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Abstract: Machine learning algorithms and the increasing availability of data have radically changed
the way how decisions are made in today’s Industry. A wide range of algorithms are being used
to monitor industrial processes and predict process variables that are difficult to be measured.
Maintenance operations are mandatory to tackle in all industrial equipment. It is well known that a
huge amount of money is invested in operational and maintenance actions in industrial gas turbines
(IGTs). In this paper, two variations of autoencoders were used to analyse the performance of an
IGT after major maintenance. The data used to analyse IGT conditions were ambient factors, and
measurements were performed using several sensors located along the compressor. The condition
assessment of the industrial gas turbine compressor revealed significant changes in its operation
point after major maintenance; thus, this indicates the need to update the internal operating models
to suit the new operational mode as well as the effectiveness of autoencoder-based models in feature
extraction. Even though the processing performance was not compromised, the results showed how
this autoencoder approach can help to define an indicator of the compressor behaviour in long-term
performance.
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1. Introduction

Industrial gas turbines (IGTs) for power generation are a kind of internal combustion
engine that converts the chemical energy of fuel into electrical power. They are mainly
composed of three components: compressor, combustor, and power turbine [1]. The use of
IGTs is widespread and range in size from small and mobile power plant units to high and
static systems with large productions. Gas turbines can be financially justified in a short
profitable service time; thus, they are more economically compatible with a decarbonising
grid than other types of fossil fuel infrastructure [2]. However, in view of the uncertainties
related to global warming, there is a requirement of monitoring and reduce toxic and
noxious emissions [3].

IGTs are used to operate under harsh conditions. Several causes have been found that
greatly damage the gas turbine system, indeed giving rise to malfunctioning events and
deterioration [4]: fouling, corrosion, erosion, abrasion, and unexpected particles. Besides
these main deterioration causes, several other fatigue factors could be considered as being
harmful to the system performance due to changes in the standard operational regime,
such as the number of starts and stops or modifications in the output power set point.
Figure 1 shows a unit of the used gas turbines to perform the current analysis.

Maintenance is an important regular task to preserve the good performance of the
machine and to avoid structural degradation that leads to system breakdowns. Major
maintenance operations, however, restore IGTs not to their new conditions but to a new
operational point, thus ensuring no malfunctioning events and reducing deterioration [5].
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Figure 1. A unit of the gas turbine model used to perform the current analysis.

Operational changes due to both major maintenance operations and user decisions
beyond the nominal operational regime are currently real concerns in design and process
engineering. The current trend in effective maintenance strategies is beyond the restoration
of the system to a profitable operational point. Maintenance operations must also consider
the economical, environmental, and security implications from unexpected events in the
system [6]. Hence, this work aims to introduce a tool in the form of a data-based machine
learning scheme able to analyse gas turbine performance, especially after a major mainte-
nance operation, assessing engineers about the current condition of the process. Most of
the methods related to this put the focus on anomaly detection, but none of them considers
the whole operation of a gas turbine using only compressor data. The increase in the
available data and the development of intelligent tools for condition and fault assessment
have made this possible. The huge volume of data obtained from IGTs provide knowledge
and information about the condition of components, malfunctioning events, and warnings
from which the state of the system can be determined [7].

The analysis of captured data is mainly based on machine learning algorithms. These
are able to extract information from multidimensional time series to automatically learn
insights and recognise hidden patterns such as system performance, to increasingly make
better decisions, etc. These kinds of methods are currently applied to a wide range of fields
for automated analytical model building [8].

In this study, an autoEncoder (AE) architecture based on artificial neural networks
(ANNs) is proposed to identify significant hidden patterns to determine operational
changes in gas turbine performance based on compressor data. This kind of ANN-based
architecture is trained to copy its inputs to its outputs [9]. Its structure is composed of two
main elements, usually two ANNs: an encoder and a decoder, as shown in Figure 2. The
encoder network G, or simply the encoder, is defined as an encoding function z = G(x),
where x is the model input and z is a set of latent variables. The decoder network F, i.e.,
the decoder, is defined to reconstruct the encoded signal, x′ = F(z), where x′ refers to the
reconstructed input signals. The set of weights for both ANNs are simultaneously learned
by minimising a loss function ε = d(x, x′) according to some distance metric [10].

