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Abstract: Automated electrocardiogram (ECG) classification using machine learning (ML) is exten-
sively utilized for arrhythmia detection. Contemporary ML algorithms are typically deployed on
the cloud, which may not always meet the availability and privacy requirements of ECG monitoring.
Edge inference is an emerging alternative that overcomes the concerns of cloud inference; however, it
poses new challenges due to the demanding computational requirements of modern ML algorithms
and the tight constraints of edge devices. In this work, we propose a tiny convolutional neural
network (CNN) classifier for real-time monitoring of ECG at the edge with the aid of the matched
filter (MF) theory. The MIT-BIH dataset with inter-patient division is used for model training and
testing. The model generalization capability is validated on the INCART, QT, and PTB diagnostic
databases, and the model performance in the presence of noise is experimentally analyzed. The
proposed classifier can achieve average accuracy, sensitivity, and F1 scores of 98.18%, 91.90%, and
92.17%, respectively. The sensitivity of detecting supraventricular and ventricular ectopic beats
(SVEB and VEB) is 85.3% and 96.34% , respectively. The model is 15 KB in size, with an average
inference time of less than 1 ms. The proposed model achieves superior classification and real-time
performance results compared to the state-of-the-art ECG classifiers while minimizing the model
complexity. The proposed classifier can be readily deployed on a wide range of resource-constrained
edge devices for arrhythmia monitoring, which can save millions of cardiovascular disease patients.

Keywords: machine learning; convolutional neural network; interpretable neural network; matched
filter; electrocardiogram

1. Introduction

According to the World Health Organization [1], cardiovascular disorders caused
by chronic ventricular arrhythmias are the primary cause of mortality worldwide. The
complexities of arrhythmias and their clinical and mechanical interdependence result in
frequent cross-classifications and misdiagnoses using visual criteria. Electrocardiography
is still the most commonly used method for arrhythmia diagnosis due to its simplicity,
efficiency, and low cost [2]. An electrocardiogram (ECG) is a record of the electric waves
generated during heart activity that provides sensitive information about cardiac function.
Automated classification of ECG is extensively utilized for arrhythmia detection [3]. ECG
classification methods using Artificial Intelligence (AI), Machine Learning (ML), and Deep
Learning (DL) techniques have achieved impressive results during the last decade [4].

Continuous monitoring of the ECG activity accompanied by automated arrhythmia
detection in real-time enables early identification of sudden heart arrhythmias, which can
save millions of lives from chronic cardiovascular diseases. For detecting arrhythmia in
real-time, a single-lead ECG wearable can capture the ECG signal and deliver it to a cloud
machine running an ECG classification model. Nowadays, such an approach can be easily
employed owing to recent advances in sensor technology, automatic ECG classification
methods, and cloud services [5].
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Hannun et al. [6] proposed a deep neural network (DNN) to classify heartbeat signals
using a single-lead ambulatory ECG monitoring device. With specificity fixed at the average
cardiologist’s specificity, the sensitivity of the proposed DNN outperformed the average
cardiologist’s sensitivity for all rhythm classes. These findings reveal that an end-to-end DL-
based arrhythmia detection approach can classify a broad spectrum of distinct arrhythmias
from single-lead ECGs with accuracy surpassing that of cardiologists. By appropriately
selecting the most urgent conditions, this strategy might minimize the rate of misdiagnosed
automated ECG readings and enhance the efficiency of expert-human ECG interpretation.

Nowadays, cloud inference, in which model predictions are computed remotely on a
cloud server, is the dominant deployment approach of modern ML and DL models [5]. The
main concerns of cloud inference are patient privacy, internet latency, sensor connectivity,
and service availability, all of which prevent the wide application of automated arrhythmia
detection. Edge inference, in which an edge device is used to compute model predictions
locally, is an emerging alternative that addresses the concerns of cloud inference.

In this work, we propose inter-patient ECG classification and arrhythmia detection
at the edge. Instead of depending on a cloud service to detect arrhythmias, an edge
microcontroller device is used to gather and classify ECG data in real-time and notify
the patient to take precautions. However, edge deployment of AI models is challenging
due to the computational complexity of contemporary AI algorithms and the limited
resources of edge devices. Furthermore, this challenge is augmented by the stringent
accuracy requirements of arrhythmia detection. Moreover, the inter-patient classification of
ECG signals is a challenging ML problem because the training and testing sets come from
different sources with inherited inter-individual variations. In response, the matched filter
(MF) interpretation of the convolutional neural network (CNN) presented in our previous
work [7] is exploited to address these challenges and develop a tiny ECG classifier for edge
inference. MFs are optimal filters for signal detection in the presence of noise, and their
operation is tightly linked to CNNs [8].

The MIT-BIH dataset with inter-patient division is used for model training and test-
ing [9]. The CNN classifier is carefully designed to meet the application accuracy require-
ments and edge device computational constraints. The raw ECG signal is fed directly to
the CNN classifier without pre-processing or feature engineering procedures to minimize
the computational load on the edge device. The MF-based CNN model is optimized for
edge inference by applying state-of-the-art weight quantization and pruning methods.
The model is extensively tested and benchmarked on a cloud machine and a raspberry-pi
edge microcontroller. The model’s generalization capability is validated on the INCART,
QT, and PTB diagnostic databases, and the model performance in the presence of noise
is experimentally analyzed. Testing results show that the proposed model achieves supe-
rior classification and real-time performance results compared to the state-of-the-art ECG
classification methods. Contributions of this work include:

• Exploiting the MF interpretation of CNNs to develop a tiny ECG classifier ready for
edge deployment.

• Investigate using the first derivative of the ECG signal as an input feature for ECG
classification and demonstrate its superiority to using the raw ECG signal.

• Extensively testing the ECG classifier on a raspberry-pi edge device, reporting its
performance and benchmarking results, comparing our work to recent state-of-the-art
inter-patient ECG classification methods, and showing its competency.

• Validating the model’s generalization capability on several recognized ECG datasets
and analyzing the model performance in the presence of noise.

The remainder of this paper is organized as follows. In Section 2, ECG classification-
related work is presented. An overview and preparation of the MIT-BIH dataset for ML are
presented in Section 3. The proposed MF-based CNN classifier is advanced in Section 4.
Methods and tools used in this work are introduced in Section 5. Model testing results on
the cloud and edge machines, accompanied by a comparison with state-of-the-art ECG
classification methods, are presented in Section 6. Analysis of model generalization ability
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and performance in the presence of noise is also presented in Section 6. Conclusions and
future work are portrayed in Section 7.

2. Related Work

A typical ECG waveform consists of a P-wave, a QRS complex wave, and a T-wave,
as illustrated in Figure 1, which reflect the electrical activities of the depolarization and
repolarization processes of the atria and ventricle [2]. Each heartbeat contains a series of
deflections away from the baseline on the ECG that reflect the time evolution of the heart’s
electrical activity. The P-wave is a slight defection caused by atrial depolarization; the Q, R,
and S waves are known as the QRS-complex, which is the largest-amplitude portion of the
ECG, caused by ventral depolarization; and the T-wave is caused by ventral polarization.
Up to 12 separate leads can be used to measure an ECG, in which each lead illustrates
the heart’s electrical activity from a particular angle across the body. The normal heart
rhythm is called sinus rhythm, in which the triggering impulses propagate throughout the
heart’s four chambers in a coordinated manner. Changes in the normal ECG pattern occur
in numerous cardiac abnormalities called arrhythmias, which occur due to changes in the
heart’s normal sequence of electrical impulses. The ECG is the most effective tool to spot
and identify several types of arrhythmias.

Baseline QT Interval

PR Interval

QRSComplex

P

Q

R

S

T

PR 
Segment

ST 
Segment

Figure 1. ECG of a heart in normal sinus rhythm.

The MIT-BIH arrhythmia database is the most acknowledged dataset in the academic
literature [2]. The database contains 48 half-hour excerpts of two-channel ambulatory
ECG recordings obtained from 47 subjects [10,11]. A total of 15 beat annotations denoting
several arrhythmias are assigned to the R-peaks of the ECG heartbeats. Three protocols are
proposed for partitioning the MIT-BIH dataset into training and testing sets: intra-patient,
inter-patient, and random division schemes [2]. In the random division scheme, the whole
dataset is randomly divided into training, and testing sets such that both sets keep the
same distribution, which meets the principles of ML. In the intra-patient division scheme,
heartbeat segments from the same patient record are used for training and testing, where a
subset of the ECG beats is used for training, and the remaining part is used for testing. In
the inter-patient division scheme, the training and testing sets are split by record number,
so heartbeats within each set come from distinct subjects. The inter-patient division scheme
is the most realistic approach as it resembles real situations in which a model is trained on
data collected from a set of individuals and applied to another set. However, studies that
followed the inter-patient division scheme reported great difficulty in obtaining promising
results for the heartbeat arrhythmia classes Supraventricular Ectopic Beat (SVEB) and
Ventricular Ectopic Beat (VEB) [2]. In this work, we will follow the inter-patient division
scheme, aiming to enhance the detection results of arrhythmic minority classes.

