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Abstract: Emotion artificial intelligence (AI) is being increasingly adopted in several industries such
as healthcare and education. Facial expressions and tone of speech have been previously considered
for emotion recognition, yet they have the drawback of being easily manipulated by subjects to
mask their true emotions. Electroencephalography (EEG) has emerged as a reliable and cost-effective
method to detect true human emotions. Recently, huge research effort has been put to develop
efficient wearable EEG devices to be used by consumers in out of the lab scenarios. In this work,
a subject-dependent emotional valence recognition method is implemented that is intended for
utilization in emotion AI applications. Time and frequency features were computed from a single
time series derived from the Fp1 and Fp2 channels. Several analyses were performed on the strongest
valence emotions to determine the most relevant features, frequency bands, and EEG timeslots
using the benchmark DEAP dataset. Binary classification experiments resulted in an accuracy of
97.42% using the alpha band, by that outperforming several approaches from literature by ~3–22%.
Multiclass classification gave an accuracy of 95.0%. Feature computation and classification required
less than 0.1 s. The proposed method thus has the advantage of reduced computational complexity
as, unlike most methods in the literature, only two EEG channels were considered. In addition,
minimal features concluded from the thorough analyses conducted in this study were used to achieve
state-of-the-art performance. The implemented EEG emotion recognition method thus has the merits
of being reliable and easily reproducible, making it well-suited for wearable EEG devices.

Keywords: classification; EEG; emotion recognition; prefrontal channels; time and frequency features

1. Introduction

Emotion artificial intelligence (AI), also known as affective computing, is the study of
systems that can recognize, process, and respond to the different human emotions, thereby
making people’s lives more convenient [1]. Emotion AI is an interdisciplinary field that
combines artificial intelligence, cognitive science, psychology, and neuroscience. In 2019,
the emotion AI industry was worth about 21.6 billion dollars, and its value was predicted
to reach 56 billion dollars by the year 2024 [2].

Emotions are mental states created in response to events occurring to us or in the world
around us. A large body of research since the 1970s showed that basic emotions, such as
happiness, sadness, and anger are similarly expressed among different cultures [3]. James
Russell, a renowned American psychologist, suggested a dimensional approach in which
all human emotions could be expressed in terms of valence and arousal [4]. Valence refers to
the extent to which an emotion is pleasant (positive/happy) or unpleasant (negative/sad),
whereas arousal (intensity) refers to the strength or mildness of a given emotion (Figure 1).
Russell’s valence-arousal model is very popular owing to its simplicity and efficacy, both
which lead to it being widely adopted in emotion AI systems [5].
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Figure 1. Valence-arousal model [6]. 

Emotions can be detected from a person’s facial expressions and tone of speech. Alt-
hough these methods were previously considered for automatic emotion recognition [7,8], 
they both have the limitation of being easily manipulated by a person to hide his/her true 
emotions [5,9]. Electroencephalography (EEG) is a non-invasive technique that can meas-
ure spontaneous human brain activity while providing excellent temporal resolution yet 
limited spatial resolution [10]. EEG can thus provide a reliable method to detect and mon-
itor true, unmanipulated human emotions. EEG-based emotion recognition has been suc-
cessfully implemented in various applications including (1) education: to measure student 
engagement, (2) health: to diagnosis psychological diseases, and (3) emotion-based music 
players: to provide a more engaging experience [11].  

The cerebral cortex is the outermost layer of the brain that is associated with the high-
est mental capabilities. The cerebral cortex is traditionally divided into four main lobes 
which are the frontal (F), parietal (P), occipital (O), and temporal (T) (Figure 2). Each brain 
lobe is typically associated with certain functions, yet many activities require the coordi-
nation of multiple lobes [12]. The frontal lobe is responsible for cognitive functions such 
as emotions, memory, decision making, and problem solving, as well as voluntary move-
ment control. The parietal lobe process information received from the outside world such 
as that related to touch, taste, and temperature. The occipital lobe is primarily responsible 
for vision, while the temporal lobe is responsible for understanding language, perception, 
and memory. EEG depicts the brain’s neuron activity in the different lobes through meas-
uring the electrical voltage at the scalp. For an adult, this voltage is typically in the range 
of 10–100 µV. The 10/20 system is an internationally recognized EEG electrode placement 
method that divides the scalp into 10% and 20% intervals. The main EEG channels in the 
international 10/20 system are illustrated in Figure 3. Each channel is annotated with a 
letter and a number to identify the specific brain region and hemisphere location, respec-
tively. 

Figure 1. Valence-arousal model [6].

Emotions can be detected from a person’s facial expressions and tone of speech. Al-
though these methods were previously considered for automatic emotion recognition [7,8],
they both have the limitation of being easily manipulated by a person to hide his/her
true emotions [5,9]. Electroencephalography (EEG) is a non-invasive technique that can
measure spontaneous human brain activity while providing excellent temporal resolution
yet limited spatial resolution [10]. EEG can thus provide a reliable method to detect and
monitor true, unmanipulated human emotions. EEG-based emotion recognition has been
successfully implemented in various applications including (1) education: to measure
student engagement, (2) health: to diagnosis psychological diseases, and (3) emotion-based
music players: to provide a more engaging experience [11].

The cerebral cortex is the outermost layer of the brain that is associated with the highest
mental capabilities. The cerebral cortex is traditionally divided into four main lobes which
are the frontal (F), parietal (P), occipital (O), and temporal (T) (Figure 2). Each brain lobe is
typically associated with certain functions, yet many activities require the coordination of
multiple lobes [12]. The frontal lobe is responsible for cognitive functions such as emotions,
memory, decision making, and problem solving, as well as voluntary movement control.
The parietal lobe process information received from the outside world such as that related
to touch, taste, and temperature. The occipital lobe is primarily responsible for vision, while
the temporal lobe is responsible for understanding language, perception, and memory. EEG
depicts the brain’s neuron activity in the different lobes through measuring the electrical
voltage at the scalp. For an adult, this voltage is typically in the range of 10–100 µV.
The 10/20 system is an internationally recognized EEG electrode placement method that
divides the scalp into 10% and 20% intervals. The main EEG channels in the international
10/20 system are illustrated in Figure 3. Each channel is annotated with a letter and a
number to identify the specific brain region and hemisphere location, respectively.
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Figure 2. The cerebral cortex divided into the frontal, temporal, parietal, and occipital lobes [13]. 