Figure 2. General example of an autoencoder with a three-dimensional latent space. Network G
is an encoding function z = G(x), where x is the model input, and z are named latent variables.
The decoder F is defined to reconstruct the encoded signal, x′ = F(z). The set of weights for both
networks is simultaneously learned by minimising a loss function ε = d(x, x′) according to some
distance metric.
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One of the main uses of AE is nonlinear dimensionality reduction, which is mostly
used for the visualisation of high-dimensional data. Furthermore, it is shown that this kind
of ANN-based architecture is able to learn deep representation features of the data. Thereby,
the AE creates reliable models of complex systems [11], which can be applied for several
purposes. Many AE architecture models and their variants have been successfully applied to
many different gas turbine components mainly for operational anomaly detection. Marzieh
Farahani [12] proposed an autoencoder model to have feature selection by keeping vital
features and learning time series encoded representation. Afterwards, the encoded features
were used together with an LSTM model to detect the anomaly sensors related to a specific
gas turbine. A re-optimised deep autoencoder (R-DAE) was developed by Fu et al. [13] in
the field of anomaly detection. The proposed model was improved in comparison with the
existing unsupervised anomaly detection methods by automatically removing abnormal
samples from the original training set and by using several samples from multiple engines
to avoid the over-fitting problem. In the same field, in [14], a stacked denoising autoencoder
(SDAE) was proposed to accurately detect anomalies in a gas turbine combustor. An
intelligent monitoring model based on a stacked sparse autoencoder (SSAE) was introduced
by Han et al. [15] to identify the combustion stability as well as to optimise the operating
conditions. The combustion stability was also tackled using visual information.

Moreover, autoencoders were also applied to detect significant changes in the system
condition or to determine the expected life of a component. Xu et al. [16] used a moving
window-based autoencoder (MASAE) to construct a health indicator for predicting the
remaining useful life (RUL) of roller bearings. A combination of several autoencoders and
sliding windows architecture is proposed in a study by Barrera et al. [17] that aims to build
a solution for detecting when a gas turbine presents abnormal behaviour. The authors
highlight that the innovation of the method lies in not requiring existing disruption data,
which is not limited to any time window, and it provides crucial information in real time to
monitor operation. The so-called 3D convolution selective autoencoder (3DCSAE) method
was used in [18] to capture the transition from stable to unstable regimes in combustion
systems. The model was trained using only completely stable data and completely unstable
data, so they showed that the technique is able to properly generalise the condition by
identifying the gradual transitions.

The studies mentioned above focus on either the condition of a specific component
or the expected life of the gas turbine. A significant issue left to study is the effect of
major maintenance on gas turbine operation and its implications. Therefore, the general
objective of this study was to analyse the condition of gas turbines after major maintenance
by processing only compressor data in an IGT using data analytics and machine learning
tools. Furthermore, we aimed to determine the effectiveness of AE-based models in the
field of IGT maintenance.

These tools were developed and customised using real data, particularly from the
compressor. Data were collected from sensors at different locations in the IGT’s compressor.
The results were obtained by modelling the IGT’s compressor for a short-term period with
a uniform regular condition in the form of an autoencoder. Therefore, the autoencoder
modelling the compressor in the short term, AEM, was trained on regular fresh condi-
tionsM so that εM = d(xM, x′M) = d(xM, AEM(xM)) would be minimised. Then, this
model of a regular fresh compressor encoded in AEM was used to analyse the long-term
performance of the industrial gas turbine’s compressor, P , x′P = AEM(xP ). The main
analysis of the condition involved the deviation between the original data and the one
obtained from the fresh model, εP = d(xP , x′P ) = d(xP , AEM(xP )). Hence, this deviation
is not an error measure, as it was during the training phase on the fresh regular data, but
a discrepancy measure. From this discrepancy measure, several important insights that
affect the efficiency and drift of the engine could be concluded as well as the way how the
compressor’s gas turbine is displayed in operation.