Several works have been presented in the last decade addressing automatic ECG-based
heartbeat classification methods. Sahoo et al. [4] presented a survey of ML approaches
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to detect cardiac arrhythmias in ECG signals. According to this survey, deep learning
techniques are more efficient than standard classifiers in terms of accuracy and compu-
tational complexity, which are essential in real-time applications. Luz et al. [2] surveyed
state-of-the-art ECG-based automated heartbeat classification methods, databases, and
evaluation standards. The most prevalent ECG classification methods in the literature are
DNNs and support vector machines (SVMs). In this section, we will survey related ECG
classification methods, emphasizing those that adopt the inter-patient division scheme.
In Section 6, we will compare the proposed model with related models presented in this
section at the level of classification and real-time performance results.

Ebrahimi et al. [12] presented a comprehensive review of recent DNN methods for ECG
classification. According to this review, the gated recurrent unit (GRU), long short-term
memory (LSTM), CNN, and LSTM DNN models showed outstanding results for the correct
classification of atrial fibrillation (AF), SVEB, and VEB, respectively. However, recurrent
neural networks (RNNs) have several limitations, including limited generalization capabil-
ity for smaller datasets, noise effects on classification accuracy, and high-computational
costs limiting their applicability to edge inference.

Zhang et al. [13] introduced a CNN-based adversarial DL model for inter-patient
heartbeat classification comprising an encoder, classifier, and adversary networks. ECG
heartbeat segments and normalized local and global RR intervals are the features fed
to the classifier as separate channels. The average RR intervals are computed for the
whole patient record, which does not consider causality for real-time implementations.
The convolutional encoder is used to learn representations from the extracted features.
Then, these representations are fed separately into the classifier decoder and the adversary
network to classify heartbeats and subject IDs, respectively. The complexity of the proposed
model limits its application to edge computing.

Wang et al. [14] proposed an inter-patient ECG classifier model based on continuous
wavelet transform (CWT) and CNNs that can be used as a clinical auxiliary diagnostic
tool. ECG signals are pre-processed for noise and baseline wandering removal using two
consecutive median filters. Several RR interval features have been extracted, including
post-, pre-, local-, and ratio-RR intervals. CWT with the Mexican Hat mother wavelet is
used to compute the time-frequency scalogram of the ECG heartbeat segments, which are
then fed as images to a 2D CNN along with the RR intervals for beat classification. The
CWT pre-processing procedure incurs an additional computational cost for the classifier,
limiting its applicability to edge inference.

Mondéjar-Guerra et al. [15] advanced a method for automatic ECG classification based
on a combination of multiple SVMs. Two consecutive median filters are used for baseline
wandering removal. The method relies on the time intervals between the subsequent beats
and their morphology for ECG characterization. Different features based on the discrete
wavelet transform (DWT), local binary patterns (LBP), higher-order statistics (HOS), and
several amplitude values are extracted. Other morphological features, such as normalized
RR intervals and signal peaks, are also used. Instead of concatenating all these features to
feed a single SVM model, specific SVM models are trained for each type of feature, and
the final prediction is obtained by combining the decisions of the different models with
the product, sum, and majority rules. The applicability of this model to edge inference is
limited by the use of multiple pre-processing steps and SVM models, which increase the
model’s complexity.

Raj and Ray [16] advanced a personalized monitoring system for detecting heart
arrhythmias in real-time. Discrete Orthogonal Stockwell Transform (DOST) is proposed
for time-frequency feature extraction, and the Artificial Bee Colony (ABC) optimized twin
least-square support vector machine (LSTSVM) algorithm is used for signal classification.
Two median filters and a 12-tap finite impulse response (FIR) low-pass filter (LPF) are
implemented for baseline wandering removal, high-pass noise reduction, and power-line
interference filtering. DOST is computed for an ECG signal by applying the Fast Fourier
Transform (FFT), windowing, and inverse FFT (IFFT) to calculate a set of coefficients
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representing the time-frequency morphological features of the signal. The ABC-LSTSVM
is a reduced-complexity SVM algorithm tailored to fit embedded device constraints. The
proposed platform is prototyped on an ARM9 embedded kit and experimentally validated
on the MIT-BIH database for the intra- and inter-patient division schemes. Although the
proposed platform is recommended for hospitals to analyze long-term ECG recordings, the
model size, memory usage, and real-time performance results are not provided.

Garcia et al. [17] presented inter-patient ECG classification with temporal vectorcardio-
gram (TVCG) along with a complex network for feature extraction optimized by a particle
swarm optimization (PSO) algorithm. The VCG is a two-dimensional representation of the
ECG that uses the signal from two distinct leads. The VCG employs time as a third dimen-
sion and each lead as an axis of a 2D display. Several morphological and interval features,
including the RR intervals, are extracted. Additionally, DWT and autocorrelation extract
time-frequency and signal coherence features. A subset of these features is optimized
and selected by the PSO algorithm and fed to an SVM classifier. The high computational
complexity of this method limits its applicability to edge inference.

Chen et al. [18] introduced an ECG classification method based on a combination of
projected and dynamic features. DWT is used for signal denoising. Projected features are
derived from a random projection matrix, in which each column is normalized, and each
row is transformed by discrete cosine transform (DCT). Additionally, three weighted RR
intervals are used as dynamic features. An SVM classifier is used for ECG classification.
The used pre-processing steps and SVM classifier are not suitable for edge computing.

Zhang et al. [19] proposed a feature selection method that consists of a one-versus-one
(OvO) feature ranking stage and a feature search stage wrapped in the same OvO-rule SVM
binary classifier. Several inter- and intra-beat intervals, morphological amplitudes, areas,
and distances are extracted as heartbeat features. The features of two leads are extracted
and fed to a binary OVO SVM classifier to select the effective subsets of characteristics and
classify the ECG signal by combining the classifiers.

Lin and Yang [20] advanced an ECG classifier based on normalized RR intervals
and morphological features. Normalized post-, pre-, local-, and global-RR intervals, zero-
crossings, and peak positions are extracted and fed to the classifier. The average RR
intervals are computed for the whole patient record, which does not consider causality for
real-time implementations. Morphological features are extracted using DWT, autocorrela-
tion, and linear predictive modeling (LPM). The Linear Discriminant Classification (LDC)
method combines the extracted RR intervals and morphological features and performs
ECG classification.

Bansal et al. [21] presented ECG template-based classification of cardiac arrhythmia to
automatically classify normal heartbeats versus premature ventricular contraction (PVC)
beats on portable devices. Normal and PVC average beat templates have been extracted for
all patient records with MLII readings from the MIT-BIH dataset. Dynamic time warping
(DTW) is used for feature extraction by finding the similarity score between the classified
heartbeat and the template heartbeats, which is then fed to a K-nearest neighbor (KNN)
classifier. This work considered using average heartbeat templates for arrhythmia detection,
which is shared with our work, yet the achieved classification results fall behind state-of-
the-art rivals by a significant margin.

In our previous work [5], an FIR-based interpretation of the Conv1D layer is presented
and exploited to develop a self-contained short-time Fourier transform (STFT)-based CNN
ECG classifier. The Conv1D layer kernels are designed as a filter bank for extracting the
time-frequency spectrogram of the input ECG signal. The Conv1D layer feature maps
are reshaped into a 2D heatmap image and then fed to a 2D CNN for classification. The
developed model is applied to the intra-patient ECG classification problem and achieves
superior classification and real-time performance results compared to the state-of-the-art
models. Unfortunately, this model does not achieve comparable results for the inter-
patient ECG classification problem. In Ref. [7], we presented the MF interpretation of
CNN classifiers with application to human activity recognition. The developed model
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achieves superb classification performance with significantly reduced complexity compared
to related models. The results of this work encouraged us to extend the application of the
proposed MF CNN classifier to the ECG classification problem.

In this work, we aim to develop a tiny ECG classifier for real-time monitoring cardio-
vascular arrhythmias at the edge. This is challenged by the stringent accuracy requirements
of the non-trivial inter-patient ECG classification problem and the resource constraints of
modern edge devices. Unfortunately, this challenge is not commonly addressed in the ECG
classification literature. Other challenges include the dataset imbalance problem and the
inter-patient division scheme recommended for realistic model evaluation. Furthermore,
there is still room for enhancing the inter-patient ECG classification results, especially in
detecting the arrhythmic ventricular minority classes.

