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Abstract: In large solar farms, supervision is an exhaustive task, often carried out manually by
field technicians. Over time, automated or semi-automated fault detection and prevention methods
in large photovoltaic plants are becoming increasingly common. The same does not apply when
talking about small or medium-sized installations, where the cost of supervision at such level would
mean total economic infeasibility. Although there are prevention protocols by suppliers, periodic
inspections of the facilities by technicians do not ensure that faults such as the appearance of hot-spots
are detected in time. That is why, nowadays, the only way of continuous supervision of a small
or medium installation is often carried out by unqualified people and in a purely visual way. In
this work, the development of a low-cost system prototype is proposed for the supervision of a
medium or small photovoltaic installation based on the acquisition and treatment of thermographic
images, with the aim of investigating the feasibility of an actual implementation. The work focuses
on the system’s ability to detect hot-spots in supervised panels and successfully report detected
faults. To achieve this goal, a low-cost thermal imaging camera is used for development, applying
common image processing techniques, operating with OpenCV and MATLAB R2021b libraries.
In this way, it is possible to demonstrate that it is achievable to successfully detect the hottest
points of a photovoltaic (PV) installation with a much cheaper camera than the cameras used in
today’s thermographic inspections, opening up the possibilities of creating a fully developed low-cost
thermographic surveillance system.
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1. Introduction

Solar panels are exposed to high degradation due to outdoor operation. Therefore, a
good combination of online predictive diagnosis techniques is required to avoid failures
leading to interrupting power generation.

Initially, the predictive diagnosis techniques explicitly applied to each solar panel
guarantee early detection and isolation of the predictive symptoms that warn of the oc-
currence of some degrading phenomenon that can lead to the inevitable development of
different types of faults or failures [1–3]. For example, let us suppose that one panel in the
array begins to develop degradation due to shading in an incipient manner. In that case, it
will do so as a reduction symptom in power generated by the solar panel [2]. However,
this same symptom can be associated with developing other types of faults in the solar
panels, such as breakage, discoloration, hot-spots, and potential induced degradation PID.
Therefore, to carry out a deeper analysis of the type of fault that occurred, it is convenient
to use modern techniques such as thermography on the affected panel. The predictive
diagnosis aims to detect and isolate predictive symptoms, acting in advance on the photo-
voltaic panels by disconnecting them in order to prevent the development of intermittent
or permanent failures.

PV modules (PVMs) can experience substantial damages that affect constituent materi-
als such as metals, crystals, encapsulating polymers, and, especially, PV cells. Consequently,
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the PV plants will decrease their performance in the power generation capacity. It has
been shown that power reduction is the best indicator to detect the lack of performance
and degradation of a photovoltaic solar installation [4]. For this reason, its study is vital
to allow a correct estimation of the energy production, the useful life of the system, and,
consequently, the installation’s reliability and financial viability.

Some of the failures that occur in PVMs (for example, hot-spots) are unsolvable when
they reach a particular stage of development. Then, the only viable solution to the problem
is the total replacement of the PVM. Much research has been carried out to diagnose failures
in PV installations. However, in most cases, these studies have focused on analysing the
reduction of the power experienced in the inverter of the PVM strings. Studying inverter
signals avoids investments in extra equipment for the supervision of the facilities. However,
it decreases the diagnosis power over PVMs. Rapid detection and isolation of the large
number and diversity of failures in the PVMs need extra sensors to isolate the failures
correctly. Objectively and without a doubt, the basic unit capable of receiving predictive
maintenance is the PVM, where most of the failures of the installation are unequivocally
developed, and the effects of degradation are observable. Consequently, from the point of
view of fault diagnosis, it is interesting to consider the detection, isolation, and analysis
explicitly applied in each PVM.

Degradation modes are called the process by which PVMs lose their characteristic prop-
erties: electrical, optical, chemical, or mechanical. The degradation modes are physically
manifested in the PVMs, in some of their elements or several, simultaneously. Moreover,
it is difficult to differentiate what has produced the degradation since it can be due to
concurrent causes. The root cause of the failure may be due to synergies between different
mechanisms influenced, both in the moment of its appearance and severity, by a series of
environmental factors [5,6].

Due to its operating principle, a PV installation is subject to the climatic/environmental
stress of the place where it is installed, including the following factors:

- Solar radiation: essential for the installation operation to produce the PV effect. It is
also detrimental by giving rise to high temperatures in the PVM.

- Ultraviolet radiation: it is the part of the solar spectrum with the highest energy and
produces photodegradation when interacting with the PVM; the encapsulant is the
most damaged element, producing chemical reactions in the constituent materials.

- Humidity: penetrating the module can affect the electrical connections causing oxida-
tion or corrosion in them, being one of the most aggressive meteorological elements
for the photovoltaic module.

- Snow: this element can give rise to static loads that can vary from 30–50 kg/m3 for
fresh snow and 800–900 kg/m3 for frozen snow, causing breakage of the module itself
or the installation structure.

- Wind: this factor can affect continuously, giving rise to a static and dynamic load for
the PVMs, subjecting them to vibrations that are very detrimental to their structural
integrity [7].

- Hail: this element causes breakage due to impacts on the glass or other elements,
significantly affecting the module’s performance.

- Temperature changes: temperature changes affect the module producing thermo-
mechanical stress. Since the different elements that make up the PVM (glass cover,
solar cells, encapsulant, and rear cover) have different Young’s modules and expan-
sion coefficients, stresses can be generated that lead to the breakage of the cells or
delamination of encapsulation materials.

- Dust and dirt of different origins in suspension contribute to the shading effect and,
in combination with the wind, cause abrasion, damaging the active face of the pho-
tovoltaic modules. Bird droppings can produce the same shading and an especially
corrosive effect on the active face of the module. Losses due to these factors reach
highly variable values. For example, the work presented in [8] shows losses in the
range of 16% to 27% without having carried out any cleaning action in 18 years of
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operation. Adding an anti-dirt layer to the module cover reduces losses due to this
factor, compared to an untreated PVM [9].

- Salt: in those installations near the coast or the sea, the salt can cause corrosion on
some PVM elements, such as metallic or polymeric elements.

- Gas: in those PV plants located near industrial facilities, some gases (O3, NH3, SO2,
NO2, H2S, Cl2...) may appear in the atmosphere, which alone or in combination with
humidity can cause corrosion by becoming acids (HNO3, HCl, H2SO4...).

- Electrical discharges: although this environmental factor has not been analyzed in
depth, it can also cause degradation in photovoltaic modules [10].

- Acts of vandalism: despite not being a weather factor, can be considered an environ-
mental factor.

