An Efficient Trust-Aware Task Scheduling Algorithm in Cloud Computing Using Firefly Optimization
Abstract
:1. Introduction
Motivation and Contributions
- Developed an efficient trust-aware task scheduling algorithm using firefly optimization (TAFFA).
- The effective scheduling of the priorities of tasks and VMs with electricity unit costs are calculated.
- Identified the relation between the makespan and trust based on the SLAs parameters.
- The calculation of trust based on the SLA is identified, i.e., the success rate of the virtual resource, the availability of VMs, and the turnaround efficiency.
- A deadline constraint in used in this research in order to assign tasks to virtual resources after the current execution of the pending tasks.
- Extensive simulations carried on Cloudsim.
- Fabricated (different workload distributions, i.e., uniform, normal, left, and right skewed distributions) and realtime worklogs from HPC2N and NASA are used.
- The proposed TAFFA is evaluated over PSO, ACO, and the GA and finally the simulation results proposed TAFFAs improved parameters, i.e., the availability, success rate, and turnaround efficiency while minimizing the makespan.
2. Related Work
3. Problem Definition and System Architecture
3.1. Problem Definition
3.2. System Architecture
3.3. Fitness Function for Trust-Aware Task Scheduling Algorithm (TAFFA) Using Firefly Optimization
4. Proposed Trust-Aware Task Scheduling Algorithm Using Firefly Optimization
Proposed Trust-Aware Task Scheduling Algorithm (TAFFA) in Cloud Computing Using Firefly Optimization Algorithm
Algorithm 1: Trust-Aware Task Scheduling Algorithm (TAFFA) in Cloud Computing Using Firefly Optimization Algorithm. |
Input: set of tasks, set of VMs , set of hosts set of datacenters . Output: generates schedules using TAFFA while minimizing makespan, improving AV(n_v), SR(n_v), TE(n_v). |
Start. Initialize random firefly population. Calculate priorities of incoming tasks using Equation (6). Calculate priorities of VMs using Equation (7). Evaluate fitness function in Equation (17). for every firefly do calculate intensity using Equations (19) and (20). Calculate distance and movement of fireflies using Equation (21) and Equation (22). If a firefly has more brightness then calculate , , , using Equations (8)–(10) and (15), respectively. Return best solutions else repeat the same procedure until best solution arrived for all iterations. End if Stop. |
5. Simulations and Results
5.1. Settings Used for Simulation
5.2. Calculation of Makespan
5.3. Calculation of Availability
5.4. Calculation of Success Rate
5.5. Calculation of Turnaround Efficiency
5.6. Discussion of Results
5.6.1. Improvement of Makespan
5.6.2. Improvement of Availability
5.6.3. Improvement of Success Rate
5.6.4. Improvement of Turnaround Efficiency
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saadia, D. Integration of cloud computing, big data, artificial intelligence, and internet of things: Review and open research issues. Int. J. Web-Based Learn. Teach. Technol. 2021, 16, 10–17. [Google Scholar] [CrossRef]
