll, pitch, and yaw angles, and 2D deviation from the center of the pipe. Since the 3D point
cloud has all spatial information of the inner pipe wall measurements, this estimation problem can
be modeled by an optimal transformation matrix estimation problem from a PIG sensor frame to
the global pipe frame. The basic idea of our SPPE approach is to decompose this transformation
into two sub-transformations: The first transformation is formulated as a non-linear optimization
problem whose solution is iteratively updated by the Levenberg–Marquardt algorithm (LMA). The
second transformation utilizes the gravity vector to calculate the ovality angle between the geometric
and navigation pipe frames. The extensive simulation results from our PIG simulator based on the
robot operating system (ROS) platform demonstrate that the proposed SPPE can estimate the pipe
attributes and PIG pose with excellent accuracy and is also applicable to real-time and post-processing
non-destructive testing (NDT) applications thanks to its high computational efficiency.

Keywords: in-line inspection; pipeline inspection gauge (PIG); PIG pose; pipe attributes

1. Introduction

Pipelines are the most economical way to transport large quantities of liquid or gas
such as oil, water, sewage, natural gas, and hydrogen gas over a long distance. As a result,
pipeline transport occupies 70 % of the crude oil and petroleum supply in the United States
and 97 % of the natural gas and oil supply in Canada [1,2]. To assess the pipeline integrity,
the operators regularly perform a proactive, non-destructive examination of their pipeline,
called the in-line inspection (ILI). In the ILI, a pipeline inspection gauge (PIG) moves
inside of an operational pipeline and collects sensor data, including magnetic, acoustic,
optical, inertial, pressure, etc., to identify and localize corrosion, cracks and other defects
that may lead to catastrophic failure [3–5]. After ILI, these sensor data are post-processed
to assess the severity of defects and accurately locate them without digging up excessive
amount of pipeline.

In this paper, we focus on the ILI of compressible gas pipelines, where a PIG is driven
by the differential pressure between the compressed upstream gas and the operating down-
stream gas. While a PIG moves forward inside the gas pipeline, multiple non-destructive
testing (NDT) sensors mounted in the circumferential direction of PIG simultaneously
sample their signals for successful assessment of pipeline integrity. For example, a geometry
PIG senses its caliper arm angle to detect dents and pipeline fixtures, such as weld, bend,
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tee, valve, etc. [6,7]. On the other hand, a magnetic flux leakage (MFL) PIG samples the
magnetic leakage field from the saturated ferromagnetic pipe to estimate the shape and
sizing of pipe defects, such as corrosion, pitting, crack, etc. [8,9]. Our prime interest lies
in the exteroceptive sensing of PIG, which helps to better recognize pipe attributes and
PIG pose.

A key challenge in the ILI of gas pipelines is to keep the PIG speed below a threshold to
acquire NDT sensor data of sufficient quality to meet the specifications [5]. Although a small
amount of differential pressure is enough to propel a PIG in a straight pipe, downstream
pipeline restriction, such as a high curvature bend, heavy wall thickness change, or pipeline
debris, may slow down or completely stop the PIG [10]. Then, the upstream gas pressure
will build up until the differential pressure exceeds the static friction at the restriction
point. This differential pressure is usually much higher than the pressure required to
reliably propel the PIG, which results in speed excursions [10–12]. The phenomenon of
speed excursion is known to be much more severe in low-pressure, low-flow gas pipelines,
because it takes much longer for the downstream gas to catch up with the compressed
upstream pressure. For example, it is reported in [10] that a PIG with speed excursion is
broken by slamming to a 1.5 D bend at the downstream of the gas pipeline. To mitigate
the damage of the PIG and pipeline from speed excursion, PIGs may throttle the amount
of bypassing gas flow, adjust the magnetic attraction of the MFL magnetizer, and/or
self-propel to escape from the restriction point before the differential pressure becomes
too high.

For the success of PIG speed control, it is essential to accurately estimate the pipe
attributes, pose of PIG body, and downstream pipeline topology. To aim this, in-pipe
robots are usually equipped with exteroceptive sensors. Two major approaches to exte-
roceptive sensing have received significant attention from academia and industry: laser
image processing and visual odometry. The laser image processing approach irradiates a
laser beam pattern on the inner wall of the pipeline and estimates the pipe attributes or
robot pose through the mathematical modeling of the reflected light captured at a camera
image [13–18]. On the other hand, the visual odometry approach extracts visual features
from a camera image, and estimates the relative robot pose by associating them with the
corresponding features in the subsequent camera images [19–22].

Although both exteroceptive sensing approaches are suitable for tethered or self-
propelled in-pipe robots, they still face three common limitations in the long-distance ILI
of compressible gas pipelines: First, the projection of the inner pipe wall surface onto
the camera image plane results in an intrinsic loss of depth information that needs to
be recovered from either the complex mathematical model of laser image processing or
the association of visual features over subsequent frames. Second, their estimation is
incomplete in the sense that they require prior information such as pipe radius with an
assumption of a perfectly round cross section in [13–16,19–21], which may cause additional
estimation errors to the pipes with different nominal thicknesses or high ovality due
to deformation. Third, a high variation of PIG speed can significantly deteriorate the
estimation quality of the inner wall geometry, either due to a single plane observation of
the pipe surface in [13–16] or an erroneous association of blurred visual features in [19–22].

