Optimization and Modeling of Citrobacter freundii AD119 Growth and 1,3-Propanediol Production Using Two-Step Statistical Experimental Design and Artificial Neural Networks
(This article belongs to the Section Intelligent Sensors)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Media
2.2.1. Mineral Requirements
2.2.2. Carbon Source Requirements
2.2.3. Nitrogen Source Requirements
2.2.4. Influence of Vitamin and Organic Acids
2.3. Fed-Batch Experiment in Bioreactor
2.4. Analysis of Fermentation Broth
2.5. Artificial Neural Network Model Development
3. Results and Discussion
3.1. Qualitative Optimization
3.1.1. Plackett–Burman Design—Mineral Composition Optimization
3.1.2. Carbon Source Optimization
3.1.3. Nitrogen Source Optimization
3.2. Quantitative Optimization
3.2.1. Optimization of Nitrogen Sources
3.2.2. Carbon Sources Optimization
3.2.3. Minerals Optimization—Central Composite Design
3.2.4. Addition of Organic Acids and Vitamin B12 to the Culture Medium
3.2.5. Fed-Batch Bioreactor Experiment
3.3. Artificial Neural Network Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saxena, R.K.; Anand, P.; Saran, S.; Isar, J. Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnol. Adv. 2009, 27, 895–913. [Google Scholar] [CrossRef]
- Petrov, K.; Stoyanov, A. Accelerated production of 1,3-propanediol from glycerol by Klebsiella pneumoniae using the method of forced pH fluctuations. Bioprocess Biosyst. Eng. 2012, 35, 317–321. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Zhuge, B.; Tang, X.; Shen, W.; Rao, Z.; Fang, H.; Zhuge, J. Optimization of 1,3-propanediol production by novel recombinant Escherichia coli using response surface methodology. J. Chem. Technol. Biotechnol. 2006, 81, 1075–1078. [Google Scholar] [CrossRef]
- Maina, S.; Kachrimanidou, V.; Ladakis, D.; Papanikolaou, S.; de Castro, A.M.; Koutinas, A. Evaluation of 1,3-propanediol production by two Citrobacter freundii strains using crude glycerol and soybean cake hydrolysate. Environ. Sci. Pollut. Res. 2019, 26, 35523–35532. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, H.; Hector, S.B.; Xiao, Z.; Li, J.; Liu, R.; Li, C.; Zeng, B.; Liu, G.-Q.; Zhu, Y. Adaptability of Klebsiella pneumoniae 2e, a newly isolated 1,3-propanediol-producing strain, to crude glycerol as revealed by genomic profiling. Appl. Environ. Microbiol. 2019, 85, e00254-19. [Google Scholar] [CrossRef] [Green Version]
- Szymanowska-Powałowska, D. 1,3-propanediol production from crude glycerol by Clostridium butyricum DSP1 in repeated batch. Electron. J. Biotechnol. 2014, 17, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Metsoviti, M.; Zeng, A.P.; Koutinas, A.A.; Papanikolaou, S. Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J. Biotechnol. 2013, 163, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Biebl, H.; Zeng, A.P.; Menzel, K.; Deckwer, W.D. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 1998, 50, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Lin, R.; Zheng, Z.; Liu, H.; Liu, D. Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions. World J. Microbiol. Biotechnol. 2008, 24, 1731–1740. [Google Scholar] [CrossRef]
- Imhoff, J.F. Chromatiales ord. nov. In Bergey’s Manual® of Systematic Bacteriology: Volume Two The Proteobacteria Part B The Gammaproteobacteria; Brenner, D.J., Krieg, N.R., Staley, J.T., Garrity, G.M., Boone, D.R., De Vos, P., Goodfellow, M., Rainey, F.A., Schleifer, K.-H., Eds.; Springer: Boston, MA, USA, 2005; pp. 1–59. ISBN 978-0-387-28022-6. [Google Scholar]
- Ferreira, T.F.; Ribeiro, R.R.; Ribeiro, C.M.S.; Freire, D.M.G.; Coelho, M.A.Z. Evaluation of 1,3-propanediol production from crude glycerol by Citrobacter freundii ATCC 8090. Chem. Eng. Trans. 2012, 27, 157–162. [Google Scholar] [CrossRef]
- Moon, C.; Hwan Lee, C.; Sang, B.I.; Um, Y. Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by Clostridium pasteurianum. Bioresour. Technol. 2011, 102, 10561–10568. [Google Scholar] [CrossRef] [PubMed]
- Wischral, D.N.P., Jr.; Pessoa, F.L.P. Improve production by Clostridium beijerinckii DSM 791 Council for Innovative Research. pp. 614–623. Available online: https://rajpub.com/index.php/jbt/article/view/1560/pdf_66 (accessed on 13 December 2022).