 
Figure 3. The international 10/20 system for electrode placement [14]. 

EEG signals are typically decomposed into five basic frequency bands which are the 
delta (Δ), theta (θ), alpha (α), beta (β), and gamma (δ) bands (Figure 4). Each frequency 
band is associated with a different type of brain activity [15–17]. Delta and theta are the 
two slowest brain waves often occurring whilst sleeping and during deep meditation. 
Specifically, delta waves are more dominant in deep restorative sleep (unconsciousness), 
whereas theta waves are related to light sleep, daydreaming, praying, and deep relaxation 
(subconsciousness). Both waves were also detected in cognitive processing, learning, and 
memory [17,18]. Alpha, beta, and gamma brain waves are on the other hand associated 
with consciousness. Alpha are the dominant brain waves of normal adults occurring when 
one is calm and relaxed while still being alert. Beta waves are produced throughout daily 
activities performed in attentive wakefulness. Gamma are the fastest waves linked to com-
plex brain activities requiring high level of thought and focus, for example problem solv-
ing. Table 1 summarizes the five different brain wave bands and their associated psycho-
logical states. Brain wave frequency bands are typically used to extract meaningful emo-
tion-related features [17]. 

Historically, EEG equipment has been highly complicated and bulky, restricted to 
the monitoring of stationary subjects by highly trained technical experts within controlled 
lab settings [19]. Recently, enormous effort has been exerted to develop wearable EEG 
handsets that are reliable, affordable, and portable, by that overcoming the limitations of 
conventional EEG headsets (Figure 5). Wearable EEG headsets allow for the long-term 
recording of brain signals while people are unmonitored, out of the lab, and navigating 
freely. Furthermore, EEG signals collected by the wearable headsets can be easily sent to 
a computer or mobile device for storage, monitoring, and/or data processing. Wearable 
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EEG signals are typically decomposed into five basic frequency bands which are the
delta (∆), theta (θ), alpha (α), beta (β), and gamma (δ) bands (Figure 4). Each frequency
band is associated with a different type of brain activity [15–17]. Delta and theta are the
two slowest brain waves often occurring whilst sleeping and during deep meditation.
Specifically, delta waves are more dominant in deep restorative sleep (unconsciousness),
whereas theta waves are related to light sleep, daydreaming, praying, and deep relaxation
(subconsciousness). Both waves were also detected in cognitive processing, learning, and
memory [17,18]. Alpha, beta, and gamma brain waves are on the other hand associated
with consciousness. Alpha are the dominant brain waves of normal adults occurring when
one is calm and relaxed while still being alert. Beta waves are produced throughout daily
activities performed in attentive wakefulness. Gamma are the fastest waves linked to
complex brain activities requiring high level of thought and focus, for example problem
solving. Table 1 summarizes the five different brain wave bands and their associated
psychological states. Brain wave frequency bands are typically used to extract meaningful
emotion-related features [17].

Historically, EEG equipment has been highly complicated and bulky, restricted to the
monitoring of stationary subjects by highly trained technical experts within controlled
lab settings [19]. Recently, enormous effort has been exerted to develop wearable EEG
handsets that are reliable, affordable, and portable, by that overcoming the limitations of
conventional EEG headsets (Figure 5). Wearable EEG headsets allow for the long-term
recording of brain signals while people are unmonitored, out of the lab, and navigating
freely. Furthermore, EEG signals collected by the wearable headsets can be easily sent to
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a computer or mobile device for storage, monitoring, and/or data processing. Wearable
EEG devices thus allow for the development of many clinical and non-clinical applications
that were never previously possible. For example, wearable EEG has been shown to
be effective for stroke [20], seizure [21], and sleep [22] remote monitoring by medical
experts. EEG signals from wearable headsets can also be used for the development of
brain-controlled-interface (BCI) applications such as car driver assistance [23], as well as
wheelchair control for people with disability [24]. In addition, individuals can use EEG to
improve their productivity and wellness via monitoring their moods and emotions [25].
However, extracting meaningful information using few EEG channels in order to reduce
the computational complexity of wearable headsets is still an ongoing challenge [26,27].

Table 1. Characteristics of the five basic brain waves.

Band Symbol Frequency Range Psychological State

Delta ∆ <4 Hz unconsciousness Deep sleep

Theta θ 4–8 Hz subconsciousness Light sleep and meditation

Alpha α 8–12 Hz

consciousness

Normal relaxed yet alert adult

Beta β 12–30 Hz Daily activities

Gamma δ >30 Hz Complex brain activities

In the present study, a subject-dependent emotional valence recognition algorithm is
introduced that is intended for wearable EEG devices. The contributions of this work are
as follows:

a. Only the difference signal between the frontal Fp1 and Fp2 channels was considered
for feature extraction.

b. Simple statistical features were explored (Hjorth parameters, zero-crossings,
and power spectral density), all which share the merit of having low computa-
tional complexity.

c. Several analyses were made to determine the frequency band, time slot, and features
most suitable for reliable EEG-based valence detection.

d. The presented valence recognition algorithm outperformed several state-of-the-art
methods with the added advantages of requiring only two EEG channels, a single
frequency band, as well as only two simple statistical features, thus making it suitable
for integration within wearable EEG devices.
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2. Literature Review

Emotion AI systems generally rely on handcrafted and/or automatic extraction of
meaningful features for the classification of the different human emotional states (Figure 6).
In this section, the different types of EEG-based features commonly used for emotion
recognition are introduced followed by a summary of the most widely used classifiers for
emotion recognition. Next, state-of-the-art EEG-based emotion detection methods from
literature are presented, indicating the considered EEG channels, frequency bands, features,
and the classifier, as well as the performance results.
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2.1. EEG Features

EEG-based emotion recognition features can be categorized based on the domain from
which they are computed into four different types which are as follows [31]:

(1) Time-domain (spatial) features are handcrafted features that are extracted from the
EEG time-series signal. They can be computed directly from the raw EEG signal
or from the different frequency bands separated with the aid of bandpass filters.
Time-domain features comprise simple statistical features [32–34] such as the mean,
standard deviation, skewness, and kurtosis. In addition, they include more com-
plex features such as the Hjorth parameters [5,32,35–41], High Order Crossings
(HOC) [5,33,38,40,42], Fractal Dimensions [43–45], Recurrence Quantification Analysis
(RQA) [46,47], in addition to entropy-based features [5,34,35,45,48].