The rest of the paper is organised as follows: In Section 2, a description of a selective
series of autoencoder models is presented, as well as how data are treated and analysed to



Sensors 2023, 23, 1236 4 of 11

create the needed datasets. Next, in Section 3, the results obtained using this methodology
are presented. Several analytical approaches are considered. Finally, in Section 4, these
results are discussed, and conclusions are drawn in Section 5.

2. Materials and Methods

Machine learning is a general computational algorithmic approach currently applied
in a wide range of fields for automated analytical model building. In this study, an
autoencoder-based architecture is used to assess and analyse the behaviour of an IGT [19].
Next, a short introduction is provided about the proposed autoencoder model.

2.1. Model Description

An autoencoder is an unsupervised learning architecture that is used in a wide range
of fields. Its goal is to set the target values so that they are equal to the original input data by
learning effective encoding of original data in the form of input vectors [20]. The structure
of this kind of method is two-faced artificial neural networks called encoder and decoder,
as it was shown in Figure 2. As their names state, the encoder aims to learn a codified
version of input data, while the decoder rebuilds the original data from the encoded one.

The output layer of the encoder, indeed the input layer of the decoder, is a vector
formed from the compression/transformation of input data. This is of interest since this
latent space gathers all the relevant information of input data in reduced dimensionality.
This layer is also named code.

Autoencoders can be structured in several different ways depending on the problem
at hand. In this case, two approximations are employed: a fully connected (FC) system
and a sparse autoencoder. FC models are the simplest since all the neurons in the ANN
are connected without any kind of constraint. Contrarily, the main characteristic of sparse
networks is that a sparsity constraint fixed by a sparsity parameter ρ is applied in all
network levels. Sparsity constraint consists of reducing node activation.

There are several hyperparameters that must be set in this kind of architecture. Some
of them are the same as in ANN models, such as the number of hidden layers, the number
of nodes per layer, the activation function, and the loss function employed to measure the
match between the input data and recovered data. An extra parameter has to be set, which
is the code size in the latent space. In this article, one layer was used for both the encoder
and decoder, the number of nodes was set to five and eight for the input and hidden layer,
respectively, and the activation function was set to be the rectified linear unit (ReLU), and
the loss function under consideration was the mean-squared error (MSE) function. The
code size was evaluated in two different values to further analyse the model performance;
indeed, it was set to both 2 and 3. Therefore, the final autoencoder structures were 5-8-3-8-5
and 5-8-2-8-5, which are graphically represented in Figure 3a and Figure 3b, respectively.
A very simple architecture was intentionally defined because our industrial data owner
partner was interested in further research about explainability using the information from
the latent space. Although explainability was out of the scope of this research, it was
verified that no better results would be obtained with larger structures.

Figure 3. Representation of the two autoencoder structures employed to model a fresh gas turbine’s
compressor.
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Each square refers to a neuron of the AE architecture model and each part is defined as
follows: the green part corresponds to the sampled sensors of the gas turbine’s compressor,
further explained in Section 2.2, while the yellow part refers to the hidden layers of eight
dimensions, and the red part is the latent space set to either 2D or 3D depending on the
model.

2.2. Data Processing

The main parameters to consider in a gas turbine’s compressor are its pressure and
temperature. Thereby, the model inputs x = (x(1), . . . , x(5)) ∈ X were sampled sensors of
an industrial gas turbine’s compressor placed strategically to capture these features, where

• Inlet pressure (IP), Pc,i;
• Inlet temperature (IT), Tc,i;
• Relative ambient humidity (AH), Ha;
• Pressure ratio (PR), rPc = Pc,o/Pc,i;
• Outlet temperature (OT), Tc,o.