The factors above do not usually appear in isolation but rather concurrently, so the
degradation of photovoltaic modules increases. Considering environmental factors such as
materials that make up a photovoltaic module, we can establish the following degradation
modes that can appear in crystalline Si PVMs [11]:

- Delamination: loss of adhesion between the different layers of material that make
up the photovoltaic module. It causes two effects: the reflection of light is increased.
Therefore, the light that can be used for the photovoltaic effect is lost, the entry
of moisture into the PVM is facilitated, and another mode of degradation can be
generated: corrosion.

- Discoloration: it is due to the degradation of the encapsulant (compound, as we have
seen previously, usually Ethylene Vinyl Acetate (EVA) or of the adhesive material be-
tween the glass and the photovoltaic cells. The color changes to yellow (a phenomenon
called yellowing in English) and brown (browning in English). In this way, the optical
transmission is modified, reducing the energy generated by the photovoltaic module.

- Corrosion: it consists of the destruction of a metal by an electrochemical reaction
caused by the environment in which it is found, due to contact with water or humidity.
Moisture inside the PVM increases the electrical conductivity of existing metals,
causing leakage currents. Corrosion also attacks the adhesion between the cells and
the metal edge (usually aluminum), causing delamination and favoring the entry of
more moisture. The test based on the IEC 61215 standard [7] produces, among others,
this type of degradation mechanism.

- Module breakage: roof glass breakage is a significant degradation factor in photo-
voltaic modules. They appear in most cases during installation, maintenance, and
transport operations where photovoltaic cells are too often subjected to vibrations,
which facilitate the appearance of cracks or even breakage [12].

- Bubbles: they bear some similarity to delamination, and it becomes a precursor symp-
tom of the latter’s appearance. The bubbles are formed due to chemical reactions that
emit gases trapped inside the photovoltaic module, making it difficult to dissipate heat
in the photovoltaic cells, reducing their useful life due to the increase in temperature
that occurs.

- Potential Induced Degradation (PID): appears when serial connections are used be-
tween different PVMs, producing a sum of hundreds of volts in a string (300–500 V).
PID causes a leakage current that passes from the active layer of the silicon through
the encapsulant (EVA) and the glass front cover. Then, the current reaches the metal
frame, which is favored in hot and humid climates, and in modules that have re-
ceived an application of an anti-reflective coating (ARC, Anti Reflective Coating) on
its surface [13,14].

- Degradation by electrical discharges: PVMs can be subjected to electrical discharges
from storms (lightning), which can damage the photovoltaic module either through
direct discharge or through the magnetic coupling that occurs. It is necessary to design
an adequate protection system to avoid this damage [15].

- Modes of degradation and climatology: Climatology influences the different degrada-
tion mechanisms. Delamination and discoloration will appear in areas where ultravio-
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let radiation is high. Corrosion increases in climates where humidity is an essential
factor. The degradation induced by PID is aggravated in this type of climatology [16].
Also, the probability of electric lightning strikes in the chosen location will influence
the expected energy generation and dictate specific degradation mechanisms.

Among all the degradation modes described above, the generation of hot-spots in
PVMs stands out for their criticality, frequency of appearance, and critical risk of irreversible
damage in PV modules. That is because the phenomenon of hot-spots triggers some of
the degradation modes mentioned above, such as glass breakage, delamination of the
insulating material, lack of electrical insulation, and sometimes catastrophic fires. Before
their qualification, to protect the PVMs with a guarantee, there are international standards
that aim to carry out resistance tests to the appearance of hot-spots.

The appearance of hot-spots in a PV installation is a problem of great importance
since it affects not only the production but also the useful life of installation (it produces
premature degradation and aging). Hot-spots have been a well-known phenomenon for
over 50 years [17], and it persists today [18,19]. Hot-spots frequently appear when a panel
is partially exposed to shaded areas. Consequently, the affected cell (or group of cells)
operates in reverse polarization conditions, dissipating energy instead of generating it.
Therefore, the generation of very high temperatures favors the appearance of hot-spots,
gradually degrading both the generated power and the components of the encapsulation
material of the PVM [20]. One of the reasons for the greater frequency of the appearance
of hot-spots has been the tendency of PVM manufacturers to use thinner wafers, but less
resistant to the appearance of microcracks, with a greater propensity to develop them in the
manufacturing, transportation, and even installation phases [20,21]. Reports from the UK
have highlighted annual power losses of 18.9% associated with shadowing and persistent
inverter failures [22].

However, it has been possible to verify that other causes are the origin of the appear-
ance of hot-spots:

- When mismatching occurs between solar cells [23], that is, there is a mismatch in the
electrical characteristics between the interconnected cells.

- When the cell has been damaged [24].
- The degree of uniformity of the incident solar radiation.
- The type of connection between modules.
- The monitoring of the maximum power point that is carried out on the solar controller.

Under these operating conditions, the cell can present points where its temperature
rises in relation to others surrounding it. Heat dissipation can cause overheating and, in
severe cases of high temperature, cause melting of welds, irreversible damage to the encap-
sulating material, and sometimes cause dangerous fires. These areas with a temperature
significantly higher than the rest of the module are called hot-spots. In investigations on
the appearance of hot-spots in two large PV plants connected to the grid, it was detected
after a visual inspection of trackers that energy production decreased at an abnormal rate.
The detected hot-spots appeared both in the solar cells and in the resistive solder bonds
(RSB) between the cells and the contact ribbons. Both types caused similar irreversible
damage to the photovoltaic modules, but the latter was found to be primarily responsible
for the decrease in energy production detected. The results of this research were of interest
for the routine maintenance of large photovoltaic plants connected to the grid [25].

In PV installations, when hot-spots are detected, the PVM should be taken out of
service to favor the analysis of the root cause of the problem. If the PVM is not disconnected,
it can be unrecoverable in less than a day. Therefore, in our opinion, the state of the facility’s
condition, the early detection, and the isolation of the degradation phenomenon should
be adjusted to maintain adequate sampling frequencies for the mentioned degradation
development time intervals.

It is difficult for the human eye to detect hot-spots, especially in the initial phase of its
development. A technology currently being implemented in the diagnosis and condition
monitoring of similar problems is infrared (IR) thermography [26]. IR cameras can be used
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as surface temperature sensors for indoor or outdoor applications. Passive thermography
applications monitor the temperature of a surface under working conditions. More recently,
active thermography studies the effects of external energy sources on surfaces. An external
heat source introduces a heat perturbation, and the IR camera records a sequence of the
temperature variation due to defects. A considerable amount of non-destructive test
procedures have been developed with IR thermography. For example, Ref. [27] points out
the use of IR cameras for inspecting wind turbine elements inside the nacelle (gearbox,
generator, brake, etc.) or outside, such as the blades (ice detection). Due to the capability
of near-surface defect detection, structure inspection is another field where IR image
processing has gained attention [28]. In these applications, active IR thermography is the
technique to detect flaws in concrete surfaces. A processing algorithm locates and quantifies
the defect. The same procedure is explored by [29] for automated aerial inspection of
aerospace structures. Specific algorithms were used to produce accurate results. Metallic
corrosion [30], asphalt pavements [31], or even biomedical applications [32] are other
examples of IR thermography use.

