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Abstract: Recent developments in robotics have heightened the need for visual SLAM. Dynamic
objects are a major problem in visual SLAM which reduces the accuracy of localization due to the
wrong epipolar geometry. This study set out to find a new method to address the low accuracy of
visual SLAM in outdoor dynamic environments. We propose an adaptive feature point selection
system for outdoor dynamic environments. Initially, we utilize YOLOv5s with the attention mech-
anism to obtain a priori dynamic objects in the scene. Then, feature points are selected using an
adaptive feature point selector based on the number of a priori dynamic objects and the percentage
of a priori dynamic objects occupied in the frame. Finally, dynamic regions are determined using a
geometric method based on Lucas-Kanade optical flow and the RANSAC algorithm. We evaluate
the accuracy of our system using the KITTI dataset, comparing it to various dynamic feature point
selection strategies and DynaSLAM. Experiments show that our proposed system demonstrates a
reduction in both absolute trajectory error and relative trajectory error, with a maximum reduction of
39% and 30%, respectively, compared to other systems.

Keywords: visual SLAM; dynamic environment; positional estimation

1. Introduction

Simultaneous Localization and Mapping (SLAM) is a method for robots and other
autonomous vehicles to map out unknown environments and simultaneously estimate their
positions within those environments. To better perform tasks such as navigation, mobile
robots rely on the accuracy of the map, robots mainly utilize the camera to estimate the
position and create a map of the environment in Visual SLAM systems. Visual SLAM is a
popular choice because of its ability to capture rich visual information. However, traditional
visual SLAM systems assume a static environment and can struggle to maintain accurate
localization and mapping because of dynamic objects. The research questions in this study
focused on reducing trajectory errors of the visual SLAM system in a dynamic environment.

Studies on visual SLAM represent a growing field. One of the most cited studies is that
Qin et al. [1] proposed the VINS-Mono in 2018 using optical flow as a front-end with high
robustness at fast motion, which is widely used in unmanned aerial vehicles. However, VINS-
Mono is not suitable for weak textured environments. In 2021, Koestler et al. [2] proposed
TANDEM, the first time using the global TSDF model for monocular dense tracking. Perhaps the
best-known study is the ORB-SLAM, which Mur-Artal et al. [3] proposed based on ORB features
in 2015, Their team iterated ORB-SLAM2 [4] in 2017, optimized the algorithm performance,
added support for stereo and RGB-D cameras. Campos, Carlos et al. [5] released ORB-SLAM3 in
2021. ORB-SLAM3 was the first feature-based tightly coupled visual-inertial odometry system
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with the atlas multi-map system, adding support for fish-eye cameras and IMUs. Most existing
visual SLAM systems are subject to potential methodological weaknesses; they assume a static
environment for localization and mapping. However, there are always many dynamic objects
in the real scene, which in turn affects the accuracy and the robustness of the visual SLAM
system [6–8].