3. Dataset Preparation and Feature Selection

In this work, the MIT-BIH arrhythmia database with the inter-patient division scheme
is used for model training and testing [10,11]. This database contains 15 beat annotations
denoting various categories of normal and arrhythmic heartbeats collected from different
individuals. According to the standard developed by the Association for the Advance-
ment of Medical Instrumentation (AAMI) [22], 17 arrhythmia categories are mapped into
five essential groups or super-classes. The AAMI standard emphasizes the problem of
distinguishing ventricular from non-ventricular ectopic beats. In this work, we followed
the AAMI standard, which is commonly used in the literature [2–4] to standardize the
evaluation process considering the clinical point of view and AAMI recommendations and
ensure a fair comparison with the related work. Table 1 shows the annotated arrhythmia
classes in the MIT-BIH dataset. As demonstrated in Table 1, annotations in the MIT-BIH
dataset are mapped to five distinct beat types serving as dataset labels following the AAMI
standard. Eventually, the total number of classes will be the five AAMI super-classes, each
comprising several sub-classes representing the MIT-BIH arrhythmia types.

Table 1. Mapping of the MIT-BIH arrhythmia types and AAMI classes.

AAMI Class MIT-BIH Arrhythmia Types

Normal Beat—N Normal beat
(NOR)—N

Right bundle branch
block beat (RBBB)—R

Left bundle
branch block beat
(LBBB)—L

Atrial escape
beat (AE)—e

Nodal
(junctional)
escape beat
(NE)—j

Supraventricular—
SVEB

Atrial premature
beat (AP)—A

Premature or ectopic
supraventricular beat
(SP)—S

Nodal (junctional)
premature beat
(NP)—J

Aberrated atrial
premature beat
(aAP)—a

Ventricular—VEB Ventricular escape
beat (VE)—E

Premature ventricular
contraction (PVC)—V

Fusion Beat—F Fusion of
ventricular and
normal beat
(FVN)—F

Unknown—Q Unclassifiable beat
(U)—Q

Fusion of paced and
normal beat (FPN)—f

Paced beat (P)—/

The MIT-BIH database signals were extracted from Holter recordings and filtered to
limit analog-to-digital converter (ADC) saturation using a band-pass filter (BPF) from 0.1
to 100 Hz [11]. Each ECG record in the MIT–BIH arrhythmia database includes two leads
originating from different electrodes; the most typical leads are the modified limb lead II
(MLII), and chest lead V1. The MLII is the most accessible lead for ECG data acquisition
and arrhythmia detection as it highlights various segments within the heartbeat [2]. During
model training, the raw MLII lead signals will be fed directly to the classifier as they are
extracted from the MIT-BIH database without pre-processing. For edge deployment, a
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pre-processing baseline wandering and noise removal stage will be implemented using a
low-cost median filter and an FIR LPF as instructed by [14–17,20], or moved to the ECG
analog front-end to reduce the computation load on the edge device.

To prepare the MIT-BIH database signals for ML, ECG signals are downsampled to
128 samples/s. ECG signals from selected records are segmented on a beat-by-beat basis
by filtering out non-beat annotations from the database and extracting 0.5-s segments
(64 samples) centered at the annotated R-peak. The selected sampling frequency and
segment duration are sufficient to represent the heartbeat morphology while reducing the
model input size and computational complexity. Heartbeat segments with intervals less
than 0.5 s are edge-padded to unify the segment length, which is required for the DNN
model input.

RR intervals are the main features for ECG classification since many arrhythmic ECG
beats have a noticeable change in the RR intervals. However, using the absolute values
of the RR intervals can degrade the classification accuracy due to the inter-individual
variation of the regular heartbeat rate of different individuals. Using dynamic normalized
RR-intervals significantly enhances the classification results [20]. Dynamic local and global
means of the RR intervals are used to normalize the pre- and post-RR intervals. The
dynamic local RR interval mean is collected by applying a moving average operator to
the last 80 RR intervals (around 1 min for standard heartbeat rate), while the dynamic
global RR interval mean is collected by averaging the last 400 RR intervals (around 5 min
of normal heartbeat rate).

The global and local RR intervals are selected by developing an XGBoost model [23]
for ECG classification using only the dynamic normalized RR intervals and conducting
an iterative search to find the best dynamic local and global intervals that maximize the
classification accuracy. The tunable search parameters are the moving average window
sizes of the local and global RR intervals. XGBoost (eXtreme Gradient Boosting) is a popular
and efficient supervised learning algorithm that accurately predicts a target variable by
combining an ensemble of estimates from a set of more superficial and weaker models.
Using only the local and global RR intervals of 80 and 400 beats, the XGBoost model can
achieve a classification accuracy of 93% with an average recall and precision scores of 75%
and 58%, respectively, on the inter-patient dataset division scheme described next. More
specifically, the XGBoost classifier achieves recall, precision, and F1 scores of 97%, 97%, 97%;
60%, 36%, 45%; and 58%, 75%, 65% for the “N”, “SVEB”, and “VEB” classes, respectively.
This classifier outperforms many existing inter-patient ECG classifiers presented in the
literature; however, these results are not satisfactory for arrhythmia detection.

Causality and implementation feasibility have been considered in extracting the lo-
cal and global means of the RR intervals, where only the past RR intervals are needed
for moving average calculations. The preceding and subsequent RR peak intervals have
been extracted from the MIT-BIH dataset annotations and normalized to the local and
global RR interval means, which are calculated only using the past values of RR intervals.
The dynamic normalized RR intervals are fed as input features to the proposed classifier
model. The proposed interval extraction method is straightforward and can be easily imple-
mented on the edge device using a simple peak detector and an averaging algorithm with
400 memory locations for storing the past RR interval values. It should be indicated that
the inter-patient ECG classification problem is susceptible to the RR interval input features,
which should be carefully selected as their improper selection would lead to high variance
between the training and testing results due to model overfitting and inter-individual
variations. An example of improper selection of the RR interval features is feeding the
absolute values of the pre- and post-RR intervals rather than the normalized intervals to
the classification model, directly affecting the classification performance on the testing set.

In this work, the MIT-BIH dataset is partitioned according to the inter-patient division
scheme proposed by Chazal et al. [9]. Most inter-patient ECG classification works in the
literature [13–18,23,24] apply the same division scheme, which facilitates conducting fair
comparison and evaluation. Table 2 shows the records used in training and testing sets DS1



Sensors 2023, 23, 1365 8 of 23

and DS2 and the number of heartbeats per AAMI class. The inter-patient division scheme is
more realistic since it resembles the actual scenarios in which the classifier is trained using
data collected from a group of patients and applied to a different group. However, the inter-
patient division scheme is much more challenging for ML because the training and testing
datasets do not have the same distribution and due to inter-individual variations between
the training and testing dataset examples. Therefore, the inter-patient ECG classifiers suffer
from performance degradation compared to the counterpart classifiers of intra-patient and
random division schemes.

Table 2. Heartbeat distribution by classes and records of sets/parts as proposed by [9].

Set Records N SVEB VEB F Q Total

DS1
101, 106, 108, 109, 112, 114, 115, 116,
118, 119, 122, 124, 201, 203, 205, 207,
208, 209, 215, 220, 223, and 230

45,866 944 3788 415 8 51,021

DS2
100, 103, 105, 111, 113, 117, 121, 123,
200, 202, 210, 212, 213, 214, 219, 221,
222, 228, 231, 232, 233, and 234

44,259 1837 3221 388 7 49,712

DS1+DS2 90,125 2781 7009 803 15 100,733

4. Matched Filter-Based Convolutional Neural Network Classifier
4.1. Matched Filter Interpretation of the Convolutional Neural Network

A CNN classifier is a DL model comprising a hierarchical stack of convolutional,
pooling, and fully connected (FC) dense layers. The convolutional and pooling layers are
used for feature extraction and data dimensionality reduction. Features extracted by these
layers are then fed to a stack of FC layers for classification. A 1D convolutional (Conv1D)
layer comprises multiple 1D filters, also called kernels, which are correlated with the input
sequence to produce output feature maps [25]. A bias parameter is used to fine-tune the
kernel output for improved performance. The number of strides parameter determines the
shift amount, and the dilation rate controls the spacing between the kernel points. For a
standard Conv1D layer with the stride length and dilation rate set to 1, the layer output is
defined as follows:

ycout [n] = bcout +
Cin

∑
i=1

wi
cout [n] ? xi[n] (1)

where y[n] is the layer output, b is the bias, w[n] is the kernel weight vector, x[n] is the layer
input, cout denotes the output channel, and Cin denotes the total number of input channels.