Taking into account these limitations, we advocate the use of 3D point cloud from
the light detection and ranging (LiDAR) [23] or time-of-flight (ToF) camera [24] as an
exteroceptive sensing data. Compared to the camera image, the prime difference of a
3D point cloud is that it can directly measure the 3D inner pipe wall surface rather than
projecting it onto the 2D image plane. In this paper, we present the simultaneous pipe-
attribute and PIG-pose estimation (SPPE) approach that estimates the optimal seven pipe
geometry and PIG pose parameters for the transformation of a 3D point cloud into the
inner pipe wall surface: major- and minor-axis lengths, roll, pitch, yaw angles of PIG, and
2D deviation from the center of pipe in the cross section plane. The basic idea of our SPPE
approach is to decompose the whole transformation into two sub-transformations: The
first transformation uses the Levenberg–Marquardt algorithm (LMA) [25–28] to convert



Sensors 2023, 23, 1196 3 of 18

the 3D point cloud in the PIG sensor frame (PSF) to a point cloud in the geometric pipe
frame (GPF), where the semi-major and semi-minor axes of elliptical pipe cross section
are mapped to the Y- and Z-axes of the GPF, respectively. Utilizing the gravity vector, the
second transformation calculates the ovality angle to rotate the GPF point cloud to obtain
the output point cloud in the navigation pipe frame (NPF). The extensive simulation results
from our PIG simulator based on the robot operating system (ROS) platform shows that our
SPPE approach can estimate the pipe attributes and PIG pose with outstanding accuracy,
and is also used for both real-time and post-processing NDT applications thanks to its high
computational efficiency.

The remainder of this paper is organized as follows: In Section 2, we briefly summarize
the related works on the exteroceptive sensing of in-pipe robots. Section 3 presents our
SPPE approach to the estimation of pipe attributes and PIG pose. Then, the numerical
results from our ROS-based PIG simulator are presented and discussed in Section 4. Finally,
we conclude this paper in Section 5.

2. Literature Review and Our Approach

The objective of ILI is to detect defects on the surface of pipe and accurately estimate
their location and attributes for successful pipeline integrity management [5]. In compress-
ible gas pipelines, NDT technologies, such as MFL and Eddy Current (EC), are widely
used to detect defects and identify their attributes [8,9], while caliper arms are used for the
detection of pipeline deformation [6,7]. In addition, the post-processing of above ground
markers (AGMs) and multiple PIG sensors, such as inertial measurement unit (IMU) and
odometers, can estimate the location of the PIG and pipe defects in a harsh in-pipe environ-
ment, where no external electromagnetic signal penetrates inside the pipeline. However,
the above PIG sensors are not sufficient to estimate the pipe attributes, PIG pose, and
downstream pipeline topology to avoid speed excursion in compressible gas pipelines.

To mitigate this problem, two exteroceptive sensing approaches have been investigated
in the literature: laser image processing and visual odometry. The laser image processing
approach estimates the robot pose or pipe diameter by analyzing the shape of the reflected
laser image patterns projected onto the camera image plane [13–18]. In [13], Kim et al.
propose a laser system consisting of four point lasers, a hyperbolic mirror, and an omni-
directional camera, and present an algorithm that estimates the rotation angles yielding
a specific light pattern on the image plane of the omni-directional camera. A conical
laser system is also proposed in [14–18], where a conical laser beam is radiated to the
inner wall of the downstream pipe and its reflected light on the camera image plane is
analyzed for the estimation of the robot pose or pipe attributes. The robot pose is estimated
by the matching pose from the feature database in [14], or computed by the non-linear
optimization formulations in [15,16]. For the estimation of pipe diameter, Buschinelli et al.
present a direct analysis of the laser patterns in the polar coordinate using Cuda parallel
computing in [17], whereas Jin et al. propose a regression analysis of laser points in a
camera image in [18]. However, the laser image processing approach has two fundamental
limitations in detecting pipe attributes and downstream pipeline topology: (1) it is an
incomplete estimation of the pipe attribute and robot pose, because one of them is assumed
to be given to estimate the other; and (2) since the laser light pattern in the image plane is
usually limited to a set of points in a 2D plane, it is hard to detect the details of 3D features
in the downstream pipeline topology, such as bend and tee.

On the other hand, the visual odometry approach extracts the keypoints that com-
monly exist in multiple camera images, and estimates the robot pose by formulating the
pixel differences of these keypoints as the relative differences in the robot poses [19–22].
Hansen et al. present two monocular visual odometry algorithms to estimate the robot
pose in [19]. In [20], they also present a new camera calibration scheme, a sparse bundle-
adjustment framework, and the use of a structured lighting system to improve visual odom-
etry and mapping accuracy. Based on the images of a monocular camera, Kagami et al. pro-
pose an incremental Structure-from-Motion (SfM) scheme that incorporates the prior con-
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straints into bundle adjustment in order to restore the 3D shape of the whole pipeline [21].
In addition, the influence of the concentrated distribution of 2D visual features in the
circumferential direction on the pose estimation of the robot is systematically analyzed
in [22]. However, in the visual odometry approach, an incorrect association of visual
features between two image frames may result in catastrophic consequences.