(2) Frequency-domain features are also handcrafted features, yet they are computed
from the EEG signal’s frequency representation. The Fast Fourier transform (FFT)
and Short-time Fourier Transform (STFT) are typically used to acquire the frequency-
domain signal from the EEG waves. Frequency-based features allow for the deeper
understanding of the signal by considering its frequency content. Frequency-domain
features include the widely used power spectral density (PSD) [33,35,39,49–51], as
well as rational asymmetry features (RASM) [32,34,39,52,53]. Statistical features such
as mean, median, variance, skewness, and kurtosis are also commonly computed
in the EEG’s the frequency domain, as well as the relative powers of the various
frequency bands [54].

(3) Time-frequency domain features are handcrafted features extracted from sophisti-
cated time-frequency signal representations. Wavelet transform (WT) is a powerful
tool that can decompose a signal into different subbands by applying a series of
successive high and low frequency filters. WT has the advantage of being localized in
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both time and frequency. It can thus be used to divide the EEG signal into the delta,
theta, alpha, beta, and gamma subbands from which wavelet time-frequency features
can be directly computed for emotion classification. Wavelet features typically include
simple statistical measures such as mean, standard deviation, skewness, kurtosis,
energy, and entropy [9,32,39,53,55–57].

(4) Deep features refer to those features that are automatically extracted in an end-to-end
manner using one or more deep networks. Deep features have been gaining increased
popularity and are being used either solely or alongside handcrafted (traditional) fea-
tures in emotion AI [58]. Inputs to the deep networks can be the raw EEG signal [59,60],
traditional features [61], or images that are obtained either from the EEG signal’s
Fourier Transform (spectrograms) or Wavelet Transform (scalograms) [62–65]. In
addition, the deep networks used for the feature extraction can be directly utilized or
initially pretrained (transfer learning) to enhance performance.

Handcrafted (traditional) features have been widely implemented in the design of
reliable EEG-based emotion AI systems. Time-domain features have the merit of being
easy to implement while efficiently extracting relevant information from the EEG signals.
Specifically complex time domain features such as Hjorth parameters and High Order
Crossings were shown to give reliable results in EEG emotion recognition [31]. Frequency-
domain features have also been widely implemented for EEG emotion recognition due to
their efficient performance, yet they have the disadvantage of missing temporal information.
Wavelet-domain features have the advantages of being localized in time and frequency
allowing for extraction of simple yet meaningful features from the signal. A limitation of the
wavelet-based features is the selection of a suitable mother wavelet [31]. Most EEG-based
emotion recognition approaches thus combine different types of features for consistent
performance. Several traditional classifiers were implemented in literature to classify the
handcrafted features from which some of the most popular are support vector machine
(SVM), k-nearest neighbor (kNN), random forests (RF), naïve Bayes (NB), and gradient
boosted decision trees (GBDT) [66].

As for deep learning approaches, convolutional neural networks (CNNs), deep belief
networks (DBN), and long short-term memory networks (LSTMs) among others have been
used for feature extraction in emotion AI systems. In addition, pretrained readily available
CNNs, such as GoogleNet, were widely used in literature as they tend to give reliable
performance without requiring enormous data for training. A SVM classifier as well as
sigmoid/softmax activation functions are then typically used at the network’s final stage
for emotion classification. Deep EEG emotion recognition methods, however, have the
limitation of requiring a huge amount of data for their proper training in comparison to
traditional methods [54].

2.2. Previous Literature

Several public EEG emotion datasets were introduced including DEAP [67], SEED [68,69],
MAHNOB-HCI [70], and DREAMER [71]. Few works also report results using their own
private self-generated datasets [51]. DEAP is currently considered the benchmark dataset
in EEG-based emotion detection being the most widely used public EEG emotion dataset in
the literature, mostly owing to it having the largest number of observations per subject [72].

EEG emotion recognition approaches can be divided into subject-dependent and
subject-independent [46,73]. Subject-dependent methods train a separate model for each
subject within the dataset. Subject-independent methods train a single model using data
from all or some of the subjects within the considered dataset [74]. Recent papers comparing
subject dependent and independent approaches showed that the former consistently gave
5–30% higher performance depending on the implemented approach. Such results are
mainly due to the discrepancy between subjects related to how they feel and express their
emotions [75]. For example, Nath et al. [73] have observed that EEG signals from a specific
subject were somewhat similar yet significantly varied across different subjects, even when
the same stimulus was considered. In addition, Putra et al. [75] found that different subjects
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varied in their response to valence stimuli, with some subjects being more responsive than
others [75]. Subject-dependent approaches are thus better suited for reliable personalized
emotion AI applications with wearable EEG [64].

Table 2 summarizes some of the recent EEG emotion recognition approaches using
the benchmark DEAP dataset. For each research paper, the summary indicates the utilized
(1) EEG channels, (2) frequency bands, (3) feature types: time—frequency—wavelet—
deep features, (4) classifier, (5) experimental approach: subject-dependent (dep.)—subject-
independent (indep.), as well as the (6) accuracies (Acc.) reported for valence (val.) and
arousal (arl.) emotion recognition. For the subject independent emotion recognition
methods, reported accuracies are for the experiments performed considering the complete
dataset. As for the subject dependent methods, reported accuracies are the average of
the experiments repeated for all the subjects in the dataset. The summarized literature
review shows that subject-dependent (personalized) approaches that adopted deep learning
methods, gave accuracies that were higher than 90% for both valence and arousal. However,
subject-dependent approaches relying solely on traditional methods scarcely resulted in
accuracies that exceeded 75%. Another limitation observed in previous literature is that
most methods consider many or all EEG channel electrodes and/or frequency bands which
can lead to high computational overhead with minimal, if any, performance improvement.

Table 2. Summary of EEG-based emotion recognition approaches that utilize the DEAP dataset.

Research
Paper Channels EEG Bands Features Classifier Dep./

Indep.
Val./
Arl.

Acc.
%

Mohammadi
et al., 2017 [55]

Fp1, Fp2
Gamma Wavelet Features kNN Indep.

Val.
Arl.

80.68
74.60

Fp1, Fp2, F7, F8, F3, F4,
FC5, FC6, FC1, FC2

Val.
Arl.

86.75
84.05

Salma et al.,
2017 [59] All Raw Deep Features

(LSTM) Sigmoid Dep. Val.
Arl.