- Gungormusler, M.; Gonen, C.; Ozdemir, G.; ve Azbar, N. Fermentation medium optimization for 1,3-propanediol production using taguchi and box-behnken experimental designs. Fresenius Environ. Bull. 2010, 19, 2840–2847. Available online: https://aperta.ulakbim.gov.tr/record/26727#.Y9xq7K1BxPY (accessed on 13 December 2022).
- Jalasutram, V.; Jetty, A. Optimization of 1, 3-Propanediol production by Klebsiella pneumoniae 141B using Taguchi methodology: Improvement in production by cofermentation studies. Res. Biotechnol. 2011, 2, 90–104. [Google Scholar]
- Zheng, Z.M.; Hu, Q.L.; Hao, J.; Xu, F.; Guo, N.N.; Sun, Y.; Liu, D.H. Statistical optimization of culture conditions for 1,3-propanediol by Klebsiella pneumoniae AC 15 via central composite design. Bioresour. Technol. 2008, 99, 1052–1056. [Google Scholar] [CrossRef]
- Hong, E.; Yoon, S.; Kim, J.; Kim, E.; Kim, D.; Rhie, S.; Ryu, Y.W. Isolation of microorganisms able to produce 1,3-propanediol and optimization of medium constituents for Klebsiella pneumoniae AJ4. Bioprocess Biosyst. Eng. 2013, 36, 835–843. [Google Scholar] [CrossRef]
- Abel, S.E.R.; Loh, S.K. Fermentation of biodiesel-derived waste for 1,3-propanediol production with response surface methodology. J. Oil Palm Res. 2017, 29, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Woodley, J.M. Bioprocess intensification for the effective production of chemical products. Comput. Chem. Eng. 2017, 105, 297–307. [Google Scholar] [CrossRef]
- Jeyamkondan, S.; Jayas, D.S.; Holley, R.A. Microbial growth modelling with artificial neural networks. Int. J. Food Microbiol. 2001, 64, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lan, Y.; Thomson, S.J.; Fang, A.; Hoffmann, W.C.; Lacey, R.E. Development of soft computing and applications in agricultural and biological engineering. Comput. Electron. Agric. 2010, 71, 107–127. [Google Scholar] [CrossRef] [Green Version]
- Wawrzyniak, J.; Rudzińska, M.; Gawrysiak-Witulska, M.; Przybył, K. Predictive Models of Phytosterol Degradation in Rapeseeds Stored in Bulk Based on artificial neural networks and response surface regression. Molecules 2022, 27, 2445. [Google Scholar] [CrossRef]
- Wawrzyniak, J. Methodology for quantifying volatile compounds in a liquid mixture using an algorithm combining b-splines and artificial neural networks to process responses of a thermally modulated metal-oxide semiconductor gas sensor. Sensors 2022, 22, 8959. [Google Scholar] [CrossRef]
- Kiviharju, K.; Salonen, K.; Leisola, M.; Eerikäinen, T. Modeling and simulation of Streptomyces peucetius var. caesius N47 cultivation and ε-rhodomycinone production with kinetic equations and neural networks. J. Biotechnol. 2006, 126, 365–373. [Google Scholar] [CrossRef]
- Drozdzyńska, A.; Pawlicka, J.; Kubiak, P.; Kośmider, A.; Pranke, D.; Olejnik-Schmidt, A.; Czaczyk, K. Conversion of glycerol to 1,3-propanediol by Citrobacter freundii and Hafnia alvei—Newly isolated strains from the Enterobacteriaceae. N. Biotechnol. 2014, 31, 402–410. [Google Scholar] [CrossRef]