Furthermore, both exteroceptive sensing approaches face a few common limitations
in their application to the ILI of large-diameter gas pipelines. First, the projection of the
inner pipe wall surface onto the camera image plane results in an intrinsic loss of depth
information that can be hardly recoverable from the mathematical modeling of laser image
processing or the association of visual features over subsequent frames. To overcome this
limitation, the approaches in [13–16,19–21] require prior information such as pipe diameter,
as well as the assumption of a perfectly round pipe cross section. Second, a fish-eye
camera with a wide FoV in a large-diameter pipe limits the detection resolution of pipe
surface features due to its pixel granularity. Figure 1 shows an example of the resolution of
pipe surface detection with different pipe diameters, where the notations f , w, x, and ∆r
represent the focal length, pixel width, depth, and the resolution of pipe surface detection,
respectively. Given the camera parameters, the detection resolution of the pipe surface is
represented by ∆r = xw/ f , which increases with the pipe diameter and camera FoV as
shown in Figure 1a,b. Third, a high variation of PIG speed can significantly deteriorate
the estimation quality of inner wall geometry due to the irregular spacing between the
observed pipe surface planes or erroneous association of blurred visual features.

(a) Detection resolution of a small-diameter pipe. (b) Detection resolution of a large-diameter pipe.

Figure 1. Detection resolution (∆r) of pipe diameter.

In this paper, we propose an alternative exteroceptive sensing approach that uses a 3D
point cloud of a LiDAR or ToF camera for the ease of detecting pipe attributes, PIG pose,
and downstream pipeline topology. Since the -D point cloud retains all spatial information
of the inner pipe wall measurements, this approach can avoid the limitation originating
from their projection onto a 2D camera image plane, and provide a principled methodology
to address a few fundamental issues of pipe-attribute and PIG-pose estimation: first, this
estimation problem is modeled by the transformation matrix estimation problem from a
3D point cloud in the PSF to a 3D point cloud in the global NPF. Second, the PIG-pose
parameters are clearly distinguished from the pipe-attribute parameters in our problem
specification—the former constitutes the rotation and translation matrices, while the latter
is used for the objective function of the optimization formulation. Third, our iterative
solution based on the LMA can estimate the pipe attributes and PIG pose with excellent
accuracy and be used for many real-time and post-processing NDT applications.

3. A Simultaneous Pipe-Attribute and PIG-Pose Estimation (SPPE)

In this section, we first formulate the model for the reference frames, and describe
the transformation invariance of 3-D point cloud measurement in Section 3.1. Given the
input point cloud of the PSF, the objective of our SPPE approach is to find the optimal
pipe-attribute and PIG-pose parameters of a transformation by which the output point
cloud minimally deviate from the inner pipe wall surface in the NPF. The basic idea of our
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SPPE approach is to split this transformation into two sub-transformations: The first from
the PSF to the GPF in Section 3.2, and the second from the GPF to the NPF in Section 3.3.

3.1. Model for Reference Frames and Transformation Invariance

In this section, we define the reference frames whose origin and orientation are
specified by a set of three orthogonal reference axes. Figure 2 shows the PSF whose
origin is the center of the 3D ranging sensor, where the X-, Y-, and Z-axes are defined as
the front direction (denoted by Xs), the right direction viewed from the front (denoted by
Ys), and the upward direction of PIG (denoted by Zs), respectively. The 3D ranging sensor
periodically generates a 3D point cloud of m inner pipe wall measurements, where each
point is denoted by xs = (xs, ys, zs). The depth measurement noise of the 3D ranging sensor
is assumed to follow a zero-mean Gaussian distribution with standard deviation of σ, i.e.,
N(0, σ2).

Figure 2. Illustration of PIG sensor frame (PSF).

To protect the 3D ranging sensor from the operating high pressure of gas pipe, it
must be placed inside the cover glass, as shown in Figure 2. Usually, a thin coating film is
attached to the surface of cover glass to provide better optical transparency to the infrared
light from 3D ranging sensor. In this paper, we assume a circular cover glass with field of
view (FoV) Ω that has the following two characteristics: (1) it is mechanically strong enough
to withstand the differential pressure; and (2) it provides perfect optical transparency for
3D ranging sensor.

Due to the manufacturing deformation and/or stress from underground external
forces, the cross section of the pipe is usually represented by an ellipse. To account for this
phenomenon, the inner pipe wall is modeled as a cylinder with an elliptical cross section,
where L, Dmax and Dmin denote its axial, major-axis, and minor-axis lengths, respectively.
Then, the ovality of the inner pipe wall is defined as follows:

O(%) = 2×
[

Dmax − Dmin

Dmax + Dmin

]
× 100. (1)

When pipe length L is long enough (L � ∆x + max(xs)), the 3D point cloud in the
PSF cannot be distinguishable from the point cloud of the following two transformations
in a cylindrical pipe: axial translation ∆x and rotation of roll angle ∆φ. For example,
in Figure 3a, the point clouds of two PIG poses in a cylindrical pipe with a small axial
displacement of ∆x, while keeping the remaining five degrees-of-freedom (DoF) poses, are
indistinguishable from each other because the pipe inner wall geometry observed from
both PSFs remains the same. In other words, the 3D ranging sensor is oblivious to the
axial displacement ∆x of the cylindrical pipe. To overcome this limitation, a fusion of IMU,
odometer, and AGM data is used for the estimation of axial displacement [29], which is
beyond the scope of this paper. The rotational invariance of roll angle ∆φ in a cylindrical
pipe with a perfectly round cross section (O = 0) is also shown in Figure 3b. This rotational
invariance can result in much higher uncertainties in the roll angle estimate than the pitch
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and yaw angle estimates for cylindrical pipes with a nearly circular cross section (O ≈ 0),
which will be addressed in Section 4.3.

(a) Axial translation invariance (∆x) at the side view.

(b) Rotational invariance of roll angle (∆φ) at the front view.