The values for the five selected features were preprocessed before the model training
procedure. Firstly, data were only collected under the full-load working regime. A full load
is an operation mode such that the gas turbine is working at its limit condition, where
degradation and faults become apparent. Thereby, this leads to a clear understanding and
analysis of how gas turbines are performing at their maximum capacity. There exists an
operation mode called grid-code regulation mode where the machine regulates the inlet air
flow by itself in order to avoid harmful events when it is working at full load. These events
were not considered in the analysis performed in this study; therefore, they were also
filtered by applying a threshold in the variable guide vane (VGV) aperture. The threshold
was defined using the median of the VGV aperture in full-load conditions for each piece of
equipment. A set of ten gas turbines were considered to train the gas turbine model, but
only the one with the highest quantity of data under the previous constraints was used to
obtain the results. With these analyses, we aimed to obtain a robust enough model that
captures the behaviour of gas turbine operation.

Next, a filtering method was applied for data cleaning to erase the most evident
outlier elements. The filtering method consisted of computing the median for each feature
and adding or subtracting k-times the median absolute deviation (MAD) to define both
upper and lower boundaries. It was carefully defined to avoid finding anomalies inside
the data. The median is a statistical method of measurement that separates half of the
probability distribution, and MAD is a measure of the variability of a univariate sample
of quantitative data. They are closely related to the mean and standard deviation (STD)
measures; however, MAD is considered a more robust estimator in presence of outliers
than STD, and the median is also more robust than the mean. The k-times constant was
experimentally determined by comparing several gas turbine sensor graphs. The parameter
value that gave the best performance in filtering data, indeed erasing the most significant
outliers without deleting relevant correlation in data, was 7 times greater or lower than the
median corresponding to either the upper or lower boundary.

Finally, standard scaling was used to normalise the range of independent variables
or features of data with mean zero and standard deviation since the ranges between the
features were too large and diverse from each other, and this relative variation could lead
to a significant modelling error.

2.3. Dataset

As mentioned before, data were gathered from real gas turbine plants through sensors
located at strategic positions in an industrial gas turbine’s compressor. Furthermore, some
extra information was provided regarding several maintenance operations performed on
the gas turbine’s compressor and their extent, regardless of whether the action taken was a
simple inspection or major maintenance in a location where some important pieces were
replaced.
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2.3.1. Training Set

The training set corresponds to the first year of gas turbine data,

M = {x(tm
k )}

Nm
k=1 = {xk}nm+Nm

k=nm
= {mk}Nm

k=1 ⊂ D ⊂ X , (1)

with inputs x ∈ X as training features. The aim when selecting this period of time for
training the model was to capture the behaviour of the new machine at the beginning of its
life. This model served as a behavioural baseline to be compared with the performance
in the long term, and a proper analysis of the compressor’s current working mode was
conducted.

AEM = (GM, HM), (2)

whereM⊂ X is the fresh training data.
The sampling time Ts to generate the training dataset was 1 min. Therefore, note that

xk = x(tk) and xk+1 = x(tk+1) = x(tk + Ts).

2.3.2. Validation Set

In this study, the validation set was equal to the training set. The model was con-
structed under the assumption that the equipment would be working under new conditions
for the first working year. Basically, it was assumed that the gas turbine was in operation at
its best condition. The loss metric

εM(x) = d(xM, AEM(x)) (3)

refers to the reconstruction distance when the autoencoder AEM = (GM, HM) is trained
with the modelling dataM = {mk}Nm

k=1. It is expected that εM(mk) ≈ 0, for mk ∈ M, as
data were reconstructed in similar conditions to those used for training the model.