Recently, considerable literature has grown up around the theme of visual SLAM
systems in dynamic environments. A summary of related work with advantages and
disadvantages is presented in Table 1. In the study on semantic information-based for
dynamic environments SLAM, Erliang Yao et al. [9] used the transformation matrix of IMU
and reprojection error to distinguish dynamic feature points.VDO-SLAM, proposed by
Zhang et al. [10] in 2020, uses semantic information to estimate accurate motion, but the
system requires pre-processing datasets including instance-level semantic segmentation
and optical flow estimation, so the system is computationally intensive. Zhang et al. [11]
used RGB-D cameras and a K-means clustering algorithm to distinguish foreground and
background features in the bounding box. The DS-SLAM proposed by Chao Yu et al. [12]
combined the semantic segmentation network with ORB-SLAM2 effectively reducing the
trajectory error. However, the octree map must be reconstructed when loop closure and
DS-SLAM are hard to run in real-time. A limitation of the above studies is that most of them
only use the TUM Dynamic Objects dataset or the other indoor dataset, not demonstrating
robustness in outdoor dynamic environments with complex lighting and rich features.
There are a large number of published studies about ORB-SLAM-based dynamic environ-
ment visual SLAM study. DynaSlam, proposed by Bescos et al. [13] in 2018, combined
MASK-RCNN semantic segmentation network with ORB-SLAM2, Maps generated from
static environments will be used to fix frames that are obscured by dynamic objects, effec-
tively reduce trajectory error in dynamic environments, however, the real-time performance
of Dynaslam is poor. Bescos et al. [14] iterated DynaSlam II in 2021, which uses a single
bundle adjustment that simultaneously estimates the camera pose and trajectory of moving
objects. However, Dynaslam II performs poorly in low-texture environments. Wu et al. [15]
proposed YOLO-SLAM based on ORB-SLAM2 using YOLOv3 to detect dynamic objects,
Although YOLO-SLAM has significant performance in the TUM dataset resulting in a
98% reduction in absolute trajectory error, the algorithm does not evaluate the accuracy
in dynamic outdoor environments. Liu et al. [16] combined YOLOv3 with ORB-SLAM2.
The system uses GMM to build a background image model and detect the dynamic regions
in the foreground. However, the accuracy of dynamic region detection can be improved.
Zhang et al. [17] employed the YOLOv5 to detect dynamic information, and integrated the
optical flow technique for a second detection pass to enhance detection precision. They sub-
sequently constructed a global map by utilizing keyframes and removing highly dynamic
objects. The system under examination demonstrated superior performance in terms of
accuracy, as evidenced by a substantial reduction in absolute trajectory error (up to 97.8%)
and relative trajectory error (59.7%), as well as a marked decrease in average tracking time
(up to 94.7%). However, the study is accompanied by certain limitations, one of which
is that when the dynamic objects in the environment remain stationary for an extended
period, they will obscure the static background, thus resulting in an imprecise construction
of the map. Zhong et al. [18] improved the accuracy of localization by weighting the feature
points. However, the time consumption of the system has increased significantly in static
scenes, such as TUM sitting_xyz dataset. Soares et al. [19] and Han et al. [20] retained static
priori dynamic objects although they combined optical flow to determine dynamic objects,
which will reduce localization accuracy. Typical methods for point feature matching can
be summarized as descriptor-based and pixel-based methods [21], due to the difficulty
of establishing sufficient dynamic data associations, the descriptor-based method can be
challenging to apply to highly dynamic objects [22]. As such, many systems resort to using
the optical flow method to address this issue [23–25], outliers are then removed from the
essential matrix using the RANSAC method [26].
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Table 1. Summary of related work with advantages and disadvantages.

System Advantages Disadvantages

VDO-SLAM
[10]

VDO-SLAM uses semantic informa-
tion for accurate motion estimation and
tracking of dynamic rigid objects, with-
out prior knowledge of shape or mod-
els.

A significant quantity of dy-
namic objects in the scene
increases system computa-
tional demands.

PLD-SLAM
[11]

PLD-SLAM improves trajectory estima-
tion in dynamic environments by using
point and line features and two con-
sistency check techniques to filter dy-
namic features.

Identifying potential dy-
namic objects incurs signifi-
cant computation time.

DS-SLAM
[12]

DS-SLAM reduces trajectory errors by
combining semantic segmentation net-
works and motion consistency check-
ing and generates a dense semantic oc-
tree map.

Upon detection of loop clo-
sure, the octree map must
be reconstructed.

DynaSLAM
[13]

Dynaslam constructs an static scene
map by repairing parts of the back-
ground that have been obscured by dy-
namic objects. Trajectories of the sys-
tem exhibit a very high degree of preci-
sion.

The performance of the sys-
tem is hindered by the uti-
lization of a CNN network,
resulting in a lack of real-
time capability.

Zhang et al.’s
system [17]

Use YOLOv5 with optical flow method
to determine dynamic objects and use
key frames to build maps, reducing tra-
jectory errors.

Dynamic objects that are
stationary for a long time
can cause background blur-
ring and thus cause.

This study aims to address the issue of low accuracy in dynamic outdoor environments
by proposing an adaptive feature point selection system. To this end, YOLOv5s is utilized
for a priori dynamic object detection, and coordinate attention is employed to improve
detection accuracy, the bounding box is deemed a dynamic region if the ratio of the infinite
norm of the resulting essential matrix falls below a certain threshold. Finally, feature points
in the dynamic region are removed, and stereo feature point matching use only static
feature points.