- Alghooneh, A.; Alizadeh Behbahani, B.; Noorbakhsh, H.; Tabatabaei Yazdi, F. Application of intelligent modeling to predict the population dynamics of Pseudomonas aeruginosa in Frankfurter sausage containing Satureja bachtiarica extracts. Microb. Pathog. 2015, 85, 58–65. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Safari Sinegani, A.A.; Sarikhani, M.R.; Mohammadi, S.A. Comparison of artificial neural network and multivariate regression models for prediction of Azotobacteria population in soil under different land uses. Comput. Electron. Agric. 2017, 140, 409–421. [Google Scholar] [CrossRef]
- Wawrzyniak, J. Prediction of fungal infestation in stored barley ecosystems using artificial neural networks. LWT 2021, 137, 110367. [Google Scholar] [CrossRef]
- Wawrzyniak, J. Application of artificial neural networks to assess the mycological state of bulk stored rapeseeds. Agriculture 2020, 10, 567. [Google Scholar] [CrossRef]
- Sheela, K.G.; Deepa, S.N. Selection of number of hidden neurons in neural networks in renewable energy systems. J. Sci. Ind. Res. 2014, 73, 686–688. [Google Scholar]
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef]
- Panchal, F.S.; Panchal, M. Review on methods of selecting number of hidden nodes in artificial neural network. Int. J. Comput. Sci. Mob. Comput. 2014, 3, 455–464. [Google Scholar]
- Gómez, I.; Franco, L.; Jerez, J.M. Neural network architecture selection: Can function complexity help? Neural Process. Lett. 2009, 30, 71–87. [Google Scholar] [CrossRef]
- Huang, H.; Gong, C.S.; Tsao, G.T. Production of 1,3-Propanediol by Klebsiella pneumoniae. Biotechnol. Fuels Chem. 2002, 3, 687–698. [Google Scholar] [CrossRef]
- Christensen, D.G.; Orr, J.S.; Rao, C.V.; Wolfe, J. crossm Ratio in peptide-based media. Appl. Environ. Microbiol. 2017, 83, e03034-16. [Google Scholar]
- Ghaly, A.E.; Tango, M.S.A.; Adams, M.A. Enhanced Lactic Acid Production From Cheese Whey With Nutrient Supplement Addition. J. Sci. Res. Dev. 2003, 2, 1–20. [Google Scholar]
- Kajiura, H.; Mori, K.; Tobimatsu, T.; Toraya, T. Characterization and mechanism of action of a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase. J. Biol. Chem. 2001, 276, 36514–36519. [Google Scholar] [CrossRef] [Green Version]
- Martens, J.H.; Barg, H.; Warren, M.; Jahn, D. Microbial production of vitamin B12. Appl. Microbiol. Biotechnol. 2002, 58, 275–285. [Google Scholar] [CrossRef]
- da Silva, G.P.; Mack, M.; Contiero, J. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 2009, 27, 30–39. [Google Scholar] [CrossRef]
- Ranquet, C.; Ollagnier-de-Choudens, S.; Loiseau, L.; Barras, F.; Fontecave, M. Cobalt stress in Escherichia coli: The effect on the iron-sulfur proteins. J. Biol. Chem. 2007, 282, 30442–30451. [Google Scholar] [CrossRef] [Green Version]
- Babai, R.; Ron, E.Z. An Escherichia coli gene responsive to heavy metals. FEMS Microbiol. Lett. 1998, 167, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Abbad-Andaloussi, S.; Amine, J.; Gerard, P.; Petitdemange, H. Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431. J. Appl. Microbiol. 1998, 84, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Metsoviti, M.; Paraskevaidi, K.; Koutinas, A.; Zeng, A.P.; Papanikolaou, S. Production of 1,3-propanediol, 2,3-butanediol and ethanol by a newly isolated Klebsiella oxytoca strain growing on biodiesel-derived glycerol based media. Process Biochem. 2012, 47, 1872–1882. [Google Scholar] [CrossRef]