2.3.3. Testing Set

The test data were defined as

T = {x(tk)}N
k=1 = {xk}N

k=1 = {tk}N
k=1 ⊂ D ⊂ X , (4)

represent the whole dataset, i.e., one that includes the entire available data for the assessed
gas turbine, which was used to test the model of the compressor in terms of its long-
term performance. Hence, the testing set contained data for three moments: the new gas
turbine (first year) with training/validation set; data for the older turbine (more than the
first year) but before any major maintenance; and data after major maintenance. As it
was previously mentioned, it was assumed that the reconstruction was almost perfect
for the training/validation set. Now, it was also expected that reconstruction would
slowly degrade and not as much for testing data after the first year but rather before major
maintenance. Finally, our discrepancy measure would prove effective if it is able to show a
discrepancy, that is, a high degradation in the reconstruction after major maintenance.

2.3.4. Maintenance Set

Maintenance events can be classified as inspections (I) and replacements (R). I
refers to a periodic revision performed in the compressor to ensure the minimum quality
component conditions, whereasR corresponds to a more complex operation, during which
some components are changed and, therefore, the performance of the IGT is altered. It was
expected that our autoencoder trained on new first-year data should be able to identify
changes in the operational point in data after major maintenance (post-maintenance data)
by showing a certain degree of discrepancy between the original data and the reconstructed
data. By contrast, no abrupt changes in the operational point were expected after inspec-
tions; that is, the discrepancy should remain almost stable after inspections. This can be
noticed in Figure 4.
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Figure 4. Maintenance dataset together with Fresh Reconstruction Discrepancy of FC3D model.

3. Results

Four different kinds of autoencoders were used to perform the condition analysis,
which differed in their structure and latent dimensions. In terms of structure, both a
fully connected and sparse structures were selected. The criterion that determined the
latent space dimension was defined by the lowest possible values with maximum model
performance based on experimental results. These led to both two- and three-dimensional
latent spaces. A summary of the employed nomenclature for these autoencoders is shown
in Table 1.

Table 1. The combinations of the two considered AE types and the two latent dimensions.

Latent Dimension
2D 3D

AE structure Fully Connected FC2D FC3D
Sparse Sparse2D Sparse3D

As explained in Section 2.3, three different kinds of datasets were used to develop and
assess the gas turbine model. All the analyses of gas turbines used the same data. Firstly,
the training set included the first-year data, from 3 January 2017 to 3 January 2018, which
were used to train the models. Then, the testing set involved the remaining data, from
4 January 2018 to 1 January 2020, which made it possible to obtain the results from every
model. Finally, the maintenance set included major and minor maintenance operations, and
inspection events were also considered (they are marked with a green line) to determine
how operations changed as a result of these events.

An experiment was carried out to analyse the IGT compressor’s condition and detect
changes in the operational point using the root-mean-squared error (RMSE). The RMSE
was used to measure the discrepancy distance (Equation (3)) between the autoencoder’s
inputs and outputs. It is called reconstruction discrepancy (RD),

RD =
1
n

N

∑
i=1

√
(xi − x′i)

2 (5)

where x ε T and x′i are the output of the corresponding AE model. For obtaining the results,
the data-grouping frequency was hourly.

Figure 4 presents the FC3D model performance. The data and metrics used to obtain
the new reconstruction discrepancy were explained in the paragraph above. It can be
noticed that inspections (thicker green lines) did not present any change in the gas turbine’s
operation, while major maintenance (the widest green line) revealed a considerably high
deviation. According to these preliminary results, the inspections were no longer used in
this study, as their contribution was not relevant. Next, several experiments were performed
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using this information and the models mentioned above, but only major maintenance was
considered to assess the gas turbine behaviour.

Figure 5 summarises the effect of the replacementsR during major maintenance in RD
for the four tested autoencoder structures. R is displayed as a dashed vertical green line,
while the RD values are displayed in blue. Furthermore, the centroid of each distribution,
i.e., before and after maintenance, is displayed as a red cross. According to the obtained
results, the fully connected autoencoder models showed a clearer distinction before and
after maintenance operation than sparse models. Moreover, the best results were obtained
using the FC3D model, in which a clear shift can be observed when a replacement procedure
was carried out.