To sum up, the main contributions of this work are summarized as follows:

• We proposed an adaptive feature point system to enhance the accuracy of ORB-SLAM
systems in dynamic environments. This system utilizes YOLOv5s with coordinate
attention to detect dynamic objects a priori in the frame and is combined with the LK
optical flow method for accurate determination of dynamic areas. Additionally, an
adaptive feature point selector is proposed to remove dynamic feature points based
on the frame share and the number of a priori dynamic objects bounding boxes in the
current frame. By utilizing only static feature points for mapping, the mapping error
of the system in dynamic environments is reduced.

• In the adaptive feature point selector, we proposed a geometric method for iden-
tifying dynamic regions. We calculate the infinitesimal parametrization of the es-
sential matrix of feature points within the bounding box and the bounding box ex-
pansion layers, and determine the dynamic region based on the ratio of the two
infinitesimal parametrizations.

In Section 2, we describe the specific methods used by the system. The results obtained
from the system are described in Section 3. Finally, we conclude with a short discussion in
Section 4 and a conclusion in Section 5.
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2. Materials and Methods

In this section, we will describe the procedures and methods used in this system. First,
the general flow of the system is described. Then, the YOLOv5s with coordinate attention
will be presented. Finally, the adaptive feature point selector will be introduced.

2.1. System Framework

The proposed system is based on traditional ORB-SLAM3. ORB-SLAM3 contains three
threads: Tracking, Local Mapping, and Local Closing. We added the YOLOv5s Detection
thread and LK optical flow thread on top of ORB-SLAM3. The system framework for the
proposed system is depicted in Figure 1.

Figure 1. The system framework for the proposed algorithm.

Frames will be constructed after system initialization is completed in the Tracking
thread in ORB-SALM3. Among the existing improved system based on ORB-SLAM,
dynamic point deletion is generally performed in the Tracking thread [27], dynamic feature
points deleted after feature point extraction [28–30]. In our system, the YOLOv5s thread
subscribes to left-frame images and performs detection of a priori dynamic objects, sending
ROS messages with bounding box coordinates. The adaptive selector subscribes to these
ROS messages and checks whether any feature points are located within the bounding box.
Based on the number of a priori dynamic objects and the percentage of the frame occupied
by a priori dynamic objects in the current frame, the adaptive selector then determines
whether to remove these feature points. We set N is the number of a priori dynamic objects
in the current frame and P is the percentage of the frame occupied by a priori dynamic
objects in the current frame. The threshold to remove all feature points in the bounding
boxes is set to T. If N < T and P < 50%, all feature points within the bounding box are
deleted. On the other hand, if N > T or P > 50%, the positions of the feature points
within the bounding box between the current frame and the previous frame are tracked
by Lucas-Kanade optical flow. The essential matrix of the feature points in each bounding
box and each bounding box expansion between the current frame and the previous frame
will be calculated. We set the essence matrix of one of the bounding boxes between the
two frames is Eu and the essential matrix of its corresponding bounding box expansion
layer is Ev. The RANSAC method is used to reduce the error of essence matrices Ev and Eu.
The infinite norm L1 of Eu and the infinite norm L2 of Ev will be separately calculated, and
the bounding box is considered a static region by comparison L2 and L1. Stereo matching
is only performed using feature points from static regions. Once static frames have been
generated, active map filters new keyframes, and the map is optimized.
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2.2. YOLOv5 with Coordinate Attention

YOLOv5 thread subscribes to the original left-frame image and detects a priori dy-
namic objects. The YOLOv5 Detection thread is added to the system to detect a priori
dynamic objects in the current frame. Adjusting the dynamic feature weights of the in-
put image is called the attention mechanism [31]. Coordinate attention is a network that
incorporates location information into channel attention [32].

For any intermediate feature tensor in the network X = [x1, x2, ..., xc] ∈ RC∗H∗W, the
spatial information is first embedded by averaging global pooling kernel along the width
and height directions using (H, 1) and (1, W), respectively. The output of the c-th channel
for height h can be expressed as zh

c , As shown in Equation (1). The output of the c-th
channel for width w can be expressed as zw

c , as shown in Equation (2).

zh
c (h) =

1
W ∑

0≤j<W
xc(h, j) (1)

where W represents the width of the feature tensor, zh
c represents the squeeze step for the

c-th channel with height direction encode information, h is the height of the feature map, c
represents the number of channels in the feature map.

zw
c (h) =

1
H ∑

0≤i<H
xc(i, w) (2)

where H represents the height of the feature tensor, zw
c represents the squeeze step for the

c-th channel with width direction encode information, w is the width of the feature map.
After that, as shown in Equation (3), The feature maps representing width and height

are concatenated and subsequently fed into the 1 ∗ 1 convolution module, and the batch
normalization feature map F1 is fed into the activation function S to obtain feature map f.

f = S
(

F1

([
zh, zw

]))
(3)

where f represents the intermediate feature map with spatial information, S is a non-linear
activation function.