- Dubey, K.; Sharma, S. A novel multi-objective CR-PSO task scheduling algorithm with deadline constraint in cloud computing. Sustain. Comput. Inform. Syst. 2021, 32, 100605. [Google Scholar] [CrossRef]
- Sharma, N.; Puneet, G. Ant colony based optimization model for QoS-based task scheduling in cloud computing environment. Meas. Sens. 2022, 24, 100531. [Google Scholar] [CrossRef]
- Abualigah, L.; Alkhrabsheh, M. Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing. J. Supercomput. 2021, 78, 740–765. [Google Scholar] [CrossRef]
- Aydilek, I.B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl. Soft Comput. J. 2018, 66, 232–249. [Google Scholar] [CrossRef]
- Nabi, S.; Ahmad, M.; Ibrahim, M.; Hamam, H. AdPSO: Adaptive PSO-Based Task Scheduling Approach for Cloud Computing. Sensors 2022, 22, 920. [Google Scholar] [CrossRef]
- Rani, R.; Ritu, G. Energy efficient task scheduling using adaptive PSO for cloud computing. Int. J. Reason.-Based Intell. Syst. 2021, 13, 50–58. [Google Scholar] [CrossRef]
- Nabi, S.; Ahmed, M. PSO-RDAL: Particle swarm optimization-based resource- and deadline-aware dynamic load balancer for deadline constrained cloud tasks. J. Supercomput. 2021, 78, 4624–4654. [Google Scholar] [CrossRef]
- Mangalampalli, S.; Swain, S.K.; Mangalampalli, V.K. Multi Objective Task Scheduling in Cloud Computing Using Cat Swarm Optimization Algorithm. Arab. J. Sci. Eng. 2021, 47, 1821–1830. [Google Scholar] [CrossRef]
- Malik, M.; Suman. Lateral Wolf Based Particle Swarm Optimization (LW-PSO) for Load Balancing on Cloud Computing. Wirel. Pers. Commun. 2022, 1, 1–20. [Google Scholar] [CrossRef]
- Ankita; Sahana, S.K. Ba-PSO: A Balanced PSO to solve multi-objective grid scheduling problem. Appl. Intell. 2021, 52, 4015–4027. [Google Scholar] [CrossRef]
- Agarwal, M.; Srivastava, G.M.S. Opposition-based learning inspired particle swarm optimization (OPSO) scheme for task scheduling problem in cloud computing. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 9855–9875. [Google Scholar] [CrossRef]
- Shukri, S.E.; Al-Sayyed, R.; Hudaib, A.; Mirjalili, S. Enhanced multi-verse optimizer for task scheduling in cloud computing environments. Expert Syst. Appl. 2020, 168, 114230. [Google Scholar] [CrossRef]
- Walia, N.K.; Kaur, N.; Alowaidi, M.; Bhatia, K.S.; Mishra, S.; Sharma, N.K.; Sharma, S.K.; Kaur, H. An energy-efficient hybrid scheduling algorithm for task scheduling in the cloud computing environments. IEEE Access 2021, 9, 117325–117337. [Google Scholar] [CrossRef]
- Hussain, M.; Wei, L.F.; Lakhan, A.; Wali, S.; Ali, S.; Hussain, A. Energy and performance-efficient task scheduling in heterogeneous virtualized cloud computing. Sustain. Comput. Inform. Syst. 2021, 30, 100517. [Google Scholar]
- Velliangiri, S.; Karthikeyan, P.; Xavier, V.A.; Baswaraj, D. Hybrid electro search with genetic algorithm for task scheduling in cloud computing. Ain Shams Eng. J. 2020, 12, 631–639. [Google Scholar] [CrossRef]