So, PV hot-spots can be precisely detected, isolated, and analyzed using IR inspection
by well-trained maintenance teams, which has become a common practice in current PV
applications, as shown in [33]. A thermal imaging camera captures thermal images of
hot-spots that show a temperature distribution in terms of a colored pattern known as
a thermogram. The following references discuss hot-spot observational analysis using
thermal imaging and sometimes redundantly with electrical energy loss analysis due to
hot-spots under shadowing in the photovoltaic solar array [34].

The design and development of hot-spot mitigation techniques using a simple, costless,
and reliable method are proposed in [33,34]. The hot-spots analysis in the PV system was
carried out using a FLIER i5 IRT.

Applying the above actions safeguards the PVM so a more detailed diagnostic can be
done. In this sense, a set of references whose common denominator is IR thermography
and red, green, and blue (RGB) cameras, using various techniques for specific analysis,
are highlighted below. Most research [34–38] proposes IR imaging as the best technique
to identify specific types of faults, including the development of hot-spots and areas,
degradation effects, discolored PV cells, temperature degradation effects in bus bars, contact
solder bonds, blisters, and broken solar cells with interrupted interconnects or cracks.

Drones make it possible to implement different configurations to detect different types
of failures. One of the most used configurations is the dual configuration formed by an RGB
camera and an IR thermographic camera [39]. Recent research [40–44] shows improvements
in thermographic and artificial vision techniques oriented to PV diagnosis with drones.
They develop algorithms to correct camera angles regarding the position of the panels in
order to obtain more precise diagnostic data and find more exact locations of the defective
PVMs among hundreds or thousands of PVMs in large PVIs.

Besides fault detection, condition monitoring is essential to keep the PV system fault
free. The condition monitoring of the PV system has been approached with different
techniques. One of the most used is the analysis of the I-V curve [45]. This technique
compares the PV system’s normal working response represented by the I-V curve with the
actual response to find deviations due to degradation. I-V curve monitoring gives essential
information for monitoring, but it cannot isolate the cause of the degradation. A recent
study [46] shows that I-V curves can detect most manufacturing defects but deeper analysis
needs infrared images and electroluminescence (EL).

Imaging techniques (IR and EL) have been widely introduced in PV condition mon-
itoring due to the advances in digital cameras [47]. As pointed out by [48], EL imaging
involves high time for EL measurement, thus liming this technique to small-scale instal-
lations. Thermal cameras give surface temperature information through IR images [47].
Because it performs non-destructive tests, is portable, gives real-time information, and is a
safety technology for humans, IR imaging is being adopted by many researchers [49].
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One of the disadvantages [49] of IR imaging is the cost of the equipment. In [50],
a drone-based IR thermography is proposed for PV plant monitoring. Although it is a
low-cost approach, the solutions presented range from USD 6.000 to USD 15.000. Only the
camera, like the ones used in [50,51] can cost more the USD 5.000. The increasing use of
PV systems for power generation makes it necessary to develop low-cost approaches to
protect even residential PV installations.

In this work, the development of a low-cost system prototype is proposed for the
supervision of a medium or small photovoltaic installation based on the acquisition and
treatment of thermographic images, with the aim of investigating the feasibility of a real
implementation. The work focuses on the system’s ability to detect hot-spots in supervised
panels and successfully report detected faults.

To achieve this goal, a low-cost thermal imaging camera is used for development,
applying common image processing techniques, operating with OpenCV and MATLAB
R2021b libraries. In this way, it is possible to demonstrate that it is achievable to successfully
detect the hottest points of a PV installation with a much cheaper camera than the cameras
used in today’s thermographic inspections, opening up the possibilities for the creation of
a fully developed low-cost thermographic surveillance system.

This manuscript is organized as follows: In Section 2, sensors and devices used in the
supervision of photovoltaic electrical energy are presented. The photovoltaic generation
system used and the tests carried out are described in detail. The proposed method for PV
supervision and predictive diagnosis to avoid failure occurrences is explained. In Section 3,
the results of the experiments are presented. Section 4 contains a discussion of results as
well as some additional considerations and findings obtained from the experimental trials.
Finally, in Section 5, some conclusions regarding the advantages of the proposed method
for fault prediction are drawn.

2. Materials and Methods

This section describes the choice of a thermographic camera suitable for the study, the
preparation of an image acquisition setup, and the development of a method capable of
processing these images for the localization of hot-spots on solar panels.

2.1. Materials
2.1.1. Thermographic Camera

The camera chosen for the development of the work is the FLIR Lepton 3.5 thermal
camera with FLIR Systems 3.2a radiometry (Figure 1). This small module was chosen first
for its resolution and sensitivity. In addition, with its measuring range of −10 ◦C to 140 ◦C,
it is sufficient for the detection of hot-spots, which at most can reach 120 ◦C, thus without
giving up good thermal sensitivity. The normal operating temperature has also been a
key point for the choice of this camera since the second option considered (the NF-522 of
200 × 150 px.) was not chosen because it has an operating temperature range of up to 45 ◦C,
which, for outdoor work, without shade, can be risky. The major advantage of this module
is its price with respect to its resolution and sensitivity, which the other options cannot beat.
In addition, the 3.5 model with radiometry is able to detect the actual temperature of the
readings and not an estimation based on the ambient temperature.

On the other hand, it should be noted that this module alone is incapable of trans-
mitting information easily to, for example, a computer. This will require the purchase of
an interface to enable communication. Various models from different manufacturers are
available for the integration of the Lepton 3.5 module. For example, development boards
with a socket compatible with Lepton 2.X and 3.5 are available.

The module chosen for the work is the PureThermal Mini Pro JST-SR Lepton Smart
I/O Module developed by GroupGets. It is a programmable module for the chosen camera.
It includes a serial configuration to easily operate on a host PC via UVC 1.0 USB, making use
of a JST-SR to USB connection. It is compatible with Windows, Linux, Mac, and Android.
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One of the reasons this module was chosen is that it offers access to in-house firmware
development for custom applications. For Windows, there is the FLIR Lepton User applica-
tion that supports radiometric readings from the camera for image acquisition.