Subsequently, the attention weights in the height direction, represented as gh, are com-
puted through the application of a sigmoid activation function σ, as detailed in Equation (4).
Attention weights in the width direction, denoted as gw, are obtained through an analogous
procedure. The final output of the coordinate attention yc can be formulated according to
Equation (5). The network model with the addition of coordinate attention is shown in
Figure 2.

gh = σ
(

Fh

(
f h
))

(4)

where gh represents attention weights for height direction. σ is the Sigmoid function. Fh
and f h represents two separate tensors about f along the spatial dimension.

yc(j.i) = xc(j, i)∗gh
c (j)∗gw

c (i) (5)

where gw represents attention weights for width direction. yc denotes the attention weight
with spatial information for the c-th channel.

The loss function of YOLOv5 consists of three components: classification loss, confi-
dence loss, and localization loss. The classification loss and the confidence loss is calculated
using cross-entropy loss. The localization loss is calculated using CIoU loss, which im-
proves the accuracy of object detection by taking into account more information about the
geometric relationship and the shape of the bounding boxes.
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Figure 2. YOLOv5s network model with Coordinated Attention.

2.3. Adaptive Feature Points Selector

In a dynamic environment, eliminating dynamic feature points can significantly in-
crease the accuracy of the visual SLAM systems. However, simply removing all feature
points associated with dynamic objects in complex outdoor settings can lead to a reduction
in accuracy due to the limited number of remaining feature points. To address the issue
of reduced accuracy in complex outdoor settings due to dynamic objects, we propose an
adaptive feature point selection method that selectively filters out dynamic feature points
while attempting to preserve as many static feature points as possible.

After receiving ROS messages from YOLOv5 containing the coordinates of a priori
dynamic objects, the adaptive feature point selector (shown in Algorithm 1) determines
whether to retain or eliminate feature points based on the number of a priori dynamic
objects and percentage of a priori dynamic objects occupied in the current frame. It checks
if each feature point is within the bounding box in the current frame. If the feature point
is not located in the bounding box, it is considered a static feature point and retained for
stereo matching. If the feature point is located in the bounding box, the adaptive selector
is used to determine whether it should be retained or eliminated. If the percentage of
a priori dynamic objects occupied in the frame is greater than 50%, the system uses a
geometric method to determine whether the a priori dynamic object is static or not. If
the percentage of a priori dynamic objects occupied in the frame is less than 50%, the
system checks if the number of a priori dynamic objects is greater than a predetermined
threshold value. In our study, we varied the a priori dynamic object threshold and observed
that utilizing a threshold of 5 led to a decrease in the absolute trajectory error within the
proposed system. Therefore, the threshold value is set to 5. If the number of a priori
dynamic objects is less than the threshold, the feature points within the bounding box are
not used for mapping. The geometric method is used to determine whether the dynamic
object is static or not while the number of a priori dynamic objects is greater than the
threshold. When using the geometric method, the system adds an expansion layer of
20 pixels outside each bounding box and the position of feature points within the bounding
box and expansion layer between the current frame and the previous frame are tracked by
LK optical flow. If there are no feature points in the expansion layer, the dynamic object
is considered to be in a low feature point environment, and the feature points within the
bounding box are used to build the map. First, for all feature points in a bounding box in
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the current frame and their corresponding feature points in the previous frame form a set
P1. Randomly select the four matching pairs of feature points in P1 form a set P2. For a pair
of matched feature points in set P2, there is a feature point X1 located in a bounding box in
the current frame, and there is a feature point X2 matching it in the previous frame. The
essential matrixes of the bounding box are solved by the Eight-point-algorithm. Suppose
the normalized coordinates of X1 is x1 = [u1, v1, 1]T and the normalized coordinates of

X2 is x2 = [u2, v2, 1]T . For an essential matrix E1 =

 e11 e21 e31
e12 e22 e32
e13 e23 e33

, According to the

epipolar constraint we can obtaine Equation (6), As shown in the Equation (7), Expressing
epipolar constraint as a linear form. Four randomly selected pairs of matching points to
form a system of eight linear equations, which gives the linear form to obtain the essential
matrix E2.