Figure 3. Transformation invariance of 3-D point cloud in a cylindrical pipe.

Figure 4 shows the definition of the NPF and the corresponding PIG pose, where the
origin is the center of the starting pipe section, and the X-axis Xp is the axial direction of the
cylindrical pipe. For the Z-axis of the NPF, we use an external constant vector that can be
directly observable by the IMU sensor: the gravity vector. Then, the Z-axis Zp is defined as
the opposite direction to the projected gravity vector onto the starting pipe section. Given
this axis definition, we denote the roll, pitch, and yaw angles of PIG in the NPF by φp, θp,
and ψp, respectively. The 2D deviation from the elliptical center of the cross section plane
is also denoted by (∆yp, ∆zp). Then, our problem can be formulated as follows: Given the
input point cloud xs = (xs, ys, zs) of m inner pipe wall measurements in the PSF, our objective is to
find the optimal transformation in terms of β∗p = (D∗max, D∗min, φ∗p, θ∗p, ψ∗p, ∆y∗p, ∆z∗p) by which the
output point cloud x = (x, y, z) in the NPF matches well with the inner surface of cylindrical pipe.
Here, the major- and minor-axis lengths D∗max and D∗min belong to the pipe attribute, while
5-DoF parameters φ∗p, θ∗p, ψ∗p, ∆y∗p, and ∆z∗p correspond to the PIG pose.

Figure 4. Navigation pipe frame.

The basic idea of our SPPE approach is to decompose this transformation into two sub-
transformations by devising the GPF as an intermediate reference frame. The introduction
of the GPF significantly simplifies the modeling of pipe-attribute and PIG-pose estimation:
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First, the GPF axes are determined to well match with the geometry of pipe inner wall
surface, which enables the pipe cross section to be represented by the canonical ellipse
equation. This representation reduces the complexity of the non-linear optimization formu-
lation in the first sub-transformation. Second, it also allows the second sub-transformation
to be rotated only in the direction of the roll angle. This rotation angle can be estimated by
exploiting the gravity vector of the IMU device. The details of each sub-transformation will
be addressed in the following two sections.

3.2. Transformation to the Geometric Pipe Frame (GPF)

In this section, we address the first transformation to convert the input point cloud in
the PSF to an intermediate point cloud in the GPF. Figure 5 shows an example of the GPF,
where the X-, Y-, and Z-axes are defined as the front axial direction (denoted by Xg), the
right semi-major axis direction viewed from the front (denoted by Yg), and the upward
semi-minor axis direction of cylindrical pipe (denoted by Zg), respectively. We denote the
roll, pitch, and yaw angles of the 3D ranging sensor by φg, θg, and ψg, respectively. Since
the point cloud is invariant with axial translation ∆x, we focus on the 2D deviation (∆yg,
∆zg) from the elliptical center of the cross section plane. Then, an inner pipe surface point
x′ =(x′, y′, z′) of the GPF can be obtained by the rotation and translation of input point xs,
as follows: 

x′

y′

z′

1

 =

[
RXYZ(φg, θg, ψg) TYZ(∆yg, ∆zg)

01×3 1

]
xs
ys
zs
1

, (2)

where 3D rotation matrix RXYZ(φg, θg, ψg) can be represented by the multiplication of
three rotation matrices, i.e., RXYZ(φg, θg, ψg) = RZ(ψg)RY(θg)RX(φg), and 2-D translation
matrix by TYZ(∆yg, ∆zg) =

[
0 ∆yg ∆zg

]ᵀ. When the rotation in pitch angle θg is equal
to ±π

2 , the rotation in yaw and roll directions corresponds to the same motion, which is
known as the gimbal-lock problem [30]. This problem can be solved by using quaternions
or rotation vectors, but they would lead to a much more complex parameter estimation
problem than those in (8)–(10). On the other hand, we notice that the absolute pitch angle
from PSF to GPF is much less than π

2 thanks to the fact that PIGs are usually well aligned
with the pipeline to shut off the gas flow. As a result, the use of the Euler angles in (2) can
still avoid the gimbal-lock problem in the transformation matrix.

Figure 5. Geometric pipe frame.

Thanks to the mapping of the semi-major and semi-minor axes onto the X- and Y-axes
of the GPF, respectively, the equation for the inner surface of the cylindrical pipe is greatly
simplified to the canonical ellipse form, as follows:

y′2

(Dmax/2)2 +
z′2

(Dmin/2)2 = 1, for 0 ≤ x′ ≤ L. (3)

In general, transformed point x′ deviates from the inner pipe wall surface in (3) due
to the depth measurement noise of 3D ranging sensors. However, the linearity of the first



Sensors 2023, 23, 1196 8 of 18

transformation (xs → x′) in (2) allows us to transform a point cloud inside (outside) the
pipe surface of the PSF to a point cloud inside (outside) the pipe surface of the GPF.

Given the PSF point cloud xs, our first parameter estimation problem is formulated
by a non-linear least-square problem that fits the parameterized GPF point cloud x′ to a
mathematical model by minimizing the sum of the squared errors S(βg) between them, i.e.,

β∗g = arg min
βg

S(βg) = arg min
βg

m

∑
i=1

f 2(x′i, βg), (4)

where target variable βg is the parameters that represent pipe attributes (Dmax, Dmin) and
PIG pose (φg, θg, ψg, ∆yg, ∆zg) in the GPF, and f (x′i, βg) is the cost function to reflect the
deviation of transformed point x′i from the inner pipe wall surface in (3).

f (x′i, βg) =
y′2i

(Dmax/2)2 +
z′2i

(Dmin/2)2 − 1. (5)

Since both y′ and z′ are trigonometric functions of PIG pose in (2), cost function
f (x′i, βg) becomes a non-linear function of seven unknown variables βg.