85.45
85.65

Wu et al., 2017
[53] Fp1, Fp2 All Frequency, WT

Features GBDT Dep. Val. 75.18

Zhuang et al.,
2017 [76]

FP1, FP2, F7, F8, T7,
T8, P7, P8 Beta, Gamma Time (EMD) SVM Dep. Val.

Arl.
69.10
71.99

Eun et al.,
2018 [77]

Fp1, Fp2, F3, F4, T7,
T8, P3, P4* Raw Deep Features

(LSTM) Sigmoid Indep. Val.
Arl.

78.00
74.65

Putra, 2018 [75]

All All except
delta Wavelet Features kNN Dep. Val.

Arl.
59.00
65.70

All All except
delta Wavelet Features kNN Indep. Val.

Arl.
58.90
64.30

Yang et al.,
2018 [60] All Raw Deep Features

(LSTM, CNN) Softmax Dep. Val.
Arl.

90.80
91.03

Parui et al.,
2019 [36] All

Raw Time, WT Features
XGBoost Indep.

Val.
Arl.

75.97
74.20All Frequency Features

Xing et al.,
2019 [78] All All except

delta Frequency Features LSTM Indep. Val.
Arl.

81.10
74.38

Cui et al.,
2020 [79] Symmetric Channels All except

delta

Regional-
Asymmetric CNN

(RACNN)
Softmax Dep. Val.

Arl.
96.65
97.11

Garg and
Verma,

2020 [65]
All Raw Scalogram Images GoogleNet

(pretrained) Indep. Val.
Arl.

92.19
61.23



Sensors 2023, 23, 1255 8 of 24

Table 2. Cont.

Research
Paper Channels EEG Bands Features Classifier Dep./

Indep.
Val./
Arl.

Acc.
%

Nath et al.,
2020 [73,80]

All All Band Power

LSTM Dep. Val.
Arl.

94.69
93.13

SVM Indep. Val.
Arl.

72.19
71.25

Aslan,
2021, [62] All Raw Scalogram Images

GoogleNet
(pretrained)

+SVM
Indep. Val.

Arl.
91.20
93.70

Ozdemir et al.,
2021 [81] All Alpha, Beta,

Gamma
Multi-Spectral

Topology Images
CNN, LSTM +

Softmax Indep. Val.
Arl.

90.62
86.13

Huang,
2021 [61]

Symmetric Channels Raw signal Bi-hemisphere
spatial features

CNN
Dep. Val.

Arl.
94.38
94.72

Indep. Val.
Arl.

68.14
63.94

Yin et al.,
2021 [48]

All

Raw signal
Differential Entropy

Cube
GCNN,
LSTM

Dep. Val.
Arl.

90.45
90.60

All Indep. Val.
Arl.

84.81
85.27

Zhang et al.,
2021 [58]

Fp1, Fp2, F3,
F4, AF3, AF4*

All Time, Frequency
Softmax Indep. Val.

Arl.
84.71
83.28Raw signal Deep Features

(HFCNN)

Cheng et al.,
2022 [82] All Raw Signal Deep Features

(randomized CNN) Ensemble Dep. Val.
Arl.

99.19
99.25

Gao et al.,
2022 [37] All All except

delta
Time, Frequency

Features
CNN

+ SVM Indep. Val.
Arl.

80.52
75.22

In the present study, a subject-dependent approach is adopted for valence (happy/sad)
emotion classification intended for personalized emotion AI applications with wearable
EEG. Since several previous studies showed that the frontal channels are the most relevant
for EEG-based emotion recognition [33,39,40,53,83], only the Fp1 and Fp2 channels were
considered for emotion recognition. The widely used DEAP benchmark dataset was
considered for its reliability, as well as to facilitate comparison to previous approaches.
Time and frequency EEG features were extracted from a single time series related to the
Fp1 and Fp2 channels which are the Hjorth parameters, zero-crossings, and PSD.

Happiness and sadness emotions (valence) have been reported to dramatically affect
the theta, alpha, and beta waves of the frontal channels [84]. Interestingly, the delta [85],
alpha [86], and gamma [87,88] waves of the frontal channels were also shown to be individ-
ually useful for EEG-based emotion recognition. Several analyses were thus performed
in this work to determine the frequency bands most suitable for valence detection consid-
ering the different computed features. In addition, performance was observed when the
compete EEG signal was considered for feature computation in comparison to when only
a short segment was utilized. The aim of the performed analyses was to find the most
suitable feature set that would achieve superior performance comparable to state-of the-art
methods, all while requiring minimal computational overhead. Primarily, only the sixteen
strongest emotions (eight happiest and eight saddest) were considered in the analyses in
order to assure significant discrepancy between the emotions. Then, the complete DEAP
dataset was utilized for the final experimentations concerning binary and multiclass valence
classifications, as well as for comparison to previous literature.
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3. Methods
3.1. Dataset

DEAP is a public audio-visual stimuli-based emotion dataset [67] that was collected
from 32 subjects. For emotion recognition, the use of audio-visual stimuli guarantee higher
valence intensity is experienced with respect to visual stimuli (pictures) [89]. The subjects
ages ranged between 19 and 37, with an average of 26.9 years. Each subject watched
40 one-minute music videos intended to elicit different emotions. These one-minute videos
were extracted from long-version music videos to include maximum emotional content.
EEG signals from thirty-two electrodes placed according to the international 10/20 system
were recorded at a sampling rate of 512 Hz then downsampled to 128 Hz. Each electrode
recorded 63 s EEG signal, with a 3s baseline signal before the trial. The 3 s baseline was
ignored here as previously performed in [58,76,77,90].

After watching each video, participants performed a self-assessment of their emo-
tional states of valence, arousal, liking, and dominance on a continuous scale from 1 to
9. Only valence was considered in the present study which would be useful for per-
sonalized medical applications as well as in emotion-based entertainment content. The
valence scale ranges from sad to happy with ratings closer to one representing low va-
lence (sad), whereas ratings closer to nine indicating high valence (happy). For the bi-
nary classification experiments, a threshold (thresh.) of five was considered to separate
the low and high valence classes as commonly performed in many other works such as
Refs. [58,60,61,73,74,76,77,91–94]. This threshold value is typically chosen to overcome the
class imbalance issue in the DEAP dataset [64,67]. As for the three-class classifications,
thresholds of three and six were considered to divide the dataset into low valence (sad),
mid-range (neutral), and high valence (happy).