(u2, v2, 1)

 e11 e21 e31
e12 e22 e32
e13 e23 e33

 u1
v1
1

 = 0 (6)

where u1, v1 are the normalized spatial coordinate of the point x1, u2, v2 are the normalized

spatial coordinate of the point x2,

 e11 e21 e31
e12 e22 e32
e13 e23 e33

 represents essential Matrix E1.

[u2u1,u2v1,u2,v2u1,v2v1,v2, u1,v1,1]



e11
e21
e31
e12
e22
e23
e13
e23
e11


= 0 (7)

where e = [e11, e21, e31, e12, e22, e32, e13, e23, e33]
T denotes the vector form of E1.

Algorithm 1: Adaptive dynamic feature point selection strategy
Input: Original feature point, Bounding box
Output: Static feature point

1: if feature points in the boundingbox then
2: Use LK optical flow to match a prior dynamic objects between frames
3: if a priori dynamic object screen share ≥ 50% then
4: Determine if the number of a priori dynamic objects is greater than the threshold
5: if number of a prior dynamic objects ≥ 5 then
6: Calculate essential matrix of prior dynamic region bwtween frame
7: Calculating infinite norms of essential matrix
8: Calculate the essential matrix of the expansion layer bwtween frame
9: Calculating infinite norms of essential matrix

10: if ratio of two infinite norm is greater than the threshold value then
11: Delete dynamic feature points
12: else
13: ORB matches
14: end if
15: end if
16: end if
17: end if
18: return Outputs
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Then, select feature points in P1 that are not in P2. The distance from these feature
points to each epipolar lines in pixels will be calculated. Our experimental results have
revealed that the system exhibits a reduced absolute trajectory error when the pixel distance
from the matching point to the epipolar line is 1 pixel. Therefore in this paper, we set
the threshold to one pixel. If the maximum distance is greater than one pixel, the pair is
considered an outlier. If the maximum distance is less than a threshold value, the pair is
considered an inlier. The number of inliers will be recorded. Finally, The algorithm will
reselect four pairs of matching points from the set P1 and calculate the number of inliers.
When the threshold t is reached after a number of iterations, the essential matrix with the
most inliers is chosen. The essential matrix for the bounding box expansion layer is also
obtained through this process.

After obtaining the essence matrix Eu in the bounding box and the essence matrix Ev
in the expansion layer. Use ‖x∞‖ = max1≤i<8|xi| find the infinite parametric L1 of Eu and
the infinite parametric L2 of Ev. Calculate the ratio r using r = min(L1,L2)

max(L1,L2)
, If r is greater

than the threshold 0.95, the a priori dynamic object in the bounding box is considered as
static. If r is less than the threshold 0.95, the adaptive selector sets the pixel coordinates of
the left-frame feature point in the bounding box to (−1,−1) and performs stereo feature
points matching after completing filtering of all feature points in the current frame.

With the above approach, our system has higher accuracy in dynamic environments
compared to ORB-SLAM3. The results obtained from the system are described in the
next chapter.

3. Results

To further evaluate our system, We employed the KITTI odometry dataset [33] as
an evaluation benchmark. The KITTI dataset is a widely-used resource for evaluating
the accuracy of visual SLAM systems in dynamic environments. KITTI odometry is an
open-source dataset containing urban, highway, and other scenes, and the dataset contains
ground truth which allows us to evaluate the trajectory accuracy.

To further assess the effectiveness of the adaptive dynamic feature point selection
strategy proposed in this paper, we compare it to two other algorithms: one that removes all
feature points located within bounding boxes and one that uses only the geometric method
described above, but without the adaptive feature point selector. The accuracy of the system
is evaluated using the EVO and KITTI development kits, and the evaluation metrics used
are the absolute trajectory error (APE) and the relative positional error (RPE) [34]. The
relative positional error represents the error between the algorithm-generated trajectory and
the true positional trajectory at fixed intervals, while the absolute trajectory error reflects
the overall difference between the algorithm-generated trajectory and the true trajectory.