The last equation shows the operation of a typical multi-input, multi-output Conv1D
layer, where the output channel is computed as the sum of the correlation between the
input channels and various channel-specific kernels. There are Conv1D layer variants
in which each input channel is correlated with a different kernel, independent of other
channels. For a Conv1D layer with a single input channel, the layer output is computed as
the correlation between the input channel and multiple CL kernels, producing different
output channels or feature maps. Herein, we will focus on the single-input, multi-output
Conv1D layer for the single-lead ECG signal.

Despite their prevalence, CNNs are employed as “black box” models because their
internal operations and decision mechanisms are not explicitly understood [8]. The MF
theory has been exploited to explain the CNN operation in the time domain [7]. An MF
is an optimal filter for signal detection in the presence of noise. Figure 2 depicts the block
diagram of the MF receiver. The MF decision is computed by correlating a template of the
signal to be detected with the unknown signal and comparing the maximum correlation
output to a pre-set threshold. The MF correlator output is defined as:

y[n] = x[n] ? h[n] =
N

∑
i=1

x[i]h[i − n] (2)
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where y[n] is the correlator output, x[n] is the input signal, and h[n] is the template signal.

Correlator
Threshold 

Device

Decision
>H0

<H1

Noisy 
Signal Sampling

ThresholdSignal Template

Figure 2. Block diagram of the matched filter receiver.

Comparing (1) and (2) illustrates that a Conv1D kernel can implement the MF cor-
relation operation with the template signal assigned to the kernel weights. The shifting
operation is performed by sliding the kernel for all values of n (for the number of Conv1D
strides is set to 1). A GlobalMaxPooling (GMP) layer is instantiated to sample the maxi-
mum output of the Conv1D layer and perform the operation of the MF sampling device. A
nonlinear activation function such as ReLU or Tanh is used to implement the thresholding
operations. This stack of Conv1D, nonlinear activation, and GMP layers work together as
multiple MFs with templates hi[n] = wi[n], where i denotes the ith kernel of the Conv1D
layer. An FC layer can be instantiated and trained to map the MF outputs to the relevant
class outputs of the classifier model using its weighted sum functionality.

4.2. Matched Filter-Based ECG Classifier

In this work, we exploit the MF interpretation of CNNs to develop an ECG classi-
fier with pre-assigned kernel weights representing the templates of various ECG classes.
Figure 3 shows the MF-based CNN classifier model. For the MIT-BIH dataset, MF ker-
nels are computed by averaging all heartbeat segments belonging to each MIT-BIH ECG
sub-class presented in Table 1 for the training dataset DS1. A total of 13 MFs, each of a
64-sample length (the length of ECG segments), are extracted and assigned to a Conv1D
layer kernel with the number of filters NF = 13 and kernel size NK = 64. The Conv1D
layer is followed by BatchNormalization (BN) and GMP layers. A BN is a regularization
layer for reducing the covariate shift and instability in the layer activation distributions
and mitigating the vanishing gradient problem in model training. The GMP layer outputs
the maximum values of feature maps. Concurrently, the dynamic normalized RR intervals
are fed to a stack of FC layers. For feature fusion, the outputs of the GMP layer and RR
interval stacks are concatenated and fed to the FC output layer with Softmax activation to
produce class probabilities.

The MF CNN classifier operation is described as follows: The Conv1D layer correlates
an input heartbeat segment with the pre-assigned ECG class templates. For an input
heartbeat segment, a single kernel will compute the autocorrelation between the signal and
the associated template, while the remaining kernels will compute the cross-correlation
between the signal and the unmatched kernel templates. The GMP layer will select the
maximum output of all Conv1D filters fed to the FC output layer. Weights of the FC output
layer and the RR interval stack will be learned during model training to minimize discrep-
ancies between the predicted and ground truth labels. Uncorrelated signals annotating
various arrhythmia classes will be optimally classified using the MF-based CNN model;
however, inter-individual variations between the training and testing sets will affect the
model performance.

The complexity of the proposed model is minimized by employing a single Conv1D
layer with a large receptive field, alleviating the need for deeper hierarchical models.
The number of model-trainable parameters is minimized by pre-assigning the Conv1D
kernels, which reduces the model training time and facilitates model training on small
datasets. The MF-based CNN classifier meets the accuracy requirements of the inter-patient
ECG classification problem and the computational constraints of edge inference, enabling
real-time arrhythmia detection.
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Figure 3. The match filter-based CNN ECG classifier model.

5. Methods and Tools
5.1. Handling Class Imbalance

The MIT-BIH dataset is highly imbalanced, with a majority class “N” to minority
class “Q” ratio of 6008, and the percentage of normal ECG beats to the total number of
beats is 89.47% for the inter-patient division scheme as shown in Table 2. Addressing class
imbalance using classic ML approaches has been intensively investigated over the last
decade. Methods for handling class imbalance are categorized into data-level methods,
algorithm-level approaches, and hybrid techniques [26]. Data-level approaches for address-
ing class imbalance include undersampling and oversampling the dataset examples via
repetition or synthetic creation of examples. In contrast, algorithm-level approaches handle
class imbalance by increasing the weights of the minority class in the model optimization
objective function during model training. In this work, the class imbalance problem of the
MIT-BIH database is addressed at the algorithmic level by incorporating a class weight
parameter to assign higher weights to minority classes according to the class distribution.

On the other hand, classes “F” and “Q” have the least number of examples and are
irrelevant to heart arrhythmia. Therefore, several variants of the model with and without
the minority classes “F” and “Q” have been investigated to study the effect of eliminating
the minority classes on model performance. Three model variants are investigated: all five
AAMI classes are involved, four classes are considered (excluding class “Q”), and only the
three classes “N”, “SVEB”, and “VEB” are considered. Such an approach is commonly used
in the literature [13–15].

5.2. Extraction of Matched Filter Templates

The model is fed the ECG segments directly. Due to the morphological correlation
between some ECG heartbeats belonging to different classes, the first derivative of the
heartbeat will be investigated as an input feature to the CNN classifier and compared to the
ECG segment feature. The ECG first derivative has been used in previous works for many
purposes, including segmentation and QRS detection [27,28], because the first derivative of
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an ECG heartbeat reveals subtle variations and high-frequency components in the signal,
making it a more efficient discriminative feature for the classification task. The ECG’s first
derivative is computed by applying the discrete difference operator, which is equivalent to
continuous differentiation, to the ECG segment.

MF templates are extracted for all sub-classes in the MIT-BIH dataset and assigned to
Conv1D layer kernels. An MF template is computed as the mean of all examples per class
in the training set DS1. This procedure results in 13 MF templates of 64 samples each, which
will be assigned to the Conv1D layer kernels. This procedure of extracting MF templates is
performed once at the training time, and the computed templates will be embedded in the
Conv1D layer weights of the model that can be used directly for inference. The difference
operator will be applied to the input heartbeat segments at inference time to compute the
first derivative fed to the CNN classifier.

MF templates of the ECG heartbeats and their first derivatives are shown in Figure 4
for all ECG sub-classes in DS1 that are used for model training (excluding “F” and “Q”
classes). As evidenced by Figure 4, the first derivatives of the heartbeats have greater
diversity and are thus better used to discriminate between different ECG classes than the
heartbeat signals. To prove this, we will develop two variant ECG classifier models fed with
the raw heartbeats and their derivatives and compare the classification results achieved by
each model. We will also develop a CNN model with two input channels for the ECG signal
and its derivative, with MF templates assigned for both channels. Figure 4 demonstrates
that the non-constant values of the MF templates for both the signal and its derivative
are concentrated around the R-peak. This notice indicates that approximately half of the
template window (around 16 samples from each edge) can be discarded to reduce the
number of Conv1D kernel parameters NK from 64 to 32, reducing the model complexity.

Figure 4. MF templates of the ECG heartbeat and its first derivative for all AAMI classes included in
DS1 (excluding the “F” and “Q” classes).

Other options for extracting the MF templates are averaging all heartbeat segments
belonging to the same AAMI super-class, which would result in 5 template signals, or
computing a template per patient record per sub-class, which would result in 79 template
signals. All three options for computing the MF templates have been investigated, and
the best classification results were obtained for the option with 13 template signals. This
result is expected since averaging over the five AAMI classes would merge heartbeats from
different sub-classes included in the super AAMI class and lose the morphology of the
sub-class beats, while averaging over patient records would result in the development of
personalized heartbeat templates and increase the ambiguity of the classification model.