The other features of the module are detailed below:
9 Hz color video transmission via USB in real-time.
STM32F412 ARM microprocessor, capable of internally processing images and trans-

mitting them without the need for an external system.
Ability to upgrade the STM32 ARM MCU via USB. 5V power supply via USB.
Supports Lepton 2.X and 3.X modules.
Compact design. Dimensions: 19.5 × 15.32 mm.
The final purchase price, including taxes, duties, and shipping for the two modules is

EUR 419.32.
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2.1.2. Photovoltaic Installation

The tests are performed on a 17.5 kW photovoltaic installation located on the rooftop
of the Escuela Técnica Superior de Ingeniería del Diseño (ETSID) at the Vera campus of the
Universitat Politécnica de València (UPV) (Figure 2).
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Figure 2. PV installation.

This is a grid-tied photovoltaic installation erected in 1999. It consists of its solar field,
a connection system, six inverters that make up a balanced three-phase system, a protection
system, and a data acquisition and transmission system for computer analysis.

The installation has a total of 234 Atersa A-75M panels. They are crystalline silicon
modules of 21 V Voc and 17 V in the MPP. The rest of the characteristics are detailed in
Table 1.
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Table 1. Characteristics of Atersa A-75M panels.

Electrical Characteristics Value Units

Power 75 W
No of cells 36 −

Maximum Power Point Current (IMPP) 4.40 A
Maximum Power Point Voltage (VMPP) 17.00 V

Short Circuit Current (Isc) 4.80 A
Open Circuit Voltage (Voc) 21 V

Temperature Coeficient of I (α) 2 mA/◦C
Temperature Coeficient of V (β) −97.20 mV/◦C

Maximum System Voltage 700 V

PHYSICAL CHARACTERISTICS Value Units

Dimensions 1200 × 527 × 35 mm
Weight (approx.) 7.50 kg

The panels of the field are arranged in a uniform plane at 45◦ on the horizontal plane,
and the installation is electrically subdivided into seven solar fields. Solar field 1 consists of
42 panels connected to a direct current (DC) distribution board. Fields 2 to 7 are made up
of 24 parallel branches of 8 panels in each series.

In the inverter room, there are six inverters (Tauro 4000/8), a DC distribution board, a
display to control the voltage, current and power of each line of the installation, a protection
board and a data acquisition system to process the information.

The entire plane on which the PV panels are located is elevated 3.23 m above the
horizontal (from the ground to the lowest part of the panels). The orientation of the entire
installation is south-southwest.

For testing purposes, the thermographic camera can be placed directly in front of the
solar panels. There is a main area of approximately 7 × 32 m, and a more limited access
area between the access to the terrace and the rest of the solar field of 2 × 12 m.

2.2. Methods

A method has been developed to achieve sufficient accuracy to detect hot-spots in
the 160 × 120 px. resolution images obtained. To do this, first, all the captured images are
conditioned by applying calibration corrections, adjusting the emissivity, and normalizing
values. The next step is to correctly segment and automatically delimit the Region Of
Interest (ROI) using only the thermal camera. Once the area where the hot-spot recognition
is to be performed, the application for the detection and classification of the detected points
is developed.

For this task, we have used MATLAB 2021b packages: Computer Vision Toolbox,
Computer Vision Toolbox Interface for OpenCV in MATLAB, MATLAB Support Package
for USB Webcams, and Statistics and Machine Learning Toolbox.

2.2.1. Image Conditioning

Camera calibration is necessary for optical error compensation and distortion attenua-
tion. For this task, MATLAB includes a very useful function for the calibration of any type
of camera: the Camera Calibrator interface. Once this application is opened, it is necessary
to enter the type of pattern to be recognized by the algorithm: “checkerboard”, “symmetric
circle matrix” or “asymmetric circle matrix”. In this case, the first of the three options is
selected, and the algorithm is informed of the size to expect the calibration pattern to be, in
this case, 7 × 7 cm.

Once the type of pattern is selected, the images of the calibration set are loaded into
the application, which are nothing more than thermographs of the real pattern taken
from different distances and angles; and the program automatically detects the points
of greatest contrast on the board. At this point, the calibration function can be executed,
which generates a prediction of the appearance of these points in the images according to
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the calculations made from the pattern recognition. In this case, the application detected
13 of the 13 photos provided and reported that 2 of them were partially recognized. No
image was automatically discarded. However, the application shows the errors between
its prediction and the first detection and gives the option to remove the outliers from the
computation. In this case, the two thermographs that added the most error were eliminated.

Once the calibration session is finished, a code is automatically generated with the
optical parameters of the camera deduced by the application. This code is stored and can
be used for image correction, even in real-time.

All thermal images have the defect of capturing not only the long-wave radiation
emitted by a body but also the short and medium-length ones reflected and transmitted by
the surrounding bodies. The emissivity correction in the PureThermal Mini Pro module is
manual, i.e., it must be performed explicitly. This is why an emissivity correction must be
performed, i.e., the error of the reading due to wave reception from other sources must be
calculated. To do this, two thermographs of the same radiating body (any object) must be
taken at two different temperatures. Through a series of calculations (Equation (1)), one
can find the difference between the radiation emitted at the two temperatures and deduce
what percentage of the radiation is due to the object and what percentage is not. Once this
is known, a correction map, applicable to any image taken, is generated. In the case of
correct emissivity correction, the temperature readings will be real since the radiation read
will only be due to the emitting body.

B =

(
A −

(
1 − ∆M

∆t

)
·Mt2− ∆M

∆t ·t2

1− ∆M
∆t

)
∆M
∆t

(1)

where:
A: is the image to be corrected
B: is the corrected image
∆M: is the difference between the matrices of different temperatures (Mt2 − Mt1)
∆t: is the temperature difference (t2 − t1)
As mentioned above, RGB images have an 8-bit color depth, so each pixel takes a

value from 0 to 255, depending on whether the radiation reaches it to a greater or lesser
extent. This value is assigned to a color according to the palette selected in the Lepton User
App. However, for RAW images, the color depth is 16-bit, which means that each pixel
takes a value from 0 to 65,536. This generates a very low contrast image since, if there are
no large temperature differences, most of the values will be concentrated near the median
of its color map. Therefore, it is necessary to apply an Automatic Gain Control (AGC) or,
failing that, a normalization of the RAW images.

If we import a .tiff file into MATLAB®, we see that its content exists, but the difference
between the pixels of the matrix is very small in relation to its color depth, so its contrast
is very small. To apply the normalization of the images, a small function (normGan.m)
was developed. This function receives, as a parameter, the matrix T in ‘.tiff’ format and
returns a normalized A matrix passed to grayscale (double values from 0 to 1), as well as
the smallest and largest value of the non-normalized A matrix. For normalization, first,
it divides each value of T by 65,536, and then it applies the normalization calculation
expressed in Equation (2). It is important not to lose the matrix T since it is the only one
that actually contains the thermal information.