The optimal solution β∗g to the non-linear least-square problem can be obtained by the

iterative update approach [25–27,31,32]. Starting with an arbitrary initial parameter β
(0)
g ,

this approach iteratively updates the parameter β
(k+1)
g = β

(k)
g + δk until it converges to

an optimal value β∗g, where δk is the increment vector. Three iterative update approaches
are extensively studied in the literature: the gradient-descent algorithm (GDA) [31], the
Gauss-Newton algorithm (GNA) [32], and the LMA [25–27].

The GDA iteratively updates the parameters in the steepest-descent direction, i.e.,

β
(k+1)
g = β

(k)
g − α∇S(βg) = β

(k)
g − αJᵀ f (x′, β

(k)
g ), (6)

where α is the learning rate that determines the length of the step. Function f
(

x′, β
(k)
g

)
and

m× 7 Jacobian matrix J are also given by

f
(

x′, β
(k)
g

)
=
[

f
(

x1, β
(k)
g

)
f
(

x2, β
(k)
g

)
· · · f

(
xm, β

(k)
g

) ]ᵀ
, (7)

and

J =
∂ f
(

x′, β
(k)
g

)
∂β

(k)
g

=

[
∂ f

∂D(k)
max

∂ f
∂D(k)

min

∂ f
∂φ

(k)
g

∂ f
∂θ

(k)
g

∂ f
∂ψ

(k)
g

∂ f
∂∆y(k)g

∂ f
∂∆z(k)g

]
, (8)

respectively. In (6), the GDA moves in the opposite direction of the gradient ∇S(βg) at
each iteration, eventually reaching a local minimum. However, it is difficult to choose a
proper learning rate α: A small learning rate suffers from slow convergence while a large
learning rate may lead to the fluctuation or divergence of objective function S(βg) [31].

On the other hand, the GNA exploits the second-derivative (curvature) information to
compute the increment vector [32]:

(JᵀJ)δk = Jᵀ f
(

x′, β
(k)
g

)
. (9)

It approximates the objective function S(βg) locally with quadratic function, and moves to
the extreme point of the quadratic function in one step. Although it converges much faster
than the GDA for moderate-size problems, the GNA may converge slowly or diverge if the
initial parameter β

(0)
g is far away from the minimum β∗g or the matrix JᵀJ is ill-conditioned.
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To mitigate this problem, the LMA adaptively combines the GDA and GNA using the
damping factor λk, as follows [25–27]:

[JᵀJ + λk diag(JᵀJ)]δk = Jᵀ f
(

x′, β
(k)
g

)
. (10)

The LMA updates its parameter β
(k)
g like the GDA (with a large value of λk) when

the it is far from the optimal parameter β∗g, and like the GNA (with a small value of λk)
when it is near the optimal parameter. More specifically, starting with a large initial value
λ0 and a factor ν > 1, the damping factor λk at the k-th iteration is adaptively determined,
as follows [27]: If damping factor λk/ν reduces the sum of squared errors S(βg), damping
factor λk+1 is set to λk/ν. If λk reduces S(βg) while λk/ν increases S(βg), the damping
factor is left unchanged, i.e., λk+1 = λk. If both of damping factors are worse than the
current sum of squared errors, the damping factor is increased by successive multiplication
by ν until a better one is found, i.e., λk+1 = λkνω for some positive integer ω. The accuracy
of iterative LMA will be addressed in Section 4.2.

3.3. Transformation to the Navigation Pipe Frame (NPF)

In this section, we present the second transformation by which an intermediate point
cloud in the GPF is converted to an output point cloud in the NPF. Figure 6 shows the
cross section view of these two pipe frames. Since both pipe frames share the same X-axis
(Xp = Xg), the transformation from the GPF to the NPF is done by a single rotation in roll
direction φoval , which is called the ovality angle. This angle can be computed by using the
gravity vector, as follows: From the relative pose of the 3D ranging sensor to the IMU in
the PIG system, we can represent the gravity vector Gs in the PSF. The first transformation
in (2) and projection to YZ plane of the GPF converts this vector to the projected gravity
vector G′ = (g′x, g′y, g′z). Finally, from the roll angle of vector G′ in Figure 6, the ovality
angle φoval can be calculated by

φoval =
π

2
+ arctan

(
g′z
g′y

)
. (11)

We notice that, since the second transformation is the rotation in roll angle, the major-
and minor-axis lengths remain the same. Given the ovality angle φoval and optimal parame-
ters of the first transformation β∗g = (D∗max, D∗min, φ∗g , θ∗g , ψ∗g , ∆y∗g, ∆z∗g), output point cloud
x = (x, y, z) of the NPF can be obtained by x

y
z

= RX(φoval)

 x′

y′

z′


= Rp

 xs
ys
zs

+ RX(φoval)

 0
∆y∗g
∆z∗g

,

(12)

where rotation matrix Rp is the multiplication of four rotation matrices:

Rp = RX(φoval)RXYZ(φ
∗
g , θ∗g , ψ∗g) = RX(φoval)RZ(ψ

∗
g)RY(θ

∗
g)RX(φ

∗
g). (13)

Denoting the (i, j) element of 3× 3 matrix Rp by rp
ij, the optimal rotation and translation

parameters of the whole transformation β∗p = (D∗max, D∗min, φ∗p, θ∗p, ψ∗p, ∆y∗p, ∆z∗p) are

φ∗p = arctan

(
rp

32

rp
33

)
, θ∗p = arcsin

(
−rp

31

)
, and ψ∗p = arctan

(
rp

21

rp
11

)
, (14)
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and  0
∆y∗p
∆z∗p

 = RX(φoval)

 0
∆y∗g
∆z∗g

, (15)

respectively.