5.3. Workflow and Tools

Keras with the Tensorflow backend is used to train and test the CNN model. Ten-
sorFlow is an open-source framework for ML created by Google with an extensive set of
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tools, libraries, and community resources that enable building and deploying ML-powered
applications. Keras is an open-source package that provides a high-level Python interface to
the TensorFlow library. Several variants of the ECG classifier model shown in Figure 3 are
developed and tested to study the effect of various model parameters. The model variation
parameters include the MF template length NK (32 or 64), the number of classes (3, 4, and
5); using the ECG heartbeat segments or their derivatives or both as an input feature; and
setting the Conv1D trainable parameter to either “False” or “True” to check the effect of
training the Conv1D layer weights on the classification accuracy; for a trainable Conv1D
layer, the layer weights are either initialized to the MF templates or initialized to the default
initial weights set by the Keras initializer (Glorot uniform initializer).

The categorical cross entropy loss function and Adam optimizer with adaptive learning
rate scheduling initialized at 0.001 are used for model training. DS1 is divided by the patient
records into training and validation sets to imitate the inter-patient division of DS1 and
DS2. Record numbers less than 200 are used for model training, while the remaining are
used for model validation. The epochs and batch sizes are set to 500 and 512, respectively,
with an early stopping callback to avoid model overfitting. The training was conducted
on a workstation featuring 8 CPU cores, 30 GB of RAM, and an NVIDIA QUADRO RTX
5000 GPU. The experiments are repeated ten times for each model variant, and the average
classification scores are reported.

Afterward, the TensorFlow lite (TFLite) optimization tools [29,30] and the Google
Qkeras library [31] are used for optimizing models with the best scores for edge infer-
ence. Quantization algorithms compute and store tensors with bit widths less than the
floating-point precision. Instead of the standard 32-bit single-precision floating-point, a
quantized model performs operations on tensors with integer or lesser float precision. Quan-
tization yields more compact model representations, lower memory footprints, quicker
inference, and less-demanding processing needs at the expense of insignificant accuracy
loss. Quantization-aware training (QAT) [32,33] and post-training quantization (PTQ) [34]
methods are applied to create the TFLite models. QAT results in less reduction in model
accuracy, whereas PTQ does not require model retraining. QAT can be applied using the
TensorFlow optimization toolkit or the Qkeras package, which offers more versatile options,
including quantizable layers and quantization precision.

Subsequently, the quantized models are weight-pruned to eliminate superfluous
weights. Weight pruning decreases the number of model parameters and computations by
removing low-weight connections between DNN layers. The weight pruning API is built
on top of Keras, facilitating its application to Keras models. Weight pruning can be applied
to both QAT and PTQ models.

Eventually, the Tensorflow-optimized models will be converted to TFLite models.
TFLite is a toolkit that facilitates the development of reduced-complexity models for
edge computing. This toolkit comprises a set of tools for optimizing and quantizing
Tensorflow models post-deployment and a run-time engine for edge inference. TFLite
offers several PTQ options to choose from that fit the requirements of various computing
platforms. The model can be converted directly, without quantization, from the base model
to 32-bit floating-point (Float32) TFLite models. Also, Keras models can be quantized
to Float16 to reduce the model size by half without significant loss of accuracy. Float16
models are preferred for GPU-based inference since GPUs can compute natively in this
reduced precision, realizing a speedup over traditional float32 execution. In dynamic range
quantization, model weights are statically quantized from float32 to 8-bit integers (int8),
activations are dynamically quantized based on their range to int8, and computations are
performed with int8 weights and activations. At inference, weights are converted from int8
to float32 and computed using floating-point kernels. In full integer quantization, both
weights and activations of the model are statically quantized to int8 using a representative
subset of the training set. Full integer quantization takes two forms: integer with float
fallback (using default float input/output) and integer-only quantization. The model
is fully quantized in the former, but float operators support platforms with no integer
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instructions. In contrast, the model is fully quantized in the latter, including the model
inputs, outputs, and operators, to ensure compatibility with integer-only devices.

Finally, for testing and benchmarking, the optimized TFLite models are exported to
a raspberry-pi embedded kit with a Cortex-ARMv8 64-bit SoC and 1 GB DDR2 SDRAM.
The kit is operated by Ubuntu 18.04 OS, which hosts a Python 3.6 interpreter and TFLite
run-time engine. The ARM Cortex processor architecture inherently supports 32-bit integer
and floating-point operations. The model metrics, including accuracy, recall, precision, and
F1 score, and the model real-time performance metrics, including the model size, memory
usage, and average inference time, are measured for all TFLite models.

6. Results and Discussion
6.1. Model Training and Testing Results on the Cloud

The architectures and model parameters of different CNN model variants are pre-
sented in Table 3, including the model layers, layer output shapes, and the number of
parameters of each layer. This architecture is invariant for both signal and derivative input
features. The parameter variations include the number of classes (3, 4, and 5), and the
Conv1D MF kernel size NK (32, 64). The trainable parameter of the Conv1D layer is set to
either True or False.

Table 3. Architecture of different Conv1D CNN model variants for the signal and derivative inputs.
The output shape comprises (the number of nodes and the number of channels). The Conv1D layer
parameters can be set as trainable or non-trainable in different model variants.

Layer

# of Classes = 3 # of Classes = 4 # of Classes = 5

Output
Shape

NK = 32 NK = 64
Output
Shape

NK = 32 NK = 64
Output
Shape

NK = 32 NK = 64

Params Params Params Params Params Params

Signal Input Layer (64, 1) 0 0 (64, 1) 0 0 (64, 1) 0 0
Conv1D Layer (64, 11) 363 715 (64, 12) 396 780 (64, 13) 429 845
BatchNormalization (64, 11) 44 44 (64, 12) 48 48 (64, 13) 52 52
Activation (Tanh) (64, 11) 0 0 (64, 12) 0 0 (64, 13) 0 0
GlobalMaxPooling (11) 0 0 (12) 0 0 (13) 0 0
Interval Input Layer (4, 1) 0 0 (4, 1) 0 0 (4, 1) 0 0
Dense Layer 1 (Relu) (4, 32) 64 64 (4, 32) 64 64 (4, 32) 64 64
Dense Layer 2 (Relu) (4, 16) 528 528 (4, 16) 528 528 (4, 16) 528 528
Dense Layer 3 (Relu) (4, 8) 136 136 (4, 8) 136 136 (4, 8) 136 136
Flatten (32) 0 0 (32) 0 0 (32) 0 0
Concatenate (43) 0 0 (44) 0 0 (45) 0 0
Softmax Output Layer (3) 132 132 (4) 180 180 (5) 230 230

Total params 1267 1619 1352 1736 1439 1855
Trainable params 882 882 932 932 984 984
Non-trainable params 385 737 420 804 455 871

The developed models are tested on the cloud machine and the raspberry-pi edge
device using the DS2 testing set only. Classification metrics, including accuracy, precision,
and F1 score, are measured for the training and testing sets. Accuracy is the percentage
of correct predictions to the total number of dataset examples. In terms of true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN), accuracy is defined
as ACC = (TP + TN)/(TP + TN + FP + FN). Precision is defined as the percentage
of TP to the sum of TP and FP, PREC = TP/(TP + FP), whereas recall or sensitivity is
defined as the percentage of TP to the sum of TP and FN, SEN = TP/(TP + FN). For
arrhythmia detection, recall is more important than precision because it characterizes
the classifier’s ability to minimize FN in contrast to precision, which measures the clas-
sifier’s ability to minimize FP. F1 score is the harmonic mean of precision and recall
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F1 = 2 × PREC × SEN/(PREC + SEN) = 2TP/(2TP + FP + FN). Precision, recall,
and F1 score are measured for each class, and their average scores are computed for
the whole dataset.

Over 100 model variants have been examined; however, we will focus this discussion
on a subset of model variants with the best results. Table 4 shows the training and testing
results of the selected CNN model variants on the cloud machine. Model variations include
the number of classes (3, 4, and 5), the Conv1D layer trainable parameter (True, False,
Default), the MF kernel size NK (32, 64), the input feature to the Conv1D layer (Signal,
Derivative, Both), and the training class weight parameter (SET, Not SET). Results of classes
“F” and “Q” do not exist for classifiers with 3 output classes and are not displayed for
classifiers with 4 and 5 output classes.

Table 4. Cloud training and testing classification results: accuracy (ACC), precision (PREC), sensitivity
(SEN), and F1 score metrics (%) of the proposed model variants. Model variations include: the number
of classes: {3,4,5}, Conv1D trainable parameter: {True, False, Default}, MF kernel size NK : {32, 64}, the
input feature to the Conv1D layer: {Signal, Derivative, Both}, and the class weight training parameter:
{SET, Not SET}. Best results per row (metric) are highlighted in red.