- Hiremath, A.; Kannabiran, M.; Rangaswamy, V. 1,3-Propanediol production from crude glycerol from jatropha biodiesel process. N. Biotechnol. 2011, 28, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.-K.; Ling, H.-Z.; Zhang, L.-L.; Sun, Y.; Liu, D.-H. Effect of glucose as cosubstrate on 1,3-propanediol fermentation by Klebsiella pneumoniae. Chin. J. Process Eng. 2004, 4, 561–566. [Google Scholar]
- Li, M.; Liao, X.; Zhang, D.; Du, G.; Chen, J. Yeast extract promotes cell growth and induces production of polyvinyl alcohol-degrading enzymes. Enzyme Res. 2011, 2011, 179819. [Google Scholar] [CrossRef] [Green Version]
- Rocha, L.C.; de Oliveira, J.R.; Vacondio, B.; Rodrigues, G.N.; Seleghim, M.H.R.; Porto, A.L.M. Bioactive marine microorganisms for biocatalytic reactions in organic compounds. In Marine Microbiology; John Wiley & Sons, Ltd.: New York, NY, USA, 2013; pp. 453–490. ISBN 9783527665259. [Google Scholar]
- Himmi, E.H.; Bories, A.; Barbirato, F. Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Bioresour. Technol. 1999, 67, 123–128. [Google Scholar] [CrossRef]
- Pflügl, S.; Marx, H.; Mattanovich, D.; Sauer, M. 1,3-Propanediol production from glycerol with Lactobacillus diolivorans. Bioresour. Technol. 2012, 119, 133–140. [Google Scholar] [CrossRef]
- Dietz, D.; Zeng, A.P. Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioprocess Biosyst. Eng. 2014, 37, 225–233. [Google Scholar] [CrossRef]
- Barbirato, F.; Himmi, E.H.; Conte, T.; Bories, A. 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries. Ind. Crops Prod. 1998, 7, 281–289. [Google Scholar] [CrossRef]
- Zhang, G.L.; Ma, B.B.; Xu, X.L.; Li, C.; Wang, L. Fast conversion of glycerol to 1,3-propanediol by a new strain of Klebsiella pneumoniae. Biochem. Eng. J. 2007, 37, 256–260. [Google Scholar] [CrossRef]
- Sattayasamitsathit, S.; Methacanon, P.; Prasertsan, P. Enhance 1,3-propanediol production from crude glycerol in batch and fed-batch fermentation with two-phase pH controlled strategy. Electron. J. Biotechnol. 2011, 14, 1–12. [Google Scholar] [CrossRef]
- Lin, R.; Liu, H.; Hao, J.; Cheng, K.; Liu, D. Enhancement of 1,3-propanediol production by Klebsiella pneumoniae with fumarate addition. Biotechnol. Lett. 2005, 27, 1755–1759. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Li, W.; Li, Z.; Xia, Y.; Ye, Q. Enhanced 1,3-propanediol production by supply of organic acids and repeated fed-batch culture. J. Ind. Microbiol. Biotechnol. 2010, 37, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.A.; Moon, C.; Kang, C.H.; Kong, S.W.; Sang, B.I.; Um, Y. Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl. Biochem. Biotechnol. 2010, 161, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Saxena, R.K. A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. N. Biotechnol. 2012, 29, 199–205. [Google Scholar] [CrossRef]