3.2. Channel Selection

The international 10/20 system includes several electrode placement markers applied
to detect the brain waves from the different brain lobes. In deep learning approaches where
it is basically the network’s task to extract meaningful features from the data, it is common to
input all the EEG channels to the network for emotion recognition [59,60,94]. Nevertheless,
several studies have shown that considering all EEG channels can be redundant and that
extracting features from a few significant channels can results in reliable performance with
the added advantage of reduced computational complexity [35,53,55].

For wearable EEG headsets, requiring only one or two EEG channels can substantially
reduce the hardware complexity thus facilitating its usage in non-laboratory settings, as
well as reducing its overall cost, all which would make it more attractive to day-to-day
consumers [35,53,95]. From the different brain lobes, the frontal lobe is the one most
associated with emotion recognition using EEG signals [5]. Specifically, several studies
have shown that features calculated from the prefrontal brain region (Fp1-Fp2) result in best
performance as compared to other brain areas [35]. Mohammadi et al. [55] more specifically
showed that the Fp1-Fp2 channel pair resulted in highest accuracies in comparison to other
frontal channel pairs, and that combining all the frontal channels resulted in a somewhat
enhanced performance. Interestingly, Wu et al. [53] found that not only did Fp1-Fp2 result
in the highest accuracies in comparison to the other frontal channels, but that solely using
Fp1-Fp2 resulted in similar performance to the case when features from four or six frontal
channels were combined. The Fp1-Fp2 channel pair was thus chosen in this study for
valence-related feature extraction.

Previous research has shown that positive emotions are associated with left frontal
activity, whereas negative emotions are associated with right frontal activity [96,97]. Sym-
metric channel pairs from the left and right brain hemispheres were thus commonly
considered in literature by being either subtracted or divided in order to create a single
wave from which relevant features were calculated [61,98,99]. In the present study, the EEG
features were extracted from a single time series signal computed as the difference between
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the Fp1 and Fp2 channels in order to measure the asymmetry in brain activity due to the
valence emotional stimuli [67].

3.3. EEG Band Separation

Five different third order Butterworth band-pass filters were implemented to separate
the delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–60 Hz)
frequency bands (Table 1). The Butterworth filter has been previously used for the EEG
bands separation owing to its flat response, simplicity, and efficiency [5,40].

3.4. Feature Extraction

Both time and frequency domain EEG features were initially computed from all the
frequency bands (delta–theta–alpha–beta–gamma). Next, feature analysis was performed
to determine which features were more suitable for valence emotion recognition, as well as
the most relevant frequency band for feature extraction.

A. Hjorth Parameters

Hjorth parameters [100] were introduced by Bo Hjorth in 1970 to represent several
signal statistical properties (Figure 7). Hjorth parameters have been successfully used in
various EEG emotion recognition research [5,32,35–40]. The three Hjorth parameters are
activity (variance), mobility, and complexity given by the following equations:

Activity = varaince (y(t)) (1)

Mobility =

√
activity(dy(t)/dt)

activity(y(t))
(2)

Complexity =

√
mobility(dy(t)/dt)

mobility(y(t))
(3)
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different Hjorth parameters [100].

B. Zero-Crossings

The zero-crossings of a signal are the number of times the signal intercepts the horizon-
tal x-axis thus changing signs. Zero crossings are used to measure the oscillating property
of a signal indicating the degree of excitation within a specific frequency band.

C. Power Spectral Density

Power spectral density (PSD) is among the most widely implemented EEG features
for emotion recognition [72]. PSD describes the average signal power over its frequency
bands. To obtain the PSD, the amplitude of the FFT is multiplied by its complex conjugate
which is then summed to get the total power.

4. Results

In the present study, an EEG-based subject-dependent valence emotion recognition
approach is presented using the difference Fp1-Fp2 signal. Figure 8 illustrates the ex-
perimental workflow adopted in order to develop an efficient and reliable system that is
suitable for wearable EEG. Initially, the Hjorth parameters (activity–mobility–complexity),
zero-crossing, and PSD features were computed from the different frequency bands. Next,
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the strongest emotions per subject were considered for the feature analyses in which the
EEG bands, timeslots, and features were determined. Finally, the selected feature set was
used for the binary and multiclass valence emotion classification of the complete DEAP
dataset. Since a subject dependent approach was adopted in this work, all the classification
experiments were repeated for each of the 32 subjects in the DEAP dataset, and the average
accuracies of all subjects were reported as the final performance measure.
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KNN and SVM classifiers are the most commonly used for EEG emotion recogni-
tion [66,72]. The kNN classifier has the advantages of being simple while giving reliable
results [45]. The SVM classifier can be easily tuned for optimal performance. A kNN
classifier was used for the feature analyses, whereas both the kNN and SVM with radial
basis function (rbf) were considered in the final classification experiments. For the kNN
classifier, several k values were compared, then k = 5 was chosen as it was found to give
better overall performance. For all cases, the Euclidian distance was considered within
the kNN classifier to determine the nearest neighbors. As for the SVM classifier, the hy-
perparameters (cost and gamma) were repeatedly tuned for each subject in the different
experiments using Bayesian optimization. A leave-one-out cross-validation (LOOCV) was
used in all the experiments. All feature computations and classification experiments were
performed using MATLAB R2021a on an Intel Core i7-5500U CPU @2.4 GHz with 16 GB
of RAM.

4.1. Feature Analyses

In this work, the aim of the feature analyses was to determine the most relevant
(1) frequency band (delta–theta–alpha–beta–gamma), (2) timeslot (first 20 s–middle 20 s–
last 20 s–complete 60 s), and (3) features (activity–mobility–complexity–zero-crossings–
PSD) for EEG valence recognition. Sixteen videos per subject were included in the feature
analyses, those being the ones with eight highest and eight lowest self-rated valence
emotions. Considering only the strongest emotions assures significant discrepancy between
the two emotional classes (high valence and low valence) for more reliable feature analyses.
A similar approach was previously considered in [52,53].