Model ID Number 1 2 3 4 5 6 7 8 9

Model Variations

Number of Classes 3 3 3 3 3 3 3 4 5

Conv1D Trainable DEF TRUE FALSE DEF TRUE TRUE TRUE TRUE TRUE
Layer Kernel Size NK 64 32 32 32 32 32 64 32 32
Input Feature DREV DREV DREV BOTH SIG DREV DREV DREV DREV
Class Weight Param SET SET SET SET SET NOT NOT NOT NOT

Results Total Number of Params 1619 1267 1267 1619 1267 1267 1619 1352 1420
Number of Trainable Params 1597 1245 879 1597 1245 1245 1597 1330 1389

Training Results %
Training Time (s) 118.26 94.40 90.61 146.337 122.67 83.76 96.95 77.90 103.76
Model Accuracy 99.30 98.61 93.00 96.04 96.17 99.31 99.42 98.59 98.94
Average F1-Score 95.35 91.54 75.57 83.34 82.18 94.71 95.55 86.68 72.46

Testing Results %

Model Accuracy 96.48 95.58 94.42 94.78 92.90 98.18 97.94 97.06 96.93

Normal Class—N
PREC 99.38 99.47 99.39 99.57 99.67 99.00 99.06 97.73 97.96
SEN 96.96 95.86 94.67 94.91 92.98 99.10 98.31 99.14 98.85
F1 98.16 97.63 96.98 97.18 96.21 99.05 98.68 98.43 98.40

Supraventricular Class—SVEB
PREC 58.06 51.49 43.85 56.09 39.19 82.68 69.72 84.29 90.78
SEN 85.30 88.51 95.59 92.54 88.13 81.60 81.33 79.42 74.52
F1 69.09 65.11 60.12 69.84 54.26 82.14 75.08 81.78 81.85

Ventricular Class—VEB
PREC 90.20 87.93 92.23 74.10 78.07 95.63 94.53 94.99 93.39
SEN 96.34 95.65 90.31 94.32 94.47 95.00 95.47 90.13 95.13
F1 93.17 91.63 91.26 82.99 85.49 95.31 95.00 92.50 94.25

Average Scores
PREC 82.55 79.63 78.49 76.59 72.31 92.44 78.77 69.25 56.42
SEN 92.87 93.34 93.53 93.92 91.86 91.90 91.70 67.17 53.70
F1 86.81 84.79 82.79 83.34 78.65 92.17 89.59 68.18 54.90

The training time of the proposed model does not exceed 2 min per run, and the
maximum number of epochs with the early stopping callback does not exceed 100 for a
mini-batch size of 512. The training time includes the matched filter computation time,
which includes the normalization, differentiation, and arithmetic mean calculation times
of 953, 510, and 51 ms, respectively. The total computation time of the template signal
is about 2 s, which can be neglected for the model training time. The overall training
time is significantly small, considering the training set size of more than 50 K examples.
The proposed model’s short training time is expected due to the reduced complexity and
number of learned parameters. Another factor influencing the training time is the reduced
model input size of only 64 samples as a result of downsampling ECG signals.

The difference between training and testing accuracy does not exceed 3%, indicating
that the model generalizes well for the inter-patient division scheme. The testing accuracy
of Model 3 with a non-trainable Conv1D parameter is higher than its training accuracy,
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indicating that the MF templates can be used to accurately classify the testing dataset
without the need to learn the Conv1D layer parameters. This conclusion reinforces the MF
interpretation of CNNs and the generalization ability of the proposed classifier.

The last two models of Table 4 with 4 and 5 class outputs achieve the lowest average
scores due to the low scores of the minority classes “F” and “Q” (not shown in the table).
However, both models with the derivative input feature achieve good sensitivity results for
the classes “N”, “SVEB”, and “VEB”. The insufficient number of examples in the training
set DS1, and the inter-individual variations between the heartbeats of DS1 and DS2 cause
the degradation of minority class scores.

On the other hand, model variants with three output classes achieve better average
and per-class scores. Model 6 of Table 4 with the derivative input feature, kernel size
NK = 32, and the MF kernel initializer achieves the best testing accuracy of 98.18%, average
F1 score of 92.17% (the F1 score of an average cardiologist is 78% [35]), and the average
precision score of 92.44%. Model 4 with a 2-channel signal and derivative input, kernel
size NK = 32, and the Conv1D Trainable parameter set to False achieves the best average
sensitivity score of 93.92%. At the level of minority classes, Models 1 and 3 achieve highest
sensitivity of 96.34% and 95.59% for classifying the “VEB” and “SVEB” classes, respectively.

Some conclusions can be drawn from these results. All model variants presented in
Table 4 achieve superb classification scores for the inter-patient ECG classification problem,
which supports the MF interpretation of CNNs. The model complexity is significantly
reduced compared to the related ECG classifiers presented in the literature; the number of
proposed model parameters ranges from 1267 to 1619. The first derivative of the signal is a
better morphological feature for ECG classification since the best scores are achieved for
models using the derivative input.

The per-class sensitivity scores of Models 1–5 are better than their counterparts in
Models 6–9, which have better precision. This behavior can be attributed to the fact
that setting the class weight parameter during model training enhances the classifier’s
performance for the minority classes at the expense of the majority class. Precision scores of
the minority classes are mostly affected by FPs from the majority class “N”, which acts as
FNs for other classes. Therefore, enhancing the sensitivity of the majority class “N” directly
leads to enhancing the precision of the minority classes. Thus, it can be concluded that,
for the same classifier topology, the class weight training parameter provides a trade-off
between precision and sensitivity.

The testing accuracy scores are always better than the training accuracy scores by
around 1–3% except for Model 3, where the opposite occurs for the derivative inputs and
the non-trainable Conv1D layer initialized with MF template weights. Models with the
MF template kernel weights and non-trainable Conv1D layer achieve better classification
scores for the “SVEB” and “VEB” minority classes, which supports the MF interpretation
of the Conv1D layer and illustrates the generalization capability of the proposed model.

Enabling training of the Conv1D layer tends to enhance the majority class “N” metrics
by tuning the model weights to minimize the loss function, which is mostly computed for
examples belonging to the majority class. Using both the signal and derivative as input
features to the classifier with a two-channel CNN does not tend to enhance classification
results, yet it doubles the number of model parameters. Finally, reducing the MF kernel
size NK from 64 to 32 does not cause significant performance degradation, yet it reduces
the total number of model parameters by around 25%.

6.2. Model Optimization and Testing Results at the Edge

The first three model variants 1–3 of Table 4 have been selected for edge inference:
model 1 with the highest sensitivity of the VEB class (3 classes, derivative input, default
initialization, and NK = 64), model 2 with the lowest number of parameters (3 classes,
derivative input, MF template initialization, Trainable is True, and NK = 32), and finally
model 3 with the highest sensitivity of the “SVEB” class (3 classes, derivative input, MF
template initialization, Trainable is False, and NK = 32). This selection considered choosing
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models with different variation parameters to investigate the effect of quantization and
pruning on the performance of several model variants at the edge. The applied PTQ
methods are float32, float16, dynamic range, full-integer, and int8 quantization. QAT
is also used using the Qkeras package, which allows quantization of most Keras layers
and concurrent pruning and QAT of TensorFlow models. Unfortunately, the TensorFlow
QAT optimization toolkit does not support the quantization of the Conv1D layer. Models
quantized using Qkeras as an int8 and pruned to remove 50% of the superfluous weights
are converted to TFLite float32 models. Such a procedure outputs models that are quantized
and pruned as int8 yet have a float32 model size; this is equivalent to fake quantization,
in which the model parameters are quantized as int8, but the quantized results are saved
as float32 numbers. Unfortunately, TFLite does not support direct quantization of Qkeras
models as full integer int8 models without reapplying QAT optimizations again, which
would result in an additional loss of accuracy due to applying PTQ after QAT.

The developed TFLite models are exported to the raspberry-pi edge device for testing
and benchmarking. A custom Python script is developed to predict the whole DS2 testing
set using the exported TFLite models at the edge device and to compute the model accuracy
scores and real-time performance metrics. The accuracy metrics measured using the Python
script are accuracy, sensitivity, and F1 scores, whereas the real-time performance metrics
measured are the model size, average inference time, and overall memory usage. The
average inference time is calculated by measuring the whole test dataset’s inference time
and dividing it by the number of examples in the testing set. Figure 5 depicts the accuracy
and real-time performance results of the TFLite models on the raspberry-pi edge device.

(a) (b) (c)

(d) (e) (f)

Figure 5. Testing and benchmarking results of the TFLite model variants 1,2, and 3 on the Raspberry-
pi edge device: (a) Test Accuracy, (b) Average F1 score, (c) Average sensitivity, (d) Model Size (KB),
(e) Memory Usage (MB), (f) Average inference time (ms). Model variants are: (1) Drev_64_Default
(3 class outputs, Derivative input, kernel size NK = 64, Default initializer, and Conv1D layer
Trainable parameter is True), (2) Drev_32_True (3 class outputs, Derivative input, kernel size NK = 32,
Initialized to MF template, and Conv1D layer Trainable parameter is True), (3) Drev_32_False (3 class
outputs, Derivative input, kernel size NK = 32, Initialized to MF template, and Conv1D layer
Trainable parameter is False).