Figure 6. Cross section view of two pipe frames.

4. Numerical Results

In this section, we validate the accuracy of our SPPE approach based on the simulation
results from our ROS-based PIG simulator. We first describe the ROS-based SPPE simulator
and simulation environment in Section 4.1. Next, we examine the accuracy of iterative
LMA solution to the SPPE problem in Section 4.2. In Section 4.3, we discuss the accuracy
of our SPPE in terms of pipe attributes and PIG pose. The robustness of our SPPE to the
depth error and LMA input size is finally discussed in Section 4.4.

4.1. Ros-Based PIG Simulation

Based on the Robot Operating System (ROS) [33] framework, a PIG simulator in
Figure 7 is developed to generate 3D point cloud of inner pipe wall surface and to evaluate
the performance of the proposed SPPE for given pipe attributes and PIG pose. Figure 7a
shows the architecture of the PIG simulator consisting of six components: pipe, PIG, point
cloud, SPPE, evaluation, and visualization.

(a) Block diagram of PIG simulator. (b) Procedure of PIG simulation.

Figure 7. Our PIG simulator.
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The pipe component supports two pipe topologies (straight and bend), where our
focus in this paper is on the cylindrical straight pipe with elliptical cross section. Four
different pipe diameters (16′′, 20′′, 24′′, and 30′′) are considered in our PIG simulation,
where their nominal thickness is fixed to T = 12 mm, the ovality O ranges from zero to
two percents, and the ovality angle φoval is uniformly distributed over interval (−180◦,
180◦). At each configuration, the PIG simulator randomly chooses the value of the pipe
attributes including the major- and minor-axis lengths, and ovality angle. Figure 7b shows
the overall procedure of PIG simulation. For each pipe configuration, the PIG simulator
generates N different PIG poses, and for each of them, generates the input point cloud for
m pipe inner wall measurements. Based on this point cloud, it executes the SPPE to obtain
the estimate of pipe attribute and PIG pose. Once all PIG poses are processed, the PIG
simulator evaluates the performance of SPPE.

Figure 8 shows a PIG in an infinitely long cylindrical pipe (L = ∞). A PIG is illustrated
by a yellow cylinder with two propulsion cups near each end to seal the gas. The PIG
component manages the hardware configuration and the pose of PIG body. The sensor
configuration module stores the sensor information, such as the number and direction of
the beam, the minimum and maximum depths, accuracy, etc. We assume that the Ouster
OS-0-64 LiDAR is used for the 3D ranging sensor, where the FoV is 360◦ × 90◦, the angular
resolution is 2048× 64, and the depth error is σ = 0.03 m [23]. It is also assumed that the
relative pose of LiDAR to IMU is given by the CAD drawing of PIG. The circular cover
glass protects both the IMU and 3D ranging sensor from the high gas pressure inside the
pipe, but limits the FoV of LiDAR to Ω = 60◦. However, we believe that the impact of
widening the FoV is marginal, because it leads to additional measurement points at close
X-axis distance in Figure 8, which has less information about the pose of PIG than distant
X-axis points. Given the PIG pose, the laser beam module computes the direction vector ~d
(‖~d‖ = 1) of each laser beam radiating from the LiDAR.

Figure 8. A PIG in a cylindrical pipe.

The point cloud component is responsible for generating the point cloud of the inner
pipe wall measurements. The yellow and red points on the downstream inner pipe wall
in Figure 8 represent the true and measured point clouds of LiDAR, respectively. Due to
the incident angle, the impact of LiDAR depth error decreases with the axial distance. To
account for the attenuation of reflected lights, our PIG simulator also limits the maximum
axial distance of measurement to 6 m. Figure 9 shows an example of the true and measured
inner pipe wall points. The true point x′ between the laser beam and inner pipe wall surface
is obtained by solving the following two equations:

x′ = x′PIG + t · ~d, and
y′2

(Dmax/2)2 +
z′2

(Dmin/2)2 = 1, (16)

where x′ = (x′, y′, z′), t is a non-negative real number, and x′PIG is the current position of
3-D ranging sensor in the GPF. The measured inner pipe wall point x′ is obtained by adding
a Gaussian depth error to true point x′.
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Figure 9. True and measured inner pipe wall points.

The SPPE and the evaluation components are responsible for the execution and per-
formance evaluation of our SPPE, respectively. Finally, the visualization component is
responsible for displaying the PIG simulation in the RVIZ, a 3D visualization tool of ROS.

Table 1 shows the simulation parameters to obtain our numerical results. Unless
otherwise stated, the numerical results in the following sections are obtained from N = 100
random LiDAR poses uniformly distributed over roll angle φp ∈ [−180, 180), pitch and
yaw angles θp, ψp ∈ [−5, 5], and displacement from pipe center ∆yp, ∆zp ∈ [−50, 50].

Table 1. Simulation parameters.