A. Band/Feature Analysis

Feature/band analysis was performed in order to determine the frequency bands
and features most suitable for valence classification. The three Hjorth parameters, zero-
crossings, and PSD features were calculated from the five EEG frequency bands (delta,
theta, alpha, beta, gamma). KNN classifier was then used to classify the 1 minute trials
into high or low valence. Figure 9 summarizes the valence (happy/sad) classification
performance for the different experiments. For all the EEG frequency bands, the variance
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(Hjorth activity) and PSD were found to result in the highest accuracies. Roshdy et al. [101]
have previously shown that the standard deviation, which is the square root of the variance,
was highly correlated with valence emotion. PSD is among the most widely accepted
measure for valence recognition in the literature [102]. Results of the feature analysis are
thus in agreement with previous literature.
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Table 3 summarizes the variance and PSD accuracies for the five different frequency
bands. Results indicate that for both features, the alpha band gave the most reliable
performance closely followed by the delta band. These results are in agreement with
several research that showed that the alpha [32,72] and delta [85] bands were relevant
for valence emotion detection. The low accuracies attained by the gamma band features
were however unconventional as the gamma band was previously shown to be suitable for
emotion recognition [55,87]. The gamma band was thus further divided into three subbands
which are 30–40 Hz, 40–50 Hz, and 50–60 Hz, and the previous analysis were repeated.
Results summarized in Table 4 indicate a significant improvement in performance when
the gamma band was subdivided into three different subbands. Best results were attained
by the fast gamma subband (50–60 Hz) for which accuracies of 99.02% and 98.63% were
achieved for the variance and PSD, respectively, by that outperforming results attained by
the same features for the delta and alpha bands.

Table 3. Valence classification accuracies (%) for the different EEG bands using activity and PSD.

All
(2–60 Hz)

Delta
(2–4 Hz)

Theta
(4–8 Hz)

Alpha
(8–12 Hz)

Beta
(12–30 Hz)

Gamma
(30–60 Hz)

variance 62.50 95.51 84.77 98.24 84.57 68.56

PSD 61.33 95.12 84.38 97.85 84.38 70.31

Table 4. Valence classification accuracies (%) for the different gamma subbands using activity
and PSD.

30–60 Hz 30–40 Hz 40–50 Hz 50–60 Hz

variance 68.56 91.99 91.40 99.02

PSD 70.31 91.99 91.02 9.63
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Based on the feature/band analysis, it can be deduced that the variance (Hjorth
activity) and PSD calculated from the delta, alpha, and fast gamma frequency bands result
in the most consistent performance. Further experiments performed in this study will thus
only use the indicated features and frequency bands.

B. Time Slot Analysis

In the DEAP dataset, a 1 minute EEG recording is provided for each video stimulus
per subject. Several previous works considered only the middle time slot omitting the
first part for emotions to settle and the last part for fatigue [56,58]. Others used only the
last thirty seconds under the assumption that it yields better results [53,67]. In order to
test these presumptions, the variance (Hjorth activity) and PSD features were calculated
from the first, middle, and last 20 seconds (s) of the EEG recordings for the delta, alpha,
and fast gamma bands. Valence classification results for the three indicated timeslots
in comparison to using the complete 1 minute are summarized in Table 5. Overall, bet-
ter valence classification performance is achieved by the alpha and fast gamma bands
(~97–99%) than for the delta band (~95–96%). For the delta band, results from the different
slots were somewhat close. However, the first timeslot resulted in slightly improved re-
sults compared to when the complete 1 minute was considered. As for the alpha and fast
gamma bands, results indicate that the middle time slot gave more reliable performance
in comparison to the first and last timeslots. Nevertheless, considering the full 1 minute
EEG signal resulted in an overall better performance than for any of the 20 s time slots. The
full one-minute signal will thus be considered for more consistent performance in all the
upcoming experiments.

Table 5. Strongest emotion classification accuracies (%) for different EEG time slots.

Delta (2–4 Hz) Alpha (8–12 Hz) Gamma (50–60 Hz)

Variance PSD Variance PSD Variance PSD

1–20 s 96.29 96.09 97.46 97.07 97.66 97.66
20–40 s 95.51 95.70 97.46 97.46 98.05 98.05
40–60 s 94.92 95.51 96.68 97.27 98.05 97.85
1–60 s 95.51 95.12 98.24 98.24 99.02 98.63

C. Feature Boxplots

At the beginning of this section, the activity (variance), mobility, complexity, zero-
crossings, and PSD features were computed from the five EEG frequency bands. Clas-
sification results considering the strongest emotions showed that the variance and PSD
were the most relevant for valence emotion recognition regardless of the frequency band.
Specifically, experimentation results showed that the variance and PSD computed from
the delta, alpha, and fast gamma full 1 minute EEG signals resulted in the most reliable
valence emotion classification performance in comparison to the other considered cases.

In this subsection, the boxplots of the variance and PSD were generated (Figure 10)
to illustrate the features’ distributions for the two valence classes: low valence (sad) and
high valence (happy). Boxplots display a five-number summary of the data including
the minimum, first quartile, second quartile (median), third quartile, and maximum. For
both features, the boxplots demonstrate significant discrepancy between the two valence
classes which emphasizes their relevance as previously shown in the different classification
experiments within the previous subsections.
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4.2. Valence Classifications

In this section, the subject dependent valence emotion classifications were performed
considering all the forty video trials included in the DEAP dataset. The variance (Hjorth
activity) and PSD features were computed from the full 1 minute delta, alpha, and fast
gamma bands which were found in the previous section to be the most relevant for valence
classification. Variance and PSD were used both individually and collectively and results
were given for each case. KNN and SVM with rbf kernel were considered in all experiments.

Tables 6 and 7 summarize the binary classification accuracies for the kNN and SVM
classifiers, respectively. Overall, the SVM classifier gave better accuracies than the kNN
classifier. The alpha band is shown to give consistently better results closely followed by
the delta band, whereas the fast gamma band results are almost 10% less for both classifiers.
Fast gamma is thus shown to be reliable when discriminating between strong sad and
happy emotions attaining accuracies that were as high as 99% (Table 4), yet less useful
when more mellow emotional states were additionally involved.

Table 6. Valence classification accuracies (%) for the complete DEAP dataset (kNN).

Delta
(2–4 Hz)

Alpha
(8–12 Hz)

Fast Gamma
(50–60 Hz)

Variance 95.08 96.09 85.23

PSD 95.08 96.25 84.76

Variance + PSD 95.00 96.33 85.55

Table 7. Valence classification accuracies (%) for the complete DEAP dataset (SVM-rbf).