Anorm =
A − amin

amax − amin
(2)

Thus, the color space is reduced to nothing more than what is necessary for each
thermal image. This function will be called whenever it is necessary to normalize any RAW
matrix. The contrast enhancement can be seen in Figure 3.
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and binarizes their values, if the contrast between them is suficiently relevant. The way in 
which a pixel is compared with its neighbors is what differentiates some algorithms from 
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Figure 3. (a) Unnormalized RAW image; (b) resulting normalized image.

2.2.2. Segmentation of the Region of Interest

The first step in any artificial vision application is, once the image pre-processing has
been performed, to segment the area of interest to be analyzed so as to omit calculations in
areas that do not require it. For this work, the part of interest is the area of the image where
the solar panels are located. Once this area is detected, it is segmented and cropped, and
then work on the search for the hot-spots in that area.

The method tested has been the application of an edge detection algorithm. These
algorithms compare the value of the analyzed pixel with the values of neighboring pixels
and binarizes their values, if the contrast between them is suficiently relevant. The way in
which a pixel is compared with its neighbors is what differentiates some algorithms from
others. In this work, two different detection algorithms were tested: “sobel” and “canny”.

The first one takes into account the direction of the gradient of the neighboring values
once a Gaussian filter is applied, which results in a “blurred” or fuzzy image. Once this
transformation is obtained, the algorithm binarizes the pixels where the grayscale gradient
is larger. The second one operates in a very similar way, except that it additionally takes
into account the gradient direction of its own neighbors: if both share the same direction, it
is valued as a high contrast edge; if it does not share a gradient direction with any neighbor,
it is considered a low contrast edge. If the analyzed pixel does not even represent a high
point of the gradient, it is considered not to be an edge.

Applying these two filters to a normalized grayscale thermogram yields the results
shown in Figure 4.
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Figure 4. Different applications of edge detection filters for the same image. (a) Raw image; (b) Sobel
filter; (c) Canny filter.

The best results are given for higher thresholds, i.e., more restrictive: they show only
the detected edges of the higher gradient. It is observed how the “canny” filter obtains
fewer details, i.e., performs a more demanding filtering. Therefore, for the following steps,



Sensors 2023, 23, 1314 11 of 28

the development will be done with this filter, since the ROI content is not of interest, only
its detection, for the time being.

The next step was to remove the smaller elements from the image treated with the
“canny” filter. This is done with a simple function that removes those groups of linked
pixels from a binary image that do not reach a given area (bwareaopen.m) in MATLAB.
The result is shown in Figure 5.
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Figure 5. Result of removing small objects applied to the result of the “canny” filter. (a) Raw image;
(b) Edge detection with Canny filter; and (c) Small objects removing.

Once the result of the “canny” filter is cleaned, the solar field margins are obtained, as
intended. A binary image is thus obtained, which is divided into three parts by the detected
edges. If it were possible to invert the values of the central area, it would be possible to
obtain a binary mask for the ROI segmentation. A simple solution is to make use of the
imfill.m function in MATLAB. This function detects closed areas within a binary image and
converts them from 0 to 1. To do this, the coordinates of the initial pixel from which to fill
an area can be given as a parameter. Since all images are centered in the solar field, the
central coordinate [60, 80] or [160/2, 120/2] will always lie within this region. Once the
action is executed, the result is as shown in Figure 6.
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Figure 6. Result of filling the central area of the binary image. (a) Raw image; (b) Edges filtered; and
(c) Area filled.

This result is due to the fact that the executed function has understood the whole
image as a single open area since there are stretches of the edge lines that are so thin that it
is considered an open gap. To solve this, a simple algorithm is applied to thicken the edges
of a binary image, and the function imfill.m is called again. Next, the filled area is reduced
with the same function used for the thickening to compensate for its effect and thus not use
more pixels than necessary. Finally, it is filtrated to remove outlier pixels resulting from
the transformation operations. The result is the correctly segmented area of interest. By
performing an image multiplication, the original image segmented according to the desired
ROI is obtained (Figure 7).
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Figure 7. Example 1 of the final result of the automatic segmentation. (a) Raw image; (b) Edges 
thicked; (c) Area of interest; and (d) segmented image. 
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2.2.3. Algorithm for Hot-Spot Detection

Once the area where the hot-spots are to be searched is segmented, an algorithm
capable of labeling a certain number of hot-spots in an image and displaying their tempera-
ture is developed. For this purpose, a function is developed in MATLAB that will use the
resources reviewed in previous sections for the conditioning, segmentation, and recognition
of the thermographies made. The algorithm works in such a way that it always prioritizes
the search for the hottest point, then keeps detecting points up to a user-specified amount.
In addition to the number of detected points, the number of attempts for recognition and
the limit temperature can also be configured, so that not only the hottest point can be
displayed but all points below a threshold. Additionally, the physical characteristics of
each detected hot-spot such as area, longest axis, shortest axis, and inclination with respect
to the X-axis can be accessed.

Initially, the code executes all the image loading, correction, and processing instruc-
tions. Next, it segments the ROI and applies the search and labeling algorithm. The latter
consists of two steps: the search and segmentation of the detected objects (hot-spots) and
their subsequent labeling and calculation of their temperature.

The developed function receives as initial parameters:

- T: matrix containing the RAW information of the loaded image.
- n_points: number of hot-spots to be displayed. (Not to be confused with the number

of hot-spots calculated. To display all detected hot-spots, the text ‘all’ is passed as
a parameter).
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- n_attempts: number of iterations that the function performs to detect the hottest points
of the thermogram. The more attempts, the slower the algorithm becomes.

- window: size of the window of neighbors of the target pixel at each iteration. The
larger the window, the more imprecise the search becomes and the faster the algorithm
becomes; the opposite is true, if the window size decreases.

- t_lim: temperature limit for point detection. It sets the temperature from which the
hot-spots are searched, e.g., if t_lim = 40, only the hottest spots in the image below
40 ◦C will be searched.

The first step that the algorithm performs is to search for the hottest point of the image,
and once it is found, is compared with the value of t_lim, and if it is lower than this, the
position of the pixel is stored (Figure 8). Once the pixel position is obtained, a window
(of variable size from the code) including the nearest neighbors is selected. The resulting
matrix (n × n window, depending on the chosen size) is binarized with imbinarize.m with
a high threshold (>0.9), thus obtaining the points of values closest to the selected pixel. The
result of this binarization is stored in a binary image that will accumulate the results of
each loop (Figure 9).
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Figure 8. Visualization of the first three detected points. (a) First point; (b) Second point; (c) Third point.
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Finally, the segmented points are extracted from the original image, on which the 
loop is executed again. This ensures that the hottest point is not always detected but that 
the different points of the thermal image are selected in descending order at each iteration. 