Category Parameter Notation Value Unit

Pipe attribute
Pipe diameter D 16, 20, 24, 30 inch
Pipe thickness T 12 mm
Ovality angle φoval [−180, 180) ◦

PIG pose

Roll angle φp [−180, 180) ◦

Pitch angle θp [−5, 5] ◦

Yaw angle ψp [−5, 5] ◦

Y-axis displacement ∆yp [−50, 50] mm
Z-axis displacement ∆zp [−50, 50] mm

LiDAR Specification

Angular resolution - 2048× 64 -
Depth error σ 0.03 m
Field of view FoV 60 ◦

Maximum ranging xmax 6 m

4.2. Accuracy of Iterative LMA Solutions

We first examine the accuracy of the first transformation parameter β
(k)
g obtained

from the iterative LMA. When the OS-0-64 LiDAR is placed at the center of pipe with
zero roll, pitch, and yaw angles, Figure 10 shows the accuracy of LMA solutions de-
pending on the number of iterations k: The true inner pipe wall with parameter βg =

(0.5885, 0.5827, 0◦, 0◦, 0◦, 0, 0) and LiDAR point cloud transformed by parameter β
(k)
g are

represented by a gray cylinder and m red points, respectively. In addition, the X-, Y-, and
Z-axes of LiDAR are depicted by red, green, and blue line segments, respectively. The
cylindrical pipe and LiDAR X-axes are also shown by black and brown line segments,
respectively. The unit vector for pipe axis in GPF is given by up = (1, 0, 0), whereas the
unit vector for LiDAR X- at the k-th iteration in GPF is represented by the direction cosine

u(k)
l = (cos φ

(k)
g , cos θ

(k)
g , cos ψ

(k)
g ). (17)

Then, the angle between the pipe and LiDAR X-axes is given by γ(k) = arccos(up · u(k)
l ).
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(a) Initial parameter β
(0)
g (b) First iteration β

(1)
g

(c) Second iteration β
(2)
g (d) Third iteration β

(3)
g

(e) Sixth iteration β
(6)
g (f) Ninth iteration β

(9)
g

Figure 10. Accuracy of iterative LMA, where the pipe and point cloud are represented by a gray
cylinder and m red points, respectively.

We intentionally generate a high discrepancy between the true cylindrical pipe and trans-
formed LiDAR point cloud by setting initial parameter β

(0)
g = (0.7027, 0.4685, 45◦, 0◦, 10◦,−0.1,

0), as shown in Figure 10a. The major difference between the true and initial parameters lies in
the major- and minor-axis lengths, roll and yaw angles, and Y-axis displacement. After the first
LMA iteration in Figure 10b, the discrepancy in the Y-axis displacement has been significantly
reduced to ∆y(1)g = 8.618 mm, while the other initial parameters are almost the same. The

second LMA iteration in Figure 10c reduces the pitch angle to θ
(2)
g = 5.146◦, and the third

LMA iteration in Figure 10d improves the estimation accuracy of both major- and minor-axis
lengths: D(3)

max = 0.6096 m and D(3)
min = 0.5362 m. The point cloud of the transformation by

the sixth LMA iteration in Figure 10e almost overlaps with the true cylindrical pipe, where
β
(6)
g = (0.5861, 0.5848, 6.939◦, 0.006429◦,−0.0359◦, 0.000681, 0.000345). Finally, the transfor-

mation parameters β
(9)
g = (0.5872, 0.5837, 3.295◦,−0.00911◦,−0.00919◦, 0.000155,−0.00005)
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after the ninth LMA iteration is very close to the true parameter βg as shown in Figure 10f,
except for a few degree difference in roll angle due to the rotational invariance in Section 3.1.
In addition, the iterative LMA is computationally efficient to compute parameter β

(9)
g in

73 msec (For the details of the computational efficiency of SPPE, please refer to Section 4.4).
To summarize, the proposed SPPE can achieve an excellent estimation accuracy with a small
number of LMA iterations, and be applicable for real-time ILI applications.

4.3. Pipe Attributes and PIG Pose

In this section, we first investigate the accuracy of our SPPE in terms of three pipe
attributes: the major- and minor-axis lengths, and ovality angle. Figure 11 shows the
estimation error of major- and minor-axis lengths with four different pipe diameters ranging
from 16′′ to 30′′ when O = 1%. We observe that our SPPE slightly overestimates both
major- and minor-axis lengths by a few millimeters, but this error decreases with increasing
reference pipe diameter. We notice that the worst case diameter estimation error of our
SPPE is still less than 4 mm, which is less than 1.0% of the smallest pipe diameter (16′′).

(a) Major-axis length error of SPPE. (b) Minor-axis length error of SPPE

Figure 11. Major- and minor-axis length errors of our SPPE for different pipe diameters.

Figure 12 shows the accuracy of ovality angle φoval estimation by our SPPE when the
reference pipe diameter is D = 24”. The fact that a LiDAR sensor is oblivious to the rotation
in roll angle in a cylindrical pipe with perfectly round cross section (O = 0%) incurs a very
high uncertainty in the ovality angle estimation. For example, the standard deviation of
ovality angle error is given by 51.98◦ for O = 0%. However, we can see that this variance
decreases with the increase of pipe ovality: the standard deviation of the ovality angle error
is reduced to 5.675◦ when O = 0.5%. It is also worth noting that the bias of the ovality
angle estimation by our SPPE is very low—less than 0.5◦ when O ≥ 0.5%.