We combine the classes in the KITTI object into three: Car, Pedestrian, and Cyclist. The
KITTI dataset is divided into a training set, a validation set, and a test set according to 8:1:1,
and ablation experiments are conducted on the validation set. We performed 300 epochs,
batch-size set to 128, and also used adaptive anchor frames and adaptive image scaling. The
recognition results of YOLOv5s with different attention mechanisms in the KITTI dataset
are shown in Table 2. MAP@0.5 improved by 1% after adding coordinate attention. The
test set and validation set were trained together and validated using the test set, and the
results are shown in Table 3.
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Table 2. The recognition results of YOLOv5s with different attention mechanisms in KITTI dataset.

Model
AP

mAP@0.5Car Pedestrian Cyclist

YOLOv5 0.963 0.82 0.835 0.873
YOLOv5 with
Coordinate Attention 0.961 0.826 0.862 0.883
YOLOv5 with
transformer 0.962 0.824 0.853 0.879
YOLOv5 with
transformer and CA 0.958 0.805 0.863 0.875
YOLOv5 with
C3SE 0.960 0.803 0.862 0.875
YOLOv5 with
CBAM 0.963 0.818 0.852 0.877
YOLOv5 with
CBAM and C3SE 0.960 0.804 0.875 0.879

Table 3. The recognition results of YOLOv5s with Coordinate Attention in KITTI dataset.

Model
AP

mAP@0.5Car Pedestrian Cyclist

YOLOv5 with
Coordinate Attention 0.959 0.824 0.849 0.878

The proposed system was utilized to conduct threshold experiments for matching
point to epipolar line distances on the KITTI 04 dataset, which comprises a greater number
of a priori dynamic objects, and the KITTI 06 dataset, which comprises a higher quantity
of static a priori dynamic objects. The a priori dynamic object threshold was established
at 5. As shown in Table 4, Experiments show that the system’s absolute trajectory error is
reduced when the pixel distance threshold from the matching point to the epipolar line
is set at 1 pixel. In the adaptive feature point selector, the threshold selection for a priori
dynamic objects was evaluated through experimentation using various threshold values.
As shown in Table 5, the results revealed that the system displayed decreased trajectory
errors when the threshold was set to a value of 5.

Table 4. Comparison of different pixel thresholds for calculating the distances to the epipolar lines
when calculating the essential matrix.

Sequences 1 Pixel 2 Pixel 3 Pixel

04 0.19 0.20 0.21
06 0.73 1.16 1.19
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Table 5. Absolute trajectory error in our system using different present dynamic object thresholds in
the adaptive feature point selector, The best results are bolded.

Sequences Threshold 3 Threshold 4 Threshold 5 Threshold 6

00 2.443 2.717 1.630 1.650
01 3.522 3.979 5.291 3.988
02 4.605 7.057 5.572 7.453
04 0.204 0.207 0.198 0.277
05 1.160 1.425 1.107 1.498
06 1.209 1.270 1.185 1.197
07 0.640 0.627 0.628 0.709
09 1.249 1.209 1.241 1.236
10 1.372 1.441 1.278 1.593

To evaluate the performance of ORB-SLAM3, the algorithm for deleting all feature
points within bounding boxes, the geometric method, and our proposed method, we use
the KITTI2bag tool to convert the dataset to ROSbag format and test each system on it.
First, we convert the KITTI trajectory file with ground truth into TUM trajectory files, as
the KITTI trajectory generated by ORB-SLAM3 does not contain timestamps. Then, we use
SE(3) Umeyama alignment while processing panning rotation and scale. Each system is
run 5 times on each dataset. Since the results of the system are random, we remove the
maximum and minimum values from the five runs, average the remaining three results,
and compare the trajectory errors of the median results. The hardware platform used for
this experiment is a laptop with an NVIDIA GeForce RTX 3060 Laptop, AMD Ryzen 5900hx,
16G RAM, and Ubuntu 20.04 OS. The absolute trajectory error was evaluated using EVO,
and the results are shown in Table 6. The relative positional error was evaluated using the
KITTI development kit, and the results are shown in Table 7. The best results are bolded.
Unfortunately. We did not get the KITTI 03 and 08 dataset, so only the remaining dataset
was used for the experiment.

Table 6. Absolute trajectory error of the original algorithm, the algorithm of removing all feature
points falling in the bounding box, the geometric method using RANSAC, and the improvement
algorithm(with Sim(3) Umeyama alignment), while processing panning rotation and scale.