Float32, float16, and dynamic range TFLite models almost retain the same classification
results as their base Keras models. All int8 PTQ TFLite models suffer a significant loss of
accuracy of more than 10% due to weight quantization and reduced operator precision. On
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the other hand, int8 QAT models do not suffer the same accuracy loss. On the other hand,
some QAT models achieved accuracy improvements, such as the model with NK = 64 in
which the accuracy and F1 score increased from 96.48% to 97.13% and from 86% to 88.3%,
respectively, which can be attributed to the fact that retraining the model using QAT tuned
up the weights to achieve better accuracy. These results illustrate the advantage of using
QAT over PTQ to preserve the quantized model accuracy. The same conclusions apply to
the average F1 and sensitivity scores.

At the level of the real-time performance results at the edge, the average inference time
of all TFLite model variants does not exceed 1 ms using the Python script. Int8 PTQ models
achieve the lowest inference time, while QAT models have the highest. The overall memory
usage for fully predicting the testing set DS2 ranges from 12 to 24 MB. The TFLite model
with NK = 32 and the Conv1D Trainable parameter set to True has the lowest memory
usage, which can be attributed to the fact that enabling layer training would result in
sparse weight kernels and decrease memory usage. Due to the interpreter overhead, both
average inference time and memory usage metrics are expected to improve if the models
are benchmarked using a compiled code rather than the python-interpreted script. The
performance of int8 TFLite models is expected to improve on edge platforms with native
int8 support. The TFLite model size ranges from 14 to 18 KB for PTQ models and 28 KB for
QAT models. The relatively large QAT model size is caused by the lack of TFLite library
support for directly quantizing Qkeras int8 models. In conclusion, the achieved model size
and memory usage enable running the TFLite models on a wide range of edge devices with
even tighter constraints than raspberry-pi.

6.3. Comparison with Related Work

In this section, we compare the proposed MF-based CNN classifier models with the
best results from Table 4 with the state-of-the-art ECG classification models. Model variants
1 and 6, with the best sensitivity score of the minority classes and the best average F1 score,
respectively, are selected for this comparison. Related works selected for comparison are
limited to recent state-of-the-art ECG classification methods applied to the MIT-BIH dataset,
categorized according to the AAMI standard, and trained and tested using the inter-patient
dataset division method proposed by [9] to provide a fair comparison. Table 5 depicts
the average scores and per-class precision, recall, and F1 scores reported in the compared
works; the average F1 scores are calculated using the reported per-class results. All models
listed in this table have been introduced in Section 2. This comparison will address model
performance metrics and suitability for edge inference which will be inferred from the
pre-processing and feature extraction stages, model topology, and other model parameters.

Table 5. Comparison between the Conv1D MF model and state-of-the-art inter-patient ECG classifi-
cation methods. The best results per column (metric) are highlighted in red.

ID Model Classes Features Classifier
ACC N SVEB VEB Macro Average Scores

% PREC SEN PREC SEN PREC SEN PREC SEN F1

1 Proposed MF 1 3 ECG Segments
+ RR Conv1D MF 96.48 99.38 96.96 58.06 85.30 90.20 96.34 82.55 92.87 86.81

2 Proposed MF 6 3 ECG Segments
+ RR Conv1D MF 98.18 99.00 99.10 82.68 81.60 95.63 95.00 92.44 91.90 92.17

3 Zhang et al.
[13] 3 ECG Segments

+ RR
Conv1D
+ADNN 94.70 98.00 96.20 90.80 78.80 94.30 92.50 94.37 89.17 91.62

4 Wang et al.
[14] 4 CWT + RR Conv2D 99.27 98.17 99.42 89.54 74.56 93.25 95.65 70.75 67.47 68.76

5
Mondéjar-

Guerra et al.
[15]

4
Wavelets +

HOS + LBP +
RR

Ensemble SVM 94.50 98.20 95.90 49.70 78.10 93.90 94.70 66.35 70.28 67.08
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Table 5. Cont.

ID Model Classes Features Classifier
ACC N SVEB VEB Macro Average Scores

% PREC SEN PREC SEN PREC SEN PREC SEN F1

6 Raj and Ray
[16] 5 DOST ABC +

LSTSVM 96.08 88.50 98.54 72.29 52.06 81.59 62.35 54.89 43.15 45.88

7 Garcia et al.
[17] 3 TVGG + PSO SVM 92.40 98.00 94.00 53.00 62.00 59.40 87.30 70.13 81.10 74.60

8 Chen et al. [18] 3
DCT +

Projection +
RR

SVM 93.10 95.40 98.40 38.40 29.50 85.10 70.80 72.97 66.23 69.18

9 Zhang et al.
[19] 5 Morph + RR SVM 88.34 98.98 88.94 35.98 79.06 92.75 85.48 65.65 81.53 65.46

10 Lin and Yang
[20] 3 Morph + WT +

RR LDC 93.00 99.30 91.60 31.60 81.40 73.70 86.20 68.20 86.40 73.43

The adversarial CNN model proposed by [13] was evaluated on the MIT-BIH arrhyth-
mia database, and the achieved sensitivity and precision of “SVEB” and “VEB” classes are
78.8% and 92.5%; and 90.8% and 94.3%, respectively, and an average F1 score of 91.62%.
The proposed MF model variant 1 outperforms this model at the level of sensitivity of the
“SVEB” and “VEB” classes, while the proposed model variant 6 outperforms this model at
the level of the average F1 score. Additionally, the complexity of our model is much lower
than that of this adversarial-based CNN model, which is composed of seven convolutional
layers and three spatiotemporal attention modules. This significant reduction in complexity
qualifies our model for edge deployment compared to the model presented in this work.

The CWT ECG classifier model proposed by [14] was tested on the MIT-BIH arrhyth-
mia database using the inter-patient paradigm; the model achieves average precision,
sensitivity, F1 score, and accuracy of 70.75%, 67.47%, 68.76%, and 98.74%. The sensitivity
and precision achieved for the “SVEB” and “VEB” classes are 74.56% and 95.65%, and
89.54% and 93.25%, respectively. The average scores and per-class sensitivity scores of
the MF mode variant 1 outperform the results of this model, while the proposed model
variant 6 outperforms this model at the level of the average F1 score. The total number of
model parameters reported for this model is 26,612, an order of magnitude higher than the
maximum number of parameters of the MF CNN classifier proposed in this work. Both
classification and model size results show the superiority of the proposed MF classifier
compared to this model.

Several model combinations proposed by [15] have been tested on the MIT-BIH DS2,
and the testing results are reported. The best average scores achieved by this work are
94.5% and 84.03% for accuracy, and the F1 score, respectively, and at the class level, the
sensitivity score of the “SVEB” and “VEB” classes is 78.1% and 94.7%, respectively. Both
model variants 1 and 6 outperform this model in both the average and per-class scores.
Moreover, the complexity of our model is much lower than that of this model, which needs
many pre-processing stages and relies on the computationally intensive SVM classifier.
Finally, our model outperforms models proposed by [16–20] listed in Table 5 in all aspects
and has much lower complexity, pre-processing, and feature extraction requirements.

For better visualization of the comparison results, Figure 6 presents a chart graph
comparison between models presented in Table 5. This comparison shows that the pro-
posed method outperforms all related works at the level of the sensitivity of detecting
the “SVEB” and “VEB” minority classes, which is one of the most critical metrics in the
arrhythmia detection problem [2,9] and achieves comparable results at the level of the
remaining classification metrics. The proposed model achieves such superior results using
minimal computational resources, which is remarkable. The proposed model’s computation
complexity and real-time performance results surpass all rivals by a significant margin.
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Figure 6. Comparison between the proposed MF model and related models of Table 5.

6.4. Model Generalization Validation

In this section, the model generalization capability is experimentally analyzed and
validated. To show the model’s generalization ability, we trained and tested the model on
various open-access databases provided by PhyisoNet [36], the moniker of the Research
Resource for Complex Physiologic Signals, other than the MIT-BIH arrhythmia database.
The St Petersburg INCART arrhythmia database consists of 75 annotated 12-lead recordings
extracted from 32 Holter records, each of 30 min duration, collected from patients undergo-
ing tests for coronary artery disease; most had ventricular ectopic beats. The QT database
contains over 100 fifteen-minute, two-lead ECG recordings [37]. The PTB diagnostic ECG
database contains 549 15-lead records from 290 subjects obtained using a non-commercial
PTB prototype recorder [38].