Figure 12. Ovality angle error of our SPPE for different pipe ovalities.
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Next, we discuss the rotational and translational pose accuracy of our SPPE, including
the pitch and yaw angles, and 2D cross sectional displacement, in a 24′′ pipe withO = 1.0%.
Figure 13 shows the estimation accuracy of our SPPE in pitch and yaw angles. Considering
the LiDAR depth errors in Figure 8, it is surprising that our SPPE can achieve very high
estimation accuracy of a rotational PIG pose—the estimation errors for both the pitch and
yaw angles are less than 0.04◦ regardless of the PIG pose.

(a) Estimation error of SPPE in pitch angle (b) Estimation error of SPPE in yaw angle

Figure 13. Estimation errors of SPPE in pitch and yaw angles.

Figure 14 also shows the estimation accuracy of SPPE for the 2D deviation from the
center of the pipe in the cross section plane. We observe that our SPPE achieves sub-
millimeter-level uncertainty in the estimation of 2D deviation in most cases, regardless of
the deviation from the center of elliptical cross section. To conclude, our SPPE approach
achieves an outstanding performance in the estimation accuracy of pipe attributes and
PIG pose.

(a) Y-axis displacement error of SPPE (b) Z-axis displacement error of SPPE

Figure 14. 2-D deviation errors of SPPE.

4.4. Robustness to LiDAR Depth Error and LMA Input Size

In this section, we first discuss the estimation accuracy of our SPPE depending on the
LiDAR depth error. Figure 15 shows the accuracy of our SPPE in the estimation of major-
and minor-axis lengths for different LiDAR depth errors in a 24′′ pipe with O = 1%. We
observe that the uncertainty of LiDAR depth error degrades the estimation accuracy of pipe
attributes, which leads to an overestimation of the pipe diameters. Solving the non-linear
equation in (4), our SPPE approach can reduce the estimation error of the pipe diameter
to approximately one tenth of the LiDAR depth error. Contrary to the estimation of pipe
attributes, it can be seen that our SPPE still achieves high accuracy in the estimation of the
PIG pose, which is similar to the results in Figures 13 and 14.
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(a) Major-axis length error of SPPE (b) Minor-axis length error of SPPE

Figure 15. Robustness of SPPE to LiDAR depth error.

Next, we investigate the performance of our SPPE depending on the LMA input size,
which must be at least seven to obtain a feasible solution to transformation parameter β∗g.
Table 2 shows the mean and standard deviation of estimation errors for pipe attributes and
PIG pose by our SPPE approach for a different number of randomly chosen LMA input
points in a 24′′ pipe withO = 1%. When the LMA input size is m = 10, we observe that the
proposed SPPE poorly estimates the pipe diameters and the 2D deviation of PIG pose: first,
the overestimation of the pipe diameters by our SPPE can be as high as a few centimeters.
Second, it suffers from a high uncertainty of the pipe diameters and 2D deviation. It is also
seen that the estimation accuracy of our SPPE improves with the increase of LMA input
size m: Except for the ovality angle error, which gradually decreases with the number of
LMA input points (due to the rotational invariance), the estimation accuracy of our SPPE
with LMA input size m = 102 achieves almost the same performance as that with m = 104.

Table 2. SPPE estimation results for different LMA input sizes.

SPPE Error Metric LMA Input Size

10 102 103 104

Major-axis length (mm) Mean 27.628 3.874 2.310 2.144
Std. Dev. 32.637 3.845 1.114 0.383

Minor-axis length (mm) Mean −16.673 0.232 1.866 2.059
Std. Dev. 24.256 3.270 1.053 0.406

Ovality angle (deg) Mean −0.822 −1.296 1.965 −0.262
Std. Dev. 53.093 31.798 9.307 3.093

Pitch angle (deg) Mean −0.138 −0.010 0.001 0.003
Std. Dev. 2.342 0.090 0.026 0.015

Yaw angle (deg) Mean 0.141 −0.012 0.001 −0.002
Std. Dev. 2.379 0.096 0.025 0.013

Yp-axis displacement (mm) Mean −0.313 0.390 −0.033 0.030
Std. Dev. 34.775 2.893 0.829 0.348

Zp-axis displacement (mm) Mean −2.099 −0.261 0.032 0.047
Std. Dev. 32.449 2.804 0.836 0.398

Figure 16 shows the computation time of our SPPE on the PC with CPU core i7-10750H
(2.6 GHz) and 32 GB RAM. Surprisingly, the computation time of our SPPE with m = 102 is
the lowest (10.2 msec) among four different LMA input sizes, which is even lower than our
SPPE with m = 10: 12.3 msec. This is because, for very small m, the LMA takes a longer
time to converge to an optimal point due to its large searching area for the solution in the
parametric space. The computation time of our SPPE is also scalable to a large LMA input
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size so that it can be a promising solution to real-time estimation of pipe attributes and
PIG pose.

Figure 16. Robustness of SPPE to LMA input size.

5. Conclusions

This paper has presented a novel SPPE approach to the pipe-attribute and PIG-pose
estimation based on 3D point clouds. We formulate this problem into an optimal trans-
formation matrix estimation problem from a point cloud in the PSF to a point cloud in
the global NPF. The basic idea of our SPPE is to decompose this transformation into two
sub-transformations: the first one from PSF to GPF, and the second one from GPF to
NPF. The extensive simulation results from our PIG simulator demonstrate that our SPPE
approach can achieve millimeter-level accuracy for pipe-diameter estimation, sub-degree-
level accuracy for PIG-pose estimation, and sub-millimeter-level accuracy for displacement
estimation.
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