Once the “attempts” indicated by the user are exhausted, the described loop ends, 
which results in a binary image with the detected zones. These zones can be overlapped 
without a problem and thus generate a larger object (Figure 10). The size of these is fil-
trated according to whether they are too small, to avoid noise and erroneous readings, or 
too large, since an area of the thermogram that is much more illuminated than the rest 
would end up being detected as a large hot-spot. These limit sizes are 2 pixels as the lower 
limit and 200 as the upper limit. It must be taken into account that the resolution of the 
images is 120 × 160, and a single solar cell never occupies more than 12 pixels. Objects of 
more than 200 pixels would mean more than 16 adjacent cells as hot-spots. By the very 
cause of the occurrence of hot-spots, it cannot happen that such a number of cells fall be-
low the overall performance of the panel and thus increase their temperature simultane-
ously. It is for this reason that large detected objects are filtrated since their temperature, 
higher than that of the other points of the thermography, is probably the result of direct 
connections from the Sun or partial shading of the solar field. 

Thus, with the binarized image of all localized hot-spots, each individual object (all 
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To obtain the temperatures at which each of the points are located, previously, during 
the image processing, a call to the custom function calcTemp.m is made. This function 
receives an input parameter of a matrix (thermography), in RAW format of 120 × 160, and 
returns a corresponding matrix of 120 × 160, with the calculated temperature for each pixel 
of the image. In addition, it returns the maximum temperature, the minimum tempera-
ture, and the temperature gradient between these two values for the scale of the heat bar 

Figure 9. Binarization and storage of the neighboring pixel window. (a) Iteration 1; (b) Iteration 7.
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Finally, the segmented points are extracted from the original image, on which the loop
is executed again. This ensures that the hottest point is not always detected but that the
different points of the thermal image are selected in descending order at each iteration.

Once the “attempts” indicated by the user are exhausted, the described loop ends,
which results in a binary image with the detected zones. These zones can be overlapped
without a problem and thus generate a larger object (Figure 10). The size of these is filtrated
according to whether they are too small, to avoid noise and erroneous readings, or too
large, since an area of the thermogram that is much more illuminated than the rest would
end up being detected as a large hot-spot. These limit sizes are 2 pixels as the lower limit
and 200 as the upper limit. It must be taken into account that the resolution of the images
is 120 × 160, and a single solar cell never occupies more than 12 pixels. Objects of more
than 200 pixels would mean more than 16 adjacent cells as hot-spots. By the very cause
of the occurrence of hot-spots, it cannot happen that such a number of cells fall below the
overall performance of the panel and thus increase their temperature simultaneously. It is
for this reason that large detected objects are filtrated since their temperature, higher than
that of the other points of the thermography, is probably the result of direct connections
from the Sun or partial shading of the solar field.
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Thus, with the binarized image of all localized hot-spots, each individual object (all the
groups of pixels connected to each other) is labeled as a different hot-spot. For each point,
its area, centroid, length, and width are obtained. Here, a further filtering is performed:
any detected hot-spot, which is too long in relation to its width or too wide in relation to its
length, is eliminated. This serves to filter possible edge readings of supports, buildings,
or structures that may have passed through the first segmentation of the image and the
subsequent filtering of objects by size.

To obtain the temperatures at which each of the points are located, previously, during
the image processing, a call to the custom function calcTemp.m is made. This function
receives an input parameter of a matrix (thermography), in RAW format of 120 × 160,
and returns a corresponding matrix of 120 × 160, with the calculated temperature for
each pixel of the image. In addition, it returns the maximum temperature, the minimum
temperature, and the temperature gradient between these two values for the scale of the
heat bar in the graphic. As mentioned in previous sections, the reading received by each
pixel of the Lepton 3.5 operating in RAW, and with the “TLinear” function enabled, is
translated to a 16-bit integer value. Each value represents the temperature in centikelvin
(cK), so Equation (3) is applied to calculate its equivalence in Celsius degrees. Once the
change of units has been applied, we have a matrix with the readings in degrees Celsius for
each pixel.

TC =
TcK
100

− 273.15 (3)

where:
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TC: is the calculated temperature in Celsius.
TcK: is the temperature in centikelvin of each pixel.
To find the temperature of each detected hot-spot, we simply perform an image multi-

plication of the obtained temperature matrix and the segmentation of the corresponding
point. From the resulting image, the average of all non-zero pixels is calculated, and the
pixel with the highest temperature is found. Thus, the average temperature of the hot-spot
region (T_reg) and its maximum point temperature (T_punt) are obtained.

Finally, the original image is shown together with the locations obtained by the
algorithm for each of the detected points. Each point also shows the average temperature
of the contained region and the maximum point temperature in that region (Figure 11).
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Figures 12 and 13 show the flow-diagram of the proposed method for hot-spot detec-
tion. The overall operation of the algorithm is described in Figure 12 and the search and
labeling part is detailed in Figure 13.
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3. Results

The proposed hot-spot detection algorithm has been applied to a set of 31 images taken
under the calculated optimal conditions: distance to the installation of 5 m, camera height
4.5 m, horizontal inspection angle 0◦, and a variable position from 0 m to the end of the
installation (32.4 m), at an interval of 2 m per thermography. Thus, the first 16 thermographs
covering the total solar field voltage were taken at 16:00 h in the afternoon of 14 September
2022. Then, the same thermographs were taken again, under the same conditions, three and
a half hours later, at 19:30 h on the same day. The results of these images, once segmented
and treated, are presented in Figure A1, in Appendix A. As explained before, the first 16
correspond to the thermographs taken at 16:00h (irradiance of 312.6 W/m2) and the others
to those taken at 19:00h (irradiance of 2.81 W/m2).

For all of them, the algorithm was used to ask for the return of all the hot-spots it was
able to find. The parameters of the function are set to: input matrix Tn; hot-spots: ‘all’;
number of attempts: 100; window size: 3; and temperature limit: 30.

A large hit rate is observed for the first 16 thermographs, which is not repeated for
the next 15. This can be explained because the irradiance at 19:00 is very low (<50 W/m2).
For these irradiances, the temperature readings are not reliable since the thermal contrast
for such irradiances is very small. Moreover, because the solar cells produce less current,
defective cells that have reached reverse polarization do not end up dissipating as much
power. Thus, it can be seen how from Figure A1(m) onwards in the image set, the artifacts
and outliers start to become constant. However, due to the poor state of the PV installation,
it can be seen how, even with so little solar radiation, visible hot-spots are produced along
the entire solar field. Even so, the algorithm is still able to detect these hot-spots.