Sequences ORB_SLAM3 Delete All Dynamic Points Geometric Method Ours

00 1.92 1.69 2.28 1.64
01 6.31 5.94 4.86 6.72
02 5.41 6.37 5.04 5.35
04 0.22 0.22 0.2 0.19
05 0.99 1.02 1.01 0.94
06 1.2 0.88 0.92 0.73
07 0.63 0.5 0.63 0.62
09 0.99 1.23 1.18 1.17
10 1.46 1.2 1.47 1.25
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Table 7. The relative positional error of the original algorithm, the algorithm of removing all feature
points falling in the bounding box, the geometric method using RANSAC, and the improvement
algorithm(with Sim(3) Umeyama alignment), while processing panning rotation and scale.

ORB_SLAM3 Delete All Dynamic Points Geometric Method Ours

Sequences RPE[%] RPE[°/100M] RPE[%] RPE[°/100M] RPE[%] RPE[°/100M] RPE[%] RPE[°/100M]
00 5.23 1.85 5.82 2.02 5.04 1.78 5.07 1.76
01 1.6 0.36 1.6 0.35 1.57 0.33 1.55 0.35
02 1.82 0.46 2.47 0.83 2.4 0.68 2.01 0.58
04 1.65 0.2 1.65 0.21 1.65 0.18 1.54 0.14
05 1.21 0.41 1.09 0.31 1.65 0.57 1.37 0.44
06 1.41 0.32 1.45 0.25 1.41 0.36 1.27 0.25
07 1.48 0.58 1.1 0.36 1.24 0.47 1.5 0.58
09 1.42 0.39 1.63 0.47 1.6 0.45 1.48 0.39
10 1.48 0.56 1.46 0.54 1.47 0.58 1.44 0.55

In contrast to the ORB_SLAM3 system, our proposed system has been shown to exhibit
a substantial reduction in the absolute and relative trajectory error. Empirical evaluations
reveal that the absolute trajectory error is decreased by a maximum of 39%, and the relative
trajectory error is diminished by a maximum of 30%. Compared to the geometric method,
our proposed method significantly reduces the absolute trajectory error on datasets with
slow-moving objects, such as the 05 and 06 datasets. 05 dataset is a vehicle driving in an
urban environment, which contains a large number of stationary vehicles, moving vehicles,
walking people, etc. As shown in Figure 3, our system has a smaller median error on the 05
dataset compared to the geometric method. The 06 dataset is a vehicle driving in a circle in
the city. In the context of this dataset, our proposed system has demonstrated a reduction
in the relative trajectory error per 100 meters of 30.6%, as well as a reduction in the absolute
positional error of 17%, and the trajectory of our system is closer to the true value of the
trajectory on the x-axis, as shown in Figure 4.

(a) (b)

Figure 3. KITTI 05 dataset APE with regard to translation part(m) (with Sim(3) Umeyama alignment,
while processing panning rotation and scale): (a) geometric method; (b) proposed algorithm.
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(a)

(b)

Figure 4. KITTI 06 dataset X-axis trajectory error, (a) Delete all dynamic points, (b) Ours.

Compared with the algorithm of deleting all dynamic points in the bounding box, our
system can significantly reduce the relative positional error in urban environments with a
large number of static a priori dynamic objects, such as the 01, 02, 06, 09 datasets. In our
evaluation, the relative trajectory error per 100 meters is seen to be decreased by 30% on
the 02 data set. For example, there is a significant reduction in relative positional error on
the KITTI 01 dataset, as shown in Figure 5.

(a) (b)

Figure 5. KITTI 01 dataset RPE with regard to translation part(m) for delta = 1 (frames) using
consecutive pairs (with Sim(3) Umeyama alignment, while processing panning rotation and scale):
(a) delete all dynamic points; (b) ours.

We compared the state-of-the-art DynaSLAM (Geometric methods) using SE(3) Umeyama
alignment, and the results are shown in Table 8, with the best results bolded. Compared to
DynaSLAM, our system has reduced absolute trajectory errors on the five datasets. As shown
in Table 9, our system not only enhances precision but also preserves an acceptable level of
real-time functionality, In comparison to ORB_SLAM3, our system exhibits an improvement
in mean total tracking time as a result of the incorporation of dynamic feature point detection.
However, the advancement in mean total local mapping time is not substantial, as the dynamic
feature points are eliminated directly within the tracking thread. In contrast to the current
state-of-the-art DynaSLAM, our system demonstrates exceptional real-time performance. The
enhanced performance of ORB_SLAM3 allows for a substantial increase in efficiency for tracking
threads in our system, as demonstrated by a 50% improvement per frame when compared to
the DynaSLAM system.
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Table 8. Comparison of absolute trajectory error with DynaSLAM.