(a)

(b)

(c)

(d)

Figure 5. Major maintenance together with new reconstruction discrepancy in combination with the
two AE structures and the two latent space dimensions: (a) FC2D model performance; (b) FC3D
model performance; (c) Sparse2D model performance; (d) Sparse3D model performance.
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4. Discussion

The main goal of this study was to analyse the operational mode of a gas turbine work-
ing at full-load conditions after major maintenance using several autoencoder architectures.
This analysis was carried out by combining two model structures: the two kinds of AE and
their different internal dimensions. The input data did not present high dimensionality, as
one of the aspects of using an AE architecture is that 5D representation cannot be properly
shown. In this case, the data are transformed from 5D to either 2D or 3D, which makes
their representation easier. This was not applied in this specific study; however, it will be
considered for future research. Moreover, as explained in the introduction, an extensive
number of studies exist in the literature tackling malfunctioning events in gas turbine sys-
tems based on autoencoder architecture models. Thereby, the application of these models
was found to be useful to address gas turbine system management. To verify whether these
kinds of models are able to extract the hidden patterns in the data and to determine which
model performed the best for the proposed gas turbine, several kinds of AE with different
latent dimensions were used.

Regarding the period of time taken to train the models, in the first-year data, it was
revealed that the fully connected architecture was more effective for this specific gas
turbine than sparse since the RD presented lower values (see Figure 5). Moreover, the one
presenting the best performance was the FC3D model since the training and validation
data had the lowest dispersion.

Although feature extraction did not benefit sparse architecture, a clear result was
observed, which was the deviation of the operation point after maintenance performance,
even though performance could be maintained. In terms of the RD, a positive slope was
observed after the maintenance operation regarding the data distribution centroid for all
four tested models. The most evident distinction was found in the FC models, or more
precisely in the FC3D model, where a clear shift was present, and a more subtle one was
also shown in sparse models. The detection of this deviation is crucial to understand how
maintenance affects gas turbine performance and when an update of the internal operating
models is needed.

The results presented in this study are consistent with previous outcomes in the same
gas turbines. In [21], we presented a soft sensor that is able to detect drift in the compressor
data. This research went a step further by determining the operational change after major
maintenance.

5. Conclusions

This study aimed to analyse the condition and performance of a gas turbine after a
maintenance operation using two different autoencoder architectures. The main goals were
to assess the performance of the AE models in order to evaluate their feature extraction
capabilities and to determine deviations in the system behaviour based on these models. As
shown in the results, and further explained in the discussion section, the analysis revealed
a clear slope regarding the gas turbine’s operation after a replacement (R) driven by proper
feature extraction from AE-architecture-based models. Thereby, AE is able to learn complex
features of data and capture significant operational changes in industrial gas turbines.

An interesting consideration of this analysis is that the data used were obtained from
real plants operating at different modes, which led us to carry out an exhaustive analysis of
the data to determine the most suitable filters and points to properly train every model.

In addition, all the data used to perform the study were only provided by the compres-
sor, which is one of the main components of gas turbines. However, these results would
allow us to extrapolate the analysis to the whole system. A further extension of this study
could be to include some turbine data to assess more maintenance and malfunctioning
events.

For further research, two clear lines can be followed. On the one hand, the analysis of
latent space can be performed. In this study, the main analysis involved the performance
of the AE itself. However, the autoencoder is able to encode the 5D input data to either
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3D or 2D data. By definition, the autoencoder is able to maintain the relationship between
the input variables and make it easier to visualise the data. This would lead to new and
significant results.

On the other hand, a prognostic indicator of how the system will modify its operation
according to its current behaviour can be obtained based on this study. As mentioned before,
further information about the maintenance, faults, and unexpected events, combined with
the combustion chamber and turbine information, can lead to more insights into component
knowledge. Thereby, other components of gas turbines can be assessed, and the analysis
can be performed on the whole system using the methodology of this study.
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