For the first 16 images, the segmentation is successful and does not fail. For the next 16,
because of the low thermal contrast, the segmented area is confused with the surroundings
of the installation, thus giving rise to readings of hot-spots outside the solar field. Obviously,
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these readings are erroneous; even if the temperature readings are correct, it is of no interest
to know the values at these points.

The maximum stored temperatures are listed in Table 2.

Table 2. Maximum temperature recorded in each of the thermographs.

Image Temp. (◦C) Image Temp. (◦C)

1 48.63 17 -
2 45.09 18 -
3 45.18 19 -
4 - 20 -
5 34.25 21 -
6 39.65 22 -
7 41.89 23 -
8 60.75 24 -
9 53.74 25 -
10 46.53 26 36.98
11 47.79 27 34.82
12 44.69 28 34.43
13 44.56 29 35.12
14 45.44 30 35.44
15 45.85 31 -
16 44.66 - -

The average temperature of the maximum hot-spots for the images taken at 16:00 is
43.04 ◦C. The average temperature of the maximum hot-spots for the images taken at 19:30
is 35.36 ◦C (excluding temperature data from outside the PV field). If the normal operating
temperature of the cells is calculated according to Equations (4) and (5) taken from the
Tamizh-Mani method, under the meteorological conditions taken at the two times of the
day, it can be calculated that the hot-spots during the hours with the highest irradiance
exceed the normal operating temperature by 52.3%, and during the hours with the lowest
irradiance by 53.53%.

T16:00 = 0.943 × 28.8 + 0.028 × 312.6 − 1.528 × 11.6 + 4.328 = 22.51 ◦C (4)

T19:00 = 0.943 × 26.1 + 0.028 × 2.81 − 1.528 × 6.6 + 4.328 = 18.93 ◦C (5)

There are two specific cases in which the algorithm does not detect anything or only
detects one point, although it is obvious that there are others. These are the case of images
31 and 12, respectively. In the case of Figure A1(e1), the unusual response is attributed to
the appearance in the lower left corner of a piece of the building itself, which, being hotter
than the solar field, will have accumulated all the loop attempts in that area and then the
resulting object will have been filtered out because it exceeds the maximum size of the
client point. The case of Figure A1(l) is due to an exceptional case where the view window
encloses only very-high intensity points. Once this area is binarized, as all-high-value dots
remain in the same window, the binarization threshold, which is set to 0.9, determines that
there is not enough contrast between the dots, and therefore the whole window is set to 0.
This implies that no pixels are stored in the binary hot-spot mapping, and therefore, no such
pixels are removed from the original image so that in the next iteration, the same hot-spot
is still detected over and over again. This problem can be solved either by increasing the
size of the window so that the contrast with the other neighbors becomes noticeable or by
changing the threshold value of the window binarization to a lower one.

Already at first glance, the thermographs show a key flaw in the installation: the
junction boxes are affecting the temperature of the plate. This can be seen in the fact that
each of the modules has, without exception, an area of constant higher temperature and
size between the different plates just at the upper edge of the frame (Figure 14).
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mography of the solar field was taken, it was very clear that there were multiple hot-spots 
throughout the entire installation. Some of these points were not cells but the entire PV 
panels (Figure 15). The damage to the installation is multiple, and the wear of the compo-
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However, this is not the major flaw detected in the installation. The first time ther-
mography of the solar field was taken, it was very clear that there were multiple hot-spots
throughout the entire installation. Some of these points were not cells but the entire PV
panels (Figure 15). The damage to the installation is multiple, and the wear of the compo-
nents is, in some cases, extreme. Ethylene Vinyl Acetate (EVA) wear does not always have
to mean hot-spots, but by comparing the thermal images with the damaged panels, it is
clear what is causing all these hot-spots to appear.
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Figure 15. Image with a damaged PV panel.

It can be concluded that the condition of the installation is bad, and it generates
constant performance losses. Urgent intervention is needed to repair or replace modules,
or soon more panels will be irreversibly damaged. Some panels from which normal
temperature readings are obtained do not show such severe degradation.

For the distance evaluation, the algorithm is asked to display all the hot-spots it finds
in images with the same angle, position, and height (Parameters: T,’all’,100,2). The modified
parameter, in this case, is the distance to the facility. Thus, Figure 16a–f show the same area
of the facility only at distances of 7 and 3 m, respectively. Figure 16g–l follows the same
criterion but with a steeper angle than the previous ones.

The first difference observed is the change in temperature reading. In Figure 16, only
the maximum point temperature of the hottest point is shown. It can be seen how, for the
thermographs closer to the installation, a much higher temperature is detected than the
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one read at a greater distance. It is worth noting that for the case of Figure 16j–l it can be
expected that such high-temperature points are the result of the reflection of the Sun on the
panels. However, for Figure 16a–f, it becomes evident that for the longer distance image,
the temperatures are much lower than what might be expected. One possible justification
for this is that at large distances, the value that each camera pixel records is a “blurred”
image of the region. This effect can lead to a weighting of the temperature at that point and
thus obtain a lower temperature than that read from close-up.
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in recognizing the area of interest, but the temperature measurement is impaired due to 
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horizontal angle. To do this, thermographs will be taken from the same distance, position 
and height, and the angle will be varied (Figure 17). 

Figure 16. Different thermographies maintaining position and angle for distance comparison.
(a,d,g,j) Raw images; (b,e,h,k) segmented images; and (c,f,i,l) final image.

Therefore, it can be stated that at a greater distance, there is no loss of effectiveness in
recognizing the area of interest, but the temperature measurement is impaired due to the
low geometric resolution.

The previous process is repeated for the comparison of the results according to the
horizontal angle. To do this, thermographs will be taken from the same distance, position
and height, and the angle will be varied (Figure 17).

It can be seen that for less steep angles, the area of interest detection algorithm works
much better than for larger angles. This is due, once again, to the low resolution of the
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camera: at longer distances, the contrast is much lower, so the edge search is much more
complicated, and artifacts end up appearing that lead to the selection of an unwanted area
of the image.
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Another observation that can be extracted from this sample is that, despite detecting
the ROI correctly, in the set for 7 m (Figure 17), the hot-spots are not detected correctly,
while in the same case, in the set for 3 m, they are. This is in agreement with the results
discussed in the previous section. Focusing on the segmentation results for the 3-m set, we
see that, although detection fails, the failure is less critical than in the 7-m case (Figure 18).
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4. Discussion

The feasibility of using a low-cost camera to automatically detect hot-spots in PV
installations has been demonstrated. The use of the FLIR Lepton 3.5 camera, together with
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the PureThermal Mini Pro module, has been satisfactory from this perspective. Considering
that this is a development module, and not a fully functional thermal camera, the smart I/O
adapter module, together with the specific user application, is very useful as an interface
between a common computer and the hardware module. Still, far from being an advanced
interface, the Lepton User App allows important operations to be performed on the camera
without accessing its embedded software, such as Flat Field Correction (FFC) and RAW or
RGB operation.