Delta
(2–4 Hz)

Alpha
(8–12 Hz)

Fast Gamma
(50–60 Hz)

Variance 96.95 97.26 87.58

PSD 95.55 96.80 87.50

Variance + PSD 97.19 97.42 87.11

Generally, variance (Hjorth activity) and PSD gave close results in all experiments.
For the alpha and delta bands, all achieved accuracies were greater than or equal to
95%, indicating the efficacy of the considered features for valence emotional recognition.
Variance did, however, give slightly better results than PSD in most cases. Combining these
two features resulted in an overall more consistent performance. Best results were achieved
when the combined features were calculated from the alpha band resulting in accuracies
of 96.33% and 97.42% for the kNN and SVM classifiers, respectively. Several research
has shown that the frontal channels’ alpha band was significantly affected by a person’s
happiness and sadness emotions [28,103]. The findings of this work, in which the alpha
band was found to be more reliable than other frequency bands for valence recognition, are
thus in agreement with previous literature.

For the sake of attaining a more comprehensive insight on the performance of the
proposed method, the valence classification accuracies per subject for the combined variance
and PSD features for the delta, alpha, and fast gamma bands are presented in Table 8. For
the alpha band, twenty-eight and thirty of the total thirty-two DEAP subjects had their
emotions recognized with an accuracy that is greater than or equal to 95% for the kNN and
SVM classifiers, respectively, which indicates the reliability of the considered features.
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Table 8. Valence classification accuracies (%) per subject for the combined variance and PSD features
considering the complete DEAP dataset.

Subject
kNN SVM (rbf)

Delta Alpha Fast Gamma Delta Alpha Fast Gamma

1 95.0 97.5 77.5 97.5 97.5 77.5

2 92.5 95.0 77.5 87.5 95.0 82.5

3 95.0 97.5 72.5 97.5 97.5 75.0

4 100 92.5 60.0 97.5 95.0 72.5

5 95.0 90.0 90.0 97.5 95.0 92.5

6 100 95.0 97.5 100 97.5 95.0

7 95.0 95.0 87.5 97.5 100 92.5

8 95.0 97.5 77.5 97.5 100 85.0

9 95.0 97.5 82.5 97.5 97.5 87.5

10 95.0 97.5 90.0 100 95.0 90.0

11 90.0 92.5 90.0 90.0 95.0 87.5

12 95.0 100 85.0 100 100 85.0

13 97.5 95.0 70.0 100 97.5 67.5

14 95.0 97.5 97.5 100 97.5 100

15 95.0 97.5 82.5 97.5 97.5 82.5

16 100 95.0 75.0 100 95.0 77.5

17 95.0 97.5 85.0 97.5 100 85.0

18 97.5 100 90.0 97.5 100 92.5

19 95.0 95.0 95.0 97.5 92.5 95.0

20 95.0 97.5 85.0 97.5 97.5 90.0

21 95.0 97.5 90.0 100 97.5 97.5

22 97.5 100 90.0 100 100 85.0

23 92.5 100 95.0 95.0 100 95.0

24 97.5 97.5 77.5 95.0 97.5 77.5

25 95.0 95.0 87.5 97.5 97.5 85.0

26 95.0 95.0 100 97.5 97.5 100

27 97.5 90.0 95.0 100 92.5 95.0

28 87.5 97.5 97.5 90.0 97.5 97.5

29 95.0 95.0 97.5 97.5 95.0 97.5

30 95.0 97.5 87.5 97.5 100 90.0

31 85.0 97.5 82.5 92.5 100 85.0

32 95.0 97.5 70.0 100 100 70.0

Average 95.0 96.33 85.55 97.19 97.42 87.11

In order to further investigate these results, the median, average, and standard devia-
tion of the valence ratings of the two subjects with the lowest and highest SVM accuracies
in the alpha band were inspected and summarized in Table 9. Furthermore, these statistical
measures were also calculated for all the thirty-two subjects in the DEAP dataset. For sub-
ject #27 (one of the subjects with the lowest accuracies), it is noticed that both the median
and average of the valence ratings are higher than the value of the threshold considered
in this work for the low/high valence class separation. Modifying this threshold value
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to become six instead of five, which is closer to subject #27′s median and average, indeed
resulted in improving this subject’s emotional recognition accuracy by 5% to become 97.5%.
On the other hand, the increased threshold had no effect or minimal effect on the other
considered subjects and minimal effect on the overall performance. These results indicate
the robustness of the two implemented measures for valence emotion recognition whilst
also highlighting the importance of considering subject variability for more reliable results.

Table 9. Valence ratings statistical measures and classification accuracies for different valence thresh-
olds, given for the subjects with the lowest and highest performance as well as for the complete
DEAP dataset.

Highest Accuracies Lowest Accuracies
All

SubjectsSubject
#12

Subject
#22

Subject
#19

Subject
#27

Valence ratings
statistical
measures

Median 5.04 5.00 5.04 6.08 5.04

Average 4.88 4.69 5.23 6.08 5.25

Std. deviation 2.24 2.44 1.80 2.18 2.13

Accuracies
(SVM)

Threshold = 5 100 100 92.5 92.5 97.42

Threshold = 6 97.5 100 92.5 97.5 96.56

Table 10 summarizes the three-class valence classification results using the variance,
PSD, as well as both features calculated from the delta, alpha, and fast gamma bands.
Similar to the binary classifications, best results were attained when the features were
computed from the alpha band, closely followed by the delta band. For the alpha and
delta bands, considering one of the features or both combined resulted in close accuracies
ranging from 94.22% to 95.39%. Best performance (accuracy = 95.39%) was attained when
the variance was computed from the alpha band.

Table 10. Valence three-class accuracies (%) for the complete DEAP dataset (SVM-rbf).

Delta
(2–4 Hz)

Alpha
(8–12 Hz)

Fast Gamma
(50–60 Hz)

Variance 94.30 95.39 78.13

PSD 94.69 94.22 78.28

Variance + PSD 94.92 95.00 78.44

5. Discussion

In the present study, an efficient EEG-based valence recognition method was presented
that considers only the difference Fp1-Fp2 signal for feature extraction. Analyses showed
that the variance and PSD computed from the 1 minute alpha band were the most suitable
for valence recognition. Final classification experiments considering the entire DEAP
dataset resulted in accuracies of 97.42% and 95.39% for the two and three class valence
classifications, respectively. Torres et al. [72] have reported that in previous literature,
accuracies were on average about 85% and 68% for two and three class EEG-based valence
classifications, respectively. The performance of the proposed methods thus surpasses the
average performance of EEG-based valence detection methods by approximately 10% and
27% for two- and three-class classifications, respectively, indicating the superiority of the
implemented method.