- Kanwal, S.; Iqbal, Z.; Al-Turjman, F.; Irtaza, A.; Khan, M.A. Multiphase fault tolerance genetic algorithm for vm and task scheduling in datacenter. Inf. Process. Manag. 2021, 58, 102676. [Google Scholar] [CrossRef]
- Sanaj, M.S.; Joe Prathap, P.M. An efficient approach to the map-reduce framework and genetic algorithm based whale optimization algorithm for task scheduling in cloud computing environment. Mater. Today Proceed. 2021, 37, 3199–3208. [Google Scholar] [CrossRef]
- Pirozmand, P.; Hosseinabadi, A.A.R.; Farrokhzad, M.; Sadeghilalimi, M.; Mirkamali, S.; Slowik, A. Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing. Neural Comput. Appl. 2021, 33, 13075–13088. [Google Scholar] [CrossRef]
- Pirozmand, P.; Javadpour, A.; Nazarian, H.; Pinto, P.; Mirkamali, S.; Ja’Fari, F. GSAGA: A hybrid algorithm for task scheduling in cloud infrastructure. J. Supercomput. 2022, 78, 17423–17449. [Google Scholar] [CrossRef]
- Mirmohseni, S.M.; Tang, C.; Javadpour, A. FPSO-GA: A Fuzzy Metaheuristic Load Balancing Algorithm to Reduce Energy Consumption in Cloud Networks. Wirel. Pers. Commun. 2022, 127, 2799–2821. [Google Scholar] [CrossRef]
- Elsedimy, E.; Fahad, A. MOTS-ACO: An improved ant colony optimiser for multi-objective task scheduling optimisation problem in cloud data centres. IET Net. 2022, 11, 43–57. [Google Scholar] [CrossRef]
- Dubey, K.; Subhash, C.S. A hybrid multi-faceted task scheduling algorithm for cloud computing environment. Int. J. Syst. Assur. Eng. Manag. 2021, 1, 1–15. [Google Scholar] [CrossRef]
- Nalini, J.; Khilar, P.M. Reinforced Ant Colony Optimization for Fault Tolerant Task Allocation in Cloud Environments. Wirel. Pers. Commun. 2021, 121, 2441–2459. [Google Scholar] [CrossRef]
- Muteeh, A.; Sardaraz, M.; Tahir, M. MrLBA: Multi-resource load balancing algorithm for cloud computing using ant colony optimization. Clust. Comput. 2021, 24, 3135–3145. [Google Scholar] [CrossRef]
- Zambuk, F.U.; Ya’U, A.; Jiya, M.; Ado, N.; Ja’Afaru, B.; Muhammad, A. Efficient Task Scheduling in Cloud Computing using Multi-objective Hybrid Ant Colony Optimization Algorithm for Energy Efficiency. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 450–456. [Google Scholar] [CrossRef]
- Liu, H. Research on cloud computing adaptive task scheduling based on ant colony algorithm. Optik 2022, 258, 168677. [Google Scholar] [CrossRef]
- Belgacem, A.; Beghdad-Bey, K. Multi-objective workflow scheduling in cloud computing: Trade-off between makespan and cost. Clust. Comput. 2021, 25, 579–595. [Google Scholar] [CrossRef]
- Xia, W.; Shen, L. Joint resource allocation at edge cloud based on ant colony optimization and genetic algorithm. Wirel. Pers. Commun. 2021, 117, 355–386. [Google Scholar] [CrossRef]
- Mbarek, F.; Mosorov, V. Hybrid Nearest-Neighbor Ant Colony Optimization Algorithm for Enhancing Load Balancing Task Management. Appl. Sci. 2021, 11, 10807. [Google Scholar] [CrossRef]
- Abed-Alguni, B.H.; Alawad, N.A. Distributed Grey Wolf Optimizer for scheduling of workflow applications in cloud environments. Appl. Soft Comput. 2021, 102, 107113. [Google Scholar] [CrossRef]