- Metsoviti, M.; Paramithiotis, S.; Drosinos, E.H.; Galiotou-Panayotou, M.; Nychas, G.J.E.; Zeng, A.P.; Papanikolaou, S. Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol. Eng. Life Sci. 2012, 12, 57–68. [Google Scholar] [CrossRef]
- Mizielińska, M.; Kowalska, U.; Soból, M. The continuous bioconversion of glycerol to 1,3-propanediol using immobilized Citrobacter freundii. Rom. Biotechnol. Lett. 2020, 25, 1448–1455. [Google Scholar] [CrossRef]
- Yu, Y.; Shi, L.T.; Guo, W.Y.; Yang, H.J. Microbial production of 1, 3-propanediol by a newly isolated Citrobacter freundii strain CF-5. Adv. Mater. Res. 2014, 884–885, 459–464. [Google Scholar] [CrossRef]
- Homann, T.; Tag, C.; Biebl, H.; Deckwer, W.D.; Schink, B. Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl. Microbiol. Biotechnol. 1990, 33, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Waszak, M.; Markowska-Szczupak, A.; Gryta, M. Application of nanofiltration for production of 1,3-propanediol in membrane bioreactor. Catal. Today 2016, 268, 164–170. [Google Scholar] [CrossRef]
- Pflugmacher, U.; Gottschalk, G. Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii. Appl. Microbiol. Biotechnol. 1994, 41, 313–316. [Google Scholar] [CrossRef]
- Boenigk, R.; Bowien, S.; Gottschalk, G. Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl. Microbiol. Biotechnol. 1993, 38, 453–457. [Google Scholar] [CrossRef]
- Laisheng, X.; Yuandan, Z. Bread shrimp microbe growth simulation and prediction system based on neural network. Int. J. Intell. Inf. Syst. 2016, 5, 25–36. [Google Scholar] [CrossRef]
- Mittal, G.S. Artificial neural network (ANN) based process modeling. In Handbook of Farm, Dairy and Food Machinery Engineering: Second Edition; Kutz, M., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2013; pp. 467–473. ISBN 9780123858818. [Google Scholar]
Factor | Symbol | Ranges and Levels | ||
---|---|---|---|---|
1 | 0 | −1 | ||
MgSO4∙7H2O (g/L) | A | 0 | 0.2 | 0 |
CaCl2 (g/L) | B | 0 | 0.05 | 0.1 |
FeSO4∙7H2O (mg/L) | C | 0 | 5 | 10 |
CoCl2 6H2O (mg/L) | D | 0 | 5 | 10 |
MnSO4∙H2O (mg/L) | E | 0 | 8.5 | 17 |
ZnCl2 (mg/L) | F | 0 | 1 | 2 |
H3BO3 (mg/L) | G | 0 | 0.025 | 0.05 |
Na2MoO4∙2H2O (mg/L) | H | 0 | 0.02 | 0.04 |
NiCl2∙6H2O (mg/L) | J | 0 | 0.01 | 0.02 |
CuCl2∙2H2O (mg/L) | K | 0 | 0.05 | 0.1 |
NaCl (g/L) | L | 0 | 0.25 | 0.5 |
No. | A | B | C | D | E | F | G | H | J | K | L | 1,3-PD Production |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 12.71 |
2 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | 11.41 |
3 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 11.76 |
4 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | 0.05 |
5 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | 9.76 |
6 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | 0.02 |
7 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 12.07 |
8 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 14.10 |
9 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 14.29 |
10 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 0.61 |
11 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 9.03 |