To unify the experiments, only annotated MLII signals are used as input to the pro-
posed model as described in Section 3. Only ECG annotations following the standard
PhysioBank beat annotation definitions are extracted from the selected databases on a
beat-by-beat basis and mapped to the AAMI classes described in Table 1. In other words,
not all beats are extracted from the database records, yet only a subset with the standard
annotations is used to establish the generalization validation datasets. All ECG signals
are resampled to 128 samples/sec, and 0.5-second segments are fed to the classifier model.
The dynamic normalized RR intervals are extracted using the same procedure described in
Section 3 and fed to the classifier model. The dataset size, ECG classes, and class distribu-
tion of the INCART, QT, and PTB datasets are depicted in Table 6. The INCART dataset
is large and highly unbalanced, whereas the QT and PTB datasets are comparably small.
The selected datasets feature diverse characteristics, such as dataset size, number of classes,
and class distribution, to extensively validate the model’s generalization capability.

Table 6. Model generalization validation results on the INCART, QT, and PTB diagnostic databases.

Validation Method
Training Validation Testing

Dataset Size
Classes Test Macro Average Scores % Number of

Set Set Set (Distribution) Acc % Prec SEN F1 Params

Inter-Patient MIT-BIH DS1 DS2 51,021, 49,712
N, SVEB, VEB

98.18 92.44 91.9 92.17 1267
(90,125, 2781, 7009)

Random Division St Petersburg INCART Dataset 175,907
N, SVEB, VEB

99.43 96.03 92.20 94.00 1140
(122,941, 1594, 16,010)

Random Division QT Dataset 14,156
N, SVEB, VEB, F

98.76 96.35 91.19 93.60 1180
(9593, 609, 933, 189)

Random Division PTB Diagnostic ECG Dataset 14,550
Normal, Abnormal

100.00 100.00 100.00 100.00 200
(10,505, 4045)

Cross-Dataset
MIT-BIH MIT-BIH

INCART 51,021, 49,712, 175,907
N, SVEB, VEB

97.23 82.12 81.07 81.24 1267
DS1 DS2 (213,066, 4375, 23,019)
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In this set of experiments, the MF model’s trainable parameter is set to True, NK = 32,
the signal derivative input is used, and the class weight training parameter is not set. The
Conv1D layer kernel templates are extracted as explained in Section 5. Unfortunately,
unlike the MIT-BIH database, most ECG databases do not have a standard inter-patient
division scheme such as the one proposed by [9]. Therefore, we conducted two experiments
to validate the model’s generalization ability. First, the proposed model is trained and
tested on the INCART, QT, and PTB databases with the random division scheme applied to
the ECG examples extracted from these databases. Examples of each dataset are randomly
shuffled, stratified, and split into training and testing sets with a splitting ratio of 20%;
the training set is further split into training and validation sets with a splitting ratio of
20%. The distribution of the training, validation, and training sets is 64%, 16%, and 20% of
the total dataset size, respectively. Second, the model trained on the MIT-BIH database is
cross-validated on the INCART database without further training. In this experiment, the
MF classifier is trained and validated using the MIT-BIH DS1 and DS2 described in Table 2,
and the resulting model is tested on the INCART dataset. To the best of our knowledge,
this is the first work in the ECG classification literature to cross-validate a classifier model
on different databases.

Table 6 illustrates the experiment setup and testing results of the proposed model
on the generalization validation datasets. The first row of the table shows the baseline
testing results of the proposed MF model variant (ID 6) on the MIT-BIH dataset with the
inter-patient division scheme, while the remaining rows show the generalization validation
results on other datasets. The proposed MF classifier test accuracy and average precision,
sensitivity, and F1 scores are enhanced for the first set of intra-patient experiments using
the INCART, QT, and PTB datasets, regardless of the dataset size, class imbalance, and the
number of classes. These results establish the model’s generalization capability.

For the cross-dataset inter-patient validation experiment, the model accuracy results
on the testing dataset are slightly reduced by around 1%, while the average precision,
sensitivity, and F1 scores are significantly reduced by around 10%. The model classification
performance is unaffected for the classes “N” and “VEB” yet it significantly dropped for
the “SVEB” class with 50.59%, 60.69%, and 55.18% precision, sensitivity, and F1 scores,
respectively. Such degradation in the classifier’s performance is attributed to using different
training and testing databases collected using dissimilar equipment and under various
conditions, which causes a dataset covariate shift. Dataset covariate shift refers to the
change in the distribution of the input variables present in the training and testing data.
Nevertheless, the overall performance of the proposed classifier model is generally accepted,
given that the model is trained and tested on totally different databases. Domain adaptation
methods can be considered for enhancing the model performance across various datasets.

6.5. Model Performance Analysis in the Presence of Noise

A set of experiments is conducted to analyze the model performance on noisy data.
Two model variants (with IDs 5 and 6) are used: the MF model with the ECG signal input
and the MF model with the derivative input, respectively. The model is trained and tested
for each experiment using the MIT-BIH dataset with the inter-patient division scheme,
and the model training and testing accuracy results are plotted versus the noise-to-signal
ratio. In the first set of experiments, additive white Gaussian noise (AWGN) is added
to the training and testing data, and in the second set of experiments, AWGN is added
to the testing data only. The noise is added to the raw ECG signals extracted from the
MIT-BIH database (filtered using a BPF from 0.1 to 100 Hz). To properly study the effect of
contaminated ECG measurements on the classifier’s performance, it should be emphasized
that the noise is added to the signals themselves, not their derivatives. The noise power is
assigned as a percentage of the signal power, ranging from 0 to 50%.

Figure 7 illustrates the training and testing accuracy and average testing F1 score for
the four experiments conducted. To analyze these results, we first discuss the effect of
adding noise to both training and testing sets versus adding noise to the test only. Adding
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noise to a specific limit in the training and testing sets works as a regularization procedure
that helps enhance model generalization. However, increasing the noise power eventually
affects the model’s learning ability and causes degradation in the model performance.
This conclusion is supported by comparing the left and right plots of Figure 7. In the left
plots, where the noise is added to both training and testing data, the model accuracy is
not significantly affected, while the F1 score keeps fluctuating with increasing the noise
power up to a specific limit, 35% noise to signal percentage, at which the F1 score steadily
degrades with increasing the noise power. On the other hand, adding noise to the test set
only significantly affects the performance of the proposed model, especially the F1 score, as
shown by the two right plots due to the dataset covariate shift caused by the noise added
to the test dataset.

Figure 7. The performance of the proposed MF classifier in the presence of noise.

Secondly, we discuss the effect of using the ECG signal versus the first derivative
as an input to the MF classifier. The effect of noise on the performance of the MF model
with the derivative input is severe compared to the model with the ECG signal input,
as illustrated by comparing the top and bottom plots of Figure 7. The F1 score of the
model with the derivative input drops to 80% and 35% compared to the F1 score of the
model with the signal input, which drops to 83% and 60% for the two experiment sets,
respectively. This experiment shows that the model with the derivative input is more
susceptible to noise, as expected. The results of this section illustrate that using a noise
removal pre-processing stage is essential for successfully deploying the proposed MF
classifier. For model deployment on the edge device, pre-processing baseline wandering
and noise removal filters will be implemented using consecutive median filters and a BPF
from 0.1 to 100 Hz.

7. Conclusions and Future Work

In conclusion, we proposed an MF-based CNN model for inter-patient ECG classifica-
tion optimized for edge deployment. The computational complexity of the proposed model
is minimized to fit the resource constraints of edge inference. The proposed model was ex-
tensively evaluated and benchmarked on a cloud machine and a raspberry-pi edge device.
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The proposed model achieves superior classification results compared to the state-of-the-art
ECG classifiers. The model’s generalization capability has been established by testing the
model on three recognized ECG databases. The model performance in the presence of noise
has been experimentally analyzed, and a noise removal stage is suggested. The proposed
model enables continuous monitoring of ECG in real-time using resource-constrained
edge devices. Such an approach has the potential to save millions of lives from chronic
cardiovascular diseases.

In future work, we will investigate enhancing the classifier performance across vari-
ous datasets by fine-tuning the model hyper-parameters, the ECG segment size, and the
normalized RR interval dynamics, as well as using domain adaptation techniques. Fur-
thermore, we will explore the implementation of convolutional-based signal processing
algorithms, such as FIR filtering, using the convolution layer of a CNN. Such an approach
enables the development of self-contained implementations of computationally intensive
pre-processing stages, such as noise removal and time-frequency feature extraction, which
are widely used in the ECG classification literature. Finally, the MF-based CNN will be
investigated for other relevant time series classification problems.
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