- Singh, A.; Kakali, C. A multi-dimensional trust and reputation calculation model for cloud computing environments. IEEE Accessed 2017, 1, 1–8. [Google Scholar]
- Yang, X.-S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Yang, X.-S. Firefly algorithms for multimodal optimization. In Proceedings of the International Symposium on Stochastic Algorithms, Sapporo, Japan, 26–28 October 2009; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Yang, X. Firefly algorithm, Lévy distributions and global optimization. In Research and Development in Intelligent Systems XXVI; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Calheiros, R.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.F.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2010, 41, 23–50. [Google Scholar] [CrossRef]
- Ibrahim, A.; Elaziz, M.A. and Xiong, S. Job scheduling in cloud computing using a modified harris hawks optimization and simulated annealing algorithm. Comput. Intell. Neurosci. 2020, 2020, 3504642. [Google Scholar]
- Abualigah, L. and Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Cluster Comput. 2021, 24, 205–223. [Google Scholar] [CrossRef]
- Madni, S.H.H.; Latiff, M.S.A.; Abdulhamid, S.M.; Ali, J. Hybrid gradient descent cuckoo search (HGDCS) algorithm for resource scheduling in IaaS cloud computing environment. Clust. Comput. 2018, 22, 301–334. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Authors | Technique Used | Parameters |
---|---|---|
[6] | Adaptive PSO | Throughput, makespan, resource utilization. |
[7] | PSO | Makespan, energy consumption. |
[8] | PSO | Resource utilization, makespan, task rejection, penalty cost, total cost. |
[9] | CSO | Makespan, total power cost, migration time, energy consumption. |
[10] | LW-PSO | Execution time, turnaround time, response time. |
[11] | Ba-PSO | Total execution time, wait time, scalability, load balancing of tasks. |
[12] | OPSO | Makespan, energy consumption. |
[13] | EMVO | Makespan, resource utilization. |
[14] | GA-FPA | Resource utilization, computation cost, completion time. |
[15] | EPETS | Makespan, energy Consumption. |
[16] | HSGA | Makespan, cost, response time. |
[17] | MFTGA | Fault tolerance, execution time, cost, energy consumption, SLA violation. |
[18] | GA-WOA | Throughput, processing cost, computation cost, processing time. |
[19] | GAECS | Makespan, energy consumption. |
[20] | GSAGA | Processing capacity, energy consumption. |
[21] | FPSO-GA | Load balancing of tasks. |
[22] | MOTS-ACO | Makespan, turnaround time, load balancing, power efficiency. |
[23] | AC-PSO | Makespan, total cost, resource utilization. |
[24] | R-ACO | Makespan. |
[25] | MR-LBA | Execution time and execution cost. |
[26] | ACOBF | Energy Consumption, makespan, resource utilization. |
[27] | Adaptive ACO | Task completion time, execution cost, load balance of tasks. |
[28] | HEFT-ACO | Makespan, cost. |
[29] | JRA-ACO-GA | Resource utilization. |
[30] | ACO-NN | Load balancing. |
[31] | DGWO | Makespan, computation and transmission costs. |