The notion that few simple handcrafted features can give promising results in EEG-
based valence classification has been previously demonstrated in several research papers.
In an early work by Sourina et al. [104], accuracies well above 90% were achieved for all
subjects considering only three frontal channels using music to invoke the emotional stimuli.
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In another work by Amin et al. [105], emotion recognition accuracies exceeding 98% were
attained considering only the relative wavelet energy, which was calculated from the delta
band of 128 electrodes. However, for both these works performance could not be compared
to other methods as private datasets were utilized. A later work by Thejaswini et al. [32]
achieved an overall average accuracy of 91.2% upon classifying the SEED dataset to three
classes: positive, neutral, and negative emotions. They implemented simple statistical
features including the RASM and Hjorth parameters, but again considering twenty-seven
electrode pairs for the feature computations.

The DEAP dataset, considered in this study, is reportedly the most widely utilized
for EEG emotional recognition [72] which facilitates comparison between the different ap-
proaches. Table 11 summarizes the performance of several other EEG emotion recognition
methods from literature that also used the DEAP dataset. The comparison indicates the
EEG channels and frequency bands considered in each approach, as well as the binary
classification accuracy. For the sake of a fair comparison, all valence emotion recognition
methods included are based on subject-dependent experiments, which is the approach
considered in this work. Wu et al. [53], like in this work, used only the FP1 and Fp2 frontal
channels, yet achieved a relatively low accuracy of 75.18%. Other methods used all the
EEG channels whether individually or in the form of channel pairs. In addition, most of
the studies summarized in Table 11 considered all the frequency channels by that ignoring
the significance of some bands over others for valence emotion recognition. Overall, the
valence classification accuracies of the summarized approaches mostly range from 75.18%
to 96.65%. The EEG valence emotion recognition method introduced in the present study
results in an accuracy of 97.42% by that outperforming several state-of-the-art methods
deep learning methods.

Table 11. Valence (happy/sad) classification performance for the DEAP dataset.

Method Year Method Channels Bands Acc. %

Wu et al. [53] 2017 FFT and WT features with GBDT Fp1, Fp2 All 75.18

Salma et al. [59] 2017 LSTM and RNN All Raw 85.45

Yang et al. [60] 2018 LSTM and CNN All All 90.80

Cui et al. [79] 2020

Differential Entropy + SVM
Symmetric channel

pairs All except delta

89.09

Multilayer Perceptron (MLP) 92.57

Regional-Asymmetric CNN (RACNN) 96.65

Nath et al. [80] 2020 Band power with LSTM All All 94.69

Yin et al. [48] 2021 Differential entropy with ECLGCNN All All 80.52

Huang et al. [61] 2021 Bi-hemisphere discrepancy CNN Symmetric channel
pairs Raw 94.38

Chen et al. [82] 2022 Ensemble Deep Randomized-CNN All Raw 99.19

Proposed 2022 Variance + PSD with SVM Fp1-Fp2 Alpha 97.42

Nevertheless, the recent approach introduced by Cheng et al. [82], which is based
on randomized CNN and ensemble learning, resulted in an overall accuracy of 99.17%
which is 1.75% higher than the implemented method. In their work, they reported an
average training time of 35.15 s. As for the proposed method, an average of 0.06 s were
required for the feature computation, training, and classification. Nevertheless, the machine
learning-based proposed approach, even though performing not as well as Cheng et al.’s
method, has the valuable merit of being simpler to reproduce.

The proposed EEG-based valence emotion recognition method was shown to result in
reliable performance while relying on statistical measures that are simple to compute. In
addition, it relies on standard machine learning algorithms that are easily configured. No
image construction was required, and no complex neural networks needed to be trained. In
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the literature, several works have also shown that handcrafted features can achieve compa-
rable performance to deep learning approaches with the former having the merit of reduced
computational complexity which could be attractive in real-time applications [106–108].
Another advantage of the presented method is that unlike in other literature where all the
frequency bands or the raw EEG signal were considered, only the alpha band was used for
feature extraction. The alpha band was utilized in this work as it was shown in the analyses
performed in Section 4.1 to be the most relevant for valence detection. Interestingly, several
clinical studies have previously shown that there is indeed a relationship between the alpha
activity measured from the prefrontal cortex and emotional response [109,110].

The proposed method considers only the Fp1-Fp2 channel pair from which the alpha
band’s variance and PSD were computed, by that minimizing the computational overhead
whilst achieving reliable performance making it suitable for wearable EEG headsets used
in real-time applications [26,111]. Overall, the results attained here are quite promising.
Yet, there is still room for enhancement of the suggested method. Future work includes
considering arousal along with valence recognition, as well as calculating other statistical
features that are relevant to EEG-based emotion recognition such as entropy and RASM. In
addition, the integration of handcrafted and deep features can be investigated. Explainable
AI (XAI) methods can then be implemented to understand what the models are learn-
ing and why the specific decisions were made. XAI can also be applied to investigate
whether EEG-based emotion detection is gender or culture dependent, as is speech emotion
recognition [112].

6. Conclusions

EEG-based subject-dependent valence emotion recognition is widely implemented in
personalized emotion AI applications. In this work, the difference signal (Fp1-Fp2) was
used to calculate the Hjorth parameters (variance-mobility-complexity), zero-crossings,
and PSD features for the emotional valence detection using the benchmark DEAP dataset.
Several analyses were performed to determine the features, frequency band, and timeslot
most suitable for reliable subject-based valence recognition. Primarily, only the eight
strongest high and low valence emotions per subject were considered for analysis to assure
significant discrepancy between the two classes. Classification results indicated that the
variance and PSD features were the most suitable for valence recognition regardless of the
considered frequency channel. Nevertheless, the delta, alpha, and fast gamma bands were
shown to be the most relevant for valence recognition. Boxplots of the variance and PSD
features for the most relevant frequency bands validated and supported the classification
results. In addition, calculating the features from the complete 1 minute EEG signal was
found to give more reliable performance than when only a 20 s timeslot was used for feature
computation. Best results were achieved when the variance and PSD were computed from
the alpha band resulting in accuracies of 97.42% and 95.0% for the binary and multiclass
classification, respectively. Comparison to previous literature showed that implemented
method outperformed several state-of-the-art approaches with the advantage of reduced
computational complexity due to the reduced number of electrodes, features, and frequency
bands considered. This approach would thus be highly attractive for practical EEG-based
emotion AI systems relying on wearable EEG devices.
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