Sequences ORB_SLAM3 DynaSLAM Ours

00 1.92 1.3 1.64
01 6.31 10.47 6.72
02 5.41 5.73 5.35
04 0.22 0.22 0.19
05 0.99 0.83 0.94
06 1.2 0.76 0.73
07 0.63 0.52 0.62
09 0.99 3.08 1.17
10 1.46 1.05 1.25

Table 9. Real-time comparison of ORB_SLAM3, our system, and Dyna SLAM.

ORB_SLAM3 Ours Dyna Slam

Sequences Mean
Total
Tracking
Time
[ms]

Mean
Total
Local
MAP-
PING
Time
[ms]

Mean
Total
Tracking
Time
[ms]

Mean
Total
Local
Map-
ping
Time
[ms]

Mean
Total
Tracking
Time
[ms]

00 27.36 141.14 28.34 145.4 61.07
01 28.27 105.33 31.53 105.21 70.85
02 27.13 117.74 28.61 117.01 60.53
04 28.38 138.56 30.07 138.93 61.24
05 28.52 129.78 29.99 137.95 62.04
06 29.29 150.26 31.18 150.41 63.81
07 27.82 91.89 28.4 95.34 58.35
09 27.74 95.75 28.5 98.17 58.7
10 26.69 78.5 27.85 81.8 57.23

4. Discussion

To improve the accuracy and robustness of visual SLAM in dynamic environments, we
propose an adaptive ORB-SLAM3 system for outdoor dynamic environments. The system
employs an adaptive feature point selection strategy to select suitable feature points for map
building, a RANSAC-based geometric method to identify dynamic regions, and only uses
static feature points for map building, thereby reducing the trajectory error. Experiments
on the KITTI dataset show that our system can significantly reduce the trajectory error
of the visual SLAM system in a dynamic environment compared to traditional methods
and other feature point selection strategies. An evaluation of our system in comparison to
other systems reveals a significant reduction in both the absolute and relative trajectory
error. Specifically, compared to ORB_SLAM3, the absolute trajectory error is decreased by
a maximum of 39%, and the relative trajectory error is diminished by 30%. The proposed
system exhibits exceptional real-time performance, as demonstrated by its ability to process
frames in the tracking thread with a significant reduction in the time per frame when
compared to the benchmark system, DynaSLAM, specifically, consuming half the time
per frame.

The implementation of an LK optical flow thread in the system has the effect of
increasing its computational demands. To address this issue and optimize the system’s
performance, we plan to utilize LK optical flow for feature point detection in common
frames in order to decrease computational effort. Additionally, we will leverage ORB-SLAM
to detect feature points in keyframes, thereby enhancing localization accuracy. In future
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research, we will also investigate the problem of uneven distribution of feature points
following the removal of dynamic feature points. We are conducting research on dynamic
environment dense map building based on this research, so the code is not open source.

5. Conclusions

In this paper, we present an adaptive ORB-SLAM3 system designed for outdoor
dynamic environments. It utilizes YOLOv5 with coordinate attention to identify a priori
dynamic objects, such as cars, people, and bicycles. The ORB-SLAM thread subscribes
to ROS messages sent by YOLOv5 and removes the feature points of dynamic objects by
considering the number and percentage of a priori dynamic objects occupied in the current
frame. To track feature points between frames, we use LK optical flow and introduce a
bounding box expansion layer to capture background motion.

We conducted experiments on the KITTI dataset and evaluated ORB-SLAM3 with two
different feature point selection strategies: the algorithm that removes all dynamic points
within bounding boxes and the geometric method. We also compared our system to the
current state-of-the-art DynaSLAM method, and a system time consumption comparison
was performed. The results of these experiments demonstrate the effectiveness of our
proposed approach, in comparison to other systems, our system demonstrates a substantial
improvement in terms of both absolute and relative trajectory error. Specifically, the
absolute trajectory error is reduced by as much as 39% and the relative trajectory error by up
to 30%. The proposed system demonstrates outstanding real-time performance capabilities.
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