Entity | Meaning |
---|---|
Set of tasks. | |
Set of VMs. | |
Set of datacenters. | |
Set of hosts. | |
workload on virtual resources. | |
Workload on physical hosts. | |
Processing capacity of virtual resources. | |
Priorities of considered tasks | |
Priorities of VMs based on electricity unit cost. | |
Makespan. | |
Deadline constraint. | |
Execution time. | |
Finish time. | |
Availability of VMs. | |
Success rate of VMs. | |
Turnaround efficiency. | |
Trust in a cloud provider. |
Name | Quantity |
---|---|
No. of tasks considered | 100–1000 |
Length of tasks | 900,000 |
Memory of host | 16 GB |
Storage capacity of host | 2 TB |
Network bandwidth capacity | 200 Mbps |
No. of VMs | 50 |
Memory capacity of VM | 2 GB |
Bandwidth of VM | 20 Mbps |
Processing elements | 1100 MIPS |
Hypervisor used | Xen |
Hypervisor type | Monolithic |
Operating system | MAC |
Datacenters used | 10 |
Algorithm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Tasks | ACO | GA | PSO | TAFFA | ||||||||
δ | Best | δ | Best | δ | Best | δ | Best | |||||
b01 | ||||||||||||
100 | 752.8 | 1.32 | 732.8 | 767.99 | 1.99 | 712.24 | 675.6 | 2.43 | 623.88 | 545.87 | 2.67 | 521.34 |
500 | 941.3 | 2.88 | 921.2 | 1487.32 | 2.56 | 1421.12 | 1267.34 | 1.57 | 1232.87 | 853.21 | 1.78 | 813.67 |
1000 | 1421.6 | 0.89 | 1398.8 | 1656.12 | 1.12 | 1610.33 | 1763.3 | 2.44 | 1712.45 | 945.32 | 0.98 | 912.57 |
b02 | ||||||||||||
100 | 857.21 | 1.78 | 834.12 | 857.21 | 989.34 | 2.45 | 912.87 | 753.58 | 1.21 | 698.35 | 678.12 | 1.67 |
500 | 1456.3 | 2.67 | 1408.34 | 1456.3 | 1425.78 | 2.89 | 1377.34 | 1265.21 | 0.69 | 1198.32 | 1146.66 | 1.11 |
1000 | 1854.21 | 0.34 | 1812.22 | 1854.21 | 1688.6 | 1.43 | 1612.66 | 1728.76 | 0.87 | 1689.34 | 1254.65 | 1.78 |
b03 | ||||||||||||
100 | 853.7 | 1.76 | 812.9 | 753.21 | 2.12 | 712.35 | 834.12 | 1.28 | 785.23 | 653.54 | 0.78 | 612.56 |
500 | 987.3 | 1.98 | 894.67 | 1287.65 | 2.58 | 1187.32 | 986.12 | 0.34 | 933.12 | 788.12 | 0.56 | 721.12 |
1000 | 1378.6 | 2.45 | 1312.5 | 1457.32 | 1.21 | 1408.35 | 1398.5 | 1.97 | 1309.34 | 924.58 | 0.17 | 886.56 |
b04 | ||||||||||||
100 | 745.32 | 1.23 | 697.86 | 853.57 | 2.16 | 797.36 | 876.14 | 2.12 | 787.56 | 554.12 | 1.77 | 521.45 |
500 | 843.24 | 1.58 | 806.35 | 956.35 | 1.32 | 899.79 | 987.12 | 2.56 | 897.13 | 824.78 | 2.12 | 784.56 |
1000 | 1387.54 | 2.16 | 1311.32 | 1488.43 | 1.76 | 1418.36 | 1247.98 | 2.25 | 1198.72 | 1378.9 | 2.74 | 1245.34 |
b05 | ||||||||||||
100 | 1687.3 | 2.87 | 1623.45 | 1745.5 | 1.87 | 1699.9 | 1931.2 | 2.14 | 1893.5 | 988.46 | 1.13 | 954.12 |
500 | 1923.4 | 3.34 | 1894.3 | 2267.6 | 1.38 | 1987.34 | 2178.5 | 3.12 | 2012.45 | 1688.12 | 1.89 | 1612.34 |
1000 | 2756.3 | 2.18 | 2245.8 | 3088.5 | 0.34 | 2987.45 | 2923.43 | 1.59 | 2877.12 | 2068.7 | 1.35 | 1986.21 |
b06 | ||||||||||||
100 | 887.35 | 1.78 | 843.21 | 757.65 | 1.27 | 703.56 | 634.21 | 1.29 | 589.17 | 578.12 | 1.47 | 534.12 |
500 | 956.88 | 1.12 | 895.34 | 1189.26 | 2.12 | 1098.23 | 894.32 | 1.87 | 824.66 | 798.12 | 1.34 | 712.67 |
1000 | 1278.9 | 0.78 | 1209.56 | 1998.32 | 1.09 | 1885.12 | 1856.23 | 1.67 | 1826.77 | 1098.7 | 2.13 | 978.55 |