12 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 9.34 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.54 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.48 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.32 |
16 | −1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | 8.03 |
17 | 1 | −1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | 13.55 |
18 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | 8.86 |
19 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | 8.20 |
20 | 1 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | −1 | 1 | 11.49 |
21 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | −1 | 10.96 |
22 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | 0.09 |
23 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | 0.00 |
24 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | 1 | 0.00 |
25 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | 7.35 |
26 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | 7.04 |
27 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12.60 |
28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.94 |
29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.56 |
30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9.94 |
No. | Design Matrix | Experimental Responses 1,3-PD (g/L) | |
---|---|---|---|
A: CoCl2·6 H2O (mg/L) | B: MgSO4·7H2O (g/L) | ||
1 | 0 | 0 | 5.00 |
2 | 20 | 0 | 0.00 |
3 | 0 | 0.8 | 6.05 |
4 | 20 | 0.8 | 9.77 |
5 | 0 | 0.4 | 9.52 |
6 | 20 | 0.4 | 9.62 |
7 | 10 | 0 | 4.32 |
8 | 10 | 0.8 | 9.42 |
9 | 10 | 0.4 | 9.78 |
10 | 10 | 0.4 | 10.39 |
11 | 10 | 0.4 | 10.17 |
12 | 10 | 0.4 | 10.18 |
13 | 10 | 0.4 | 10.23 |
Source | Coefficients of Regression Equation | SS | df | MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Model | - | 41.91 | 4 | 10.48 | 211 | <0.0001 |
Intercept | 2.50 | - | - | - | - | - |
A—MgSO4 | 0.88 | 18.47 | 1 | 18.47 | 372 | <0.0001 |
B—CaCl2 | 0.14 | 0.47 | 1 | 0.47 | 9.46 | 0.0054 |
D—CoCl2 | −0.66 | 10.48 | 1 | 10.48 | 211 | <0.0001 |
AD | 0.72 | 12.49 | 1 | 12.49 | 251.4 | <0.0001 |
Residual | - | 1.142 | 23 | 0.05 | - | - |
Lack of fit | - | 1.094 | 19 | 0.06 | 4.77 | 0.0702 |
Yeast Extract Concentration g/L | 1,3-PD g/L | Glycerol Utilization (%) |
---|---|---|
0.75 | 6.52 ± 0.27 | 24.37 ± 2.88 |
2 | 17.57 ± 0.15 | 73.73 ± 0.71 |
5 | 19.47 ± 0.3 | 84.66 ± 0.37 |
7.5 | 18.73 ± 0.26 | 84.76 ± 1.12 |
10 | 19.15 ± 0.06 | 86.09 ± 0.53 |
Source | Coefficients of Regression Equation | SS | df | MS | F-Value | p-Value |
---|---|---|---|---|---|---|
model | - | 122.46 | 5 | 24.49 | 139.02 | <0.0001 |
Intercept | 5.11439 | - | - | - | - | - |
A—CoCl2 ·6 H2O | −0.016803 | 0.23 | 1 | 0.23 | 1.33 | 0.2869 |
B—MgSO4 ·7H2O | 20.20390 | 42.23 | 1 | 42.23 | 239.7 | <0.0001 |
AB | 0.54462 | 18.98 | 1 | 18.98 | 107.75 | <0.0001 |
A2 | −0.011040 | 3.37 | 1 | 3.37 | 19.11 | 0.0033 |
B2 | −23.77220 | 39.96 | 1 | 39.96 | 226.81 | <0.0001 |
Residual | - | 1.23 | 7 | 0.18 | - | - |
Lack of fit | - | 1.03 | 3 | 0.34 | 6.81 | 0.0474 |
No. | Type of Culture | Strain | Concentration of 1,3-PD (g/L) 1 | Ref. |
---|---|---|---|---|
1 | Batch | C. freundii ATCC 8090 | 4.35 | [11] |
2 | Batch (flask) | C. freundii AD119 | 0–8.0 2 | [25] |