The temperature measurement range has been adequate for the application developed,
not having recorded temperatures that exceeded any of the specified limits (−10 ◦C to
140 ◦C).

As for the spatial resolution of 120 × 160 pixels, it has proved to be sufficient to
successfully detect the hottest points of the installation under study. Although, it is not the
most desirable resolution for the purpose, since in the field of automatic detection, it has
proved difficult to select precise areas and recognize the smallest points.

The field of view of 57◦ horizontally and 71◦ diagonally has proven to be more of a
problem than an advantage for the intended application, as its relationship to spatial resolu-
tion brings with it certain disadvantages. Despite being able to take thermal measurements
of very large scenes, its limited resolution makes these measurements at the extremes of
the images very inaccurate and, therefore, not very reliable (Figure 19a). On the other hand,
if more precise measurements are to be made by bringing the camera closer to its target,
the “fisheye” effect is substantially increased (Figure 19b).

The physical characteristics of the camera are a clear advantage for the required ap-
plication. The weight and size of the camera, together with the module (19.5 × 15.32 mm,
<200 gr.), makes it very easy to handle and allows it to be placed in virtually any con-
figuration required. All this is especially useful for the inspection of PV installations, as
considerable heights are usually required for good thermographic readings. A high weight
at the required heights can cause problems. In addition, its small size generates very low
wind resistance, so image stability can be assured with even the most rudimentary system.
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Finally, the communication and power supply via the Smart I/O module via JST-USB
is very convenient. With a power supply voltage of 5 V and a current consumption of 30 mA
in normal operation and 130 mA when using the shutter, its power consumption never
exceeds 650 mW of power. This means that it can be powered via USB without any problem
and opens the door to its use with light batteries. In addition, being a programmable
module, not only can it communicate via USB, but the module can also be reprogrammed
via USB.

The extracted image banks have proved to be sufficient for testing the hot-spot de-
tection rate of the installation. However, not all the images taken have been satisfactorily
analyzed; many of them contain readings that may give diagnostic errors.
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The main reason why misdiagnosis occurs is due to the presence of thermal reflection,
mainly from the Sun. Figure 20 shows how, when the Sun strikes the plates at just the right
angle, the thermography clearly shows reflections in the solar panels.
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The height of the camera was adjusted to the minimum calculated value; therefore,
the height at which it was finally placed (4.5 m) is not the optimum (5 m). This is evident in
the thermo-graphs taken at the calculated ideal distance (6 m from the installation) when
a uniform reading of the temperatures of all the plates is not obtained (Figure 21b). This
effect is even more pronounced when the distance is smaller (Figure 21a).

However, by using a greater height, this effect would be reduced. In fact, when the
camera is moved further away, there is an improvement in the uniformity of the solar
field readings (Figure 21c) since at a greater distance, the equation used to determine the
optimum height would result in a lower minimum height.

On the other hand, it is safe to say that the time of day greatly affects the readings. In
addition to the possible variations due to the position of the Sun, the irradiance received by
the solar field and the ambient temperature vary the results of the thermographs. These vary
according to the time of day, being higher at noon and lower in the morning and evening.
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This work aims to lay the groundwork for the development of a fully autonomous
hot-spot recognition system. The proposal reviewed in this work has demonstrated the
feasibility, under the conditions reviewed, of using the Lepton 3.5 camera for its application
in the monitoring of photovoltaic installations. To take full advantage of the potential of
this piece of hardware, new commands can be programmed through its flash memory and
thus implement an algorithm similar to the one developed in this work autonomously,
without the need for an external PC. With this, a whole embedded and autonomous system
for hot-spot recognition could be integrated.

The main points to be further developed in this line of work would be the addition of a
low-cost RGB camera to improve the recognition and location of the points; an improvement
of the assembly that would allow the thermal module to perform sweeps in the X and Y
axes, or even raise and retract the support mast; the programming of the algo-rhythms in
the same module or the application in real-time of the analysis (video transmission).
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5. Conclusions

The programming of an external algorithm for processing the acquired thermal images
has made it possible to test the capabilities of the Lepton 3.5 module and the PureThermal
Mini Pro interface for detecting hot-spots in a medium-sized photovoltaic installation. In
doing so, the main premise of this work has been achieved: to acquire a thermal camera that
would fit the purpose without exceeding the 500 euro limit. The final prototype developed
could be purchased for a total of 479.42 euros, being 419.32 euros the full price of the
thermal module.

As could be seen, at distances of between 3 and 5 m, the module’s performance is
sufficient to detect and label hot-spots on a medium-sized installation. At greater distances,
the resolution becomes insufficient to accurately detect the smallest hot-spots.

Since this is an iterative algorithm, its execution time consumption depends directly
on the number of attempts. The higher this value, the longer it will take the algorithm to
finalize the search. The best-performing readings have been seen on thermographs closest
to the plates. Images taken at a 3 m distance have the most accurate locations of hot-spots
and the most reliable temperature readings.

All in all, it can be concluded that the Lepton 3.5 camera has the ability to locate and
label hot-spots in a PV installation with certain limitations. These can be reduced to:

- The perpendicular distance to the installation must not exceed 5 m from the point of
camera placement to the nearest panel of the installation.

- The horizontal angle of inspection may not be greater than ±20◦ at distances of 5 m
and may be extended if the distance to the installation is less.

- Measurements should be carried out with irradiances greater than 600 W/m2 so that
the thermal contrast is sufficient.

Finally, during the discussion of the results, it has been possible to diagnose the state
of the PV plant under study. It has become clear that it presents a very damaged state
and that its solar production will be seriously compromised. The greatest damage can
be seen in the two lowest fila of the installation, where the degradation of the EAV is not
only detected by infrared thermography, but it is also possible to observe this degradation
visually. Some hot-spots detected reach temperatures of 65◦, causing irreversible damage to
the plates. Bearing in mind that this is a 1999 installation that has not received replacements
since then, one can understand the state it is in, as the solar panels are in their last years of
useful life. The damage to the system is severe and highlights the importance of proper
maintenance. However, thanks to this, it has been possible to test the camera under real
hot-spot conditions.
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Figure A1. Images resulting from hot spot segmentation and labeling. Figures A1(a–p) correspond 
to the thermographs taken at 16:00h (irradiance of 312.6 W/m2). Figures A1(q–e1) correspond to 
those taken at 19:00h (irradiance of 2.81 W/m2). 
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