3 | Batch | C. freundii FMCC-B 294 (VK-19) | 10.1 | [58] |
4 | Immobilized | C. freundii | 11.3 | [59] |
5 | Fed-batch | C. freundii CF-5 | 11.8 | [60] |
6 | Batch | C. freundii Zu | 12 | [61] |
7 | Batch | C. freundii K2 | 12.4 | [61] |
8 | Batch: Membrane bioreactor | C. freundii | 12.4 | [62] |
9 | Immobilized cell reactor | C. freundii DSM 30040 | 16.4 | [63] |
10 | Immobilized | C. freundii | 18.2 | [59] |
11 | Batch (bioreactor) | C. freundii AD119 | 23.3 | [25] |
12 | Batch | C. freundii | 1.4–25.6 3 | [57] |
13 | 2-stage continuous | C. freundii DSM 30040 | 41.5 | [64] |
14 | Fed-batch | C. freundii AD119 | 41.7 | This work |
15 | Batch | C. freundii FMCC-B 294 (VK-19) | 45.9 | [7] |
16 | Fed-batch | C. freundii VK-19 FMCC-B 294 (VK-19) | 47.4 | [4] |
17 | Fed-batch | C. freundii FMCC-B 294 (VK-19) | 68.1 | [7] |
Network Parameters | Artificial Neural Network |
---|---|
MLP 3-8-2 | |
Number of observation points (total) | 308 |
Learning | 216 |
Test | 46 |
Validation | 46 |
Activation functions in hidden layer | Tanh |
Activation functions in output layer | Lin |
Learning error | 0.350 |
Test error | 0.233 |
Validation error | 0.338 |
Learning accuracy | 0.987 |
Test accuracy | 0.990 |
Validation accuracy | 0.977 |
Statistical Index | Data Set | |||
---|---|---|---|---|
L | T | V | F | |
C. freundii population level | ||||
Coefficient of determination (R2) | 0.971 | 0.976 | 0.931 | 0.967 |
Root mean square error (RMSE) | 0.018 | 0.120 | 0.198 | 0.143 |
Mean absolute error (MAE) | 0.091 | 0.088 | 0.141 | 0.098 |
1,3-propanediol concentration | ||||
Coefficient of determination (R2) | 0.976 | 0.982 | 0.979 | 0.978 |
Root mean square error (RMSE) | 0.826 | 0.672 | 0.798 | 0.801 |
Mean absolute error (MAE) | 0.570 | 0.475 | 0.589 | 0.559 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drożdżyńska, A.; Wawrzyniak, J.; Kubiak, P.; Przybylak, M.; Białas, W.; Czaczyk, K. Optimization and Modeling of Citrobacter freundii AD119 Growth and 1,3-Propanediol Production Using Two-Step Statistical Experimental Design and Artificial Neural Networks. Sensors 2023, 23, 1266. https://doi.org/10.3390/s23031266
Drożdżyńska A, Wawrzyniak J, Kubiak P, Przybylak M, Białas W, Czaczyk K. Optimization and Modeling of Citrobacter freundii AD119 Growth and 1,3-Propanediol Production Using Two-Step Statistical Experimental Design and Artificial Neural Networks. Sensors. 2023; 23(3):1266. https://doi.org/10.3390/s23031266
Chicago/Turabian StyleDrożdżyńska, Agnieszka, Jolanta Wawrzyniak, Piotr Kubiak, Martyna Przybylak, Wojciech Białas, and Katarzyna Czaczyk. 2023. "Optimization and Modeling of Citrobacter freundii AD119 Growth and 1,3-Propanediol Production Using Two-Step Statistical Experimental Design and Artificial Neural Networks" Sensors 23, no. 3: 1266. https://doi.org/10.3390/s23031266
APA StyleDrożdżyńska, A., Wawrzyniak, J., Kubiak, P., Przybylak, M., Białas, W., & Czaczyk, K. (2023). Optimization and Modeling of Citrobacter freundii AD119 Growth and 1,3-Propanediol Production Using Two-Step Statistical Experimental Design and Artificial Neural Networks. Sensors, 23(3), 1266. https://doi.org/10.3390/s23031266