Algorithm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Tasks | ACO | GA | PSO | TAFFA | ||||||||
δ | Best | δ | Best | δ | Best | δ | Best | |||||
b01 | ||||||||||||
100 | 82.77 | 1.12 | 76.57 | 93.4 | 0.68 | 81.25 | 89.67 | 1.77 | 81.76 | 97.88 | 0.87 | 94.78 |
500 | 74.36 | 2.56 | 68.78 | 87.99 | 0.87 | 84.37 | 84.32 | 1.36 | 79.57 | 95.43 | 0.36 | 93.89 |
1000 | 82.18 | 1.09 | 78.35 | 78.97 | 0.36 | 72.88 | 77.56 | 1.23 | 71.36 | 96.57 | 0.78 | 95.26 |
b02 | ||||||||||||
100 | 88.76 | 0.98 | 84.31 | 92.64 | 0.79 | 90.32 | 88.98 | 1.12 | 85.32 | 96.76 | 0.87 | 95.12 |
500 | 79.88 | 1.12 | 72.77 | 89.57 | 0.43 | 85.34 | 78.16 | 1.29 | 76.11 | 95.77 | 2.78 | 92.18 |
1000 | 69.89 | 1.04 | 67.53 | 77.84 | 0.43 | 72.67 | 82.18 | 1.99 | 77.43 | 97.89 | 0.57 | 96.39 |
b03 | ||||||||||||
100 | 69.38 | 1.88 | 64.38 | 79.78 | 2.56 | 76.45 | 74.58 | 1.28 | 70.33 | 96.21 | 0.77 | 94.59 |
500 | 76.88 | 1.54 | 69.87 | 84.78 | 0.85 | 81.27 | 81.38 | 2.57 | 78.67 | 95.33 | 0.87 | 94.17 |
1000 | 79.58 | 1.29 | 77.99 | 85.22 | 1.77 | 83.46 | 85.31 | 0.87 | 79.96 | 97.55 | 0.71 | 95.33 |
b04 | ||||||||||||
100 | 58.99 | 1.76 | 54.78 | 67.37 | 1.93 | 63.21 | 69.88 | 1.45 | 67.36 | 94.54 | 0.52 | 93.21 |
500 | 77.29 | 2.78 | 71.37 | 79.09 | 1.57 | 71.36 | 82.55 | 1.11 | 80.02 | 97.11 | 0.54 | 96.22 |
1000 | 82.46 | 1.84 | 78.67 | 81.37 | 1.42 | 79.86 | 91.24 | 3.75 | 88.67 | 98.31 | 0.26 | 97.55 |
b05 | ||||||||||||
100 | 57.86 | 1.65 | 53.47 | 64.99 | 1.12 | 59.33 | 76.39 | 2.90 | 73.24 | 94.39 | 0.72 | 92.66 |
500 | 64.53 | 1.63 | 63.53 | 68.36 | 2.37 | 62.19 | 78.11 | 3.08 | 67.66 | 97.13 | 0.63 | 95.14 |
1000 | 73.32 | 1.54 | 70.38 | 74.47 | 3.12 | 68.84 | 83.31 | 2.13 | 79.57 | 98.41 | 0.35 | 96.88 |
b06 | ||||||||||||
100 | 55.33 | 1.15 | 51.76 | 58.18 | 0.34 | 51.57 | 71.8 | 2.21 | 68.99 | 95.31 | 0.25 | 92.16 |
500 | 63.32 | 2.98 | 59.44 | 66.11 | 2.14 | 59.88 | 74.32 | 1.87 | 71.56 | 96.18 | 0.91 | 94.55 |
1000 | 72.31 | 2.46 | 69.46 | 79.57 | 2.86 | 74.33 | 78.11 | 1.12 | 76.85 | 98.42 | 0.41 | 96.11 |
Algorithm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Tasks | ACO | GA | PSO | TAFFA | ||||||||
δ | Best | δ | Best | δ | Best | δ | Best | |||||
b01 | ||||||||||||
100 | 84.55 | 2.83 | 79.33 | 86.11 | 0.55 | 82.09 | 82.17 | 1.38 | 81.36 | 96.31 | 0.61 | 93.54 |
500 | 74.24 | 1.32 | 71.88 | 79.24 | 1.53 | 77.33 | 79.33 | 1.21 | 74.21 | 95.77 | 0.59 | 94.11 |
1000 | 68.11 | 1.82 | 67.33 | 72.11 | 0.75 | 69.12 | 76.41 | 0.92 | 72.33 | 97.12 | 0.21 | 96.02 |
b02 | ||||||||||||
100 | 45.87 | 1.54 | 42.77 | 56.12 | 1.38 | 52.11 | 64.77 | 1.76 | 62.99 | 97.35 | 0.21 | 92.37 |
500 | 68.33 | 2.11 | 63.66 | 65.21 | 2.17 | 62.35 | 78.46 | 2.82 | 70.66 | 96.78 | 0.43 | 93.71 |
1000 | 72.11 | 1.82 | 69.54 | 78.17 | 1.66 | 71.22 | 82.87 | 1.12 | 78.77 | 97.69 | 0.19 | 95.32 |
b03 | ||||||||||||
100 | 55.16 | 1.54 | 52.18 | 57.34 | 2.86 | 51.12 | 68.33 | 1.53 | 63.12 | 93.31 | 0.57 | 91.78 |
500 | 68.33 | 2.26 | 62.13 | 66.15 | 1.08 | 61.31 | 73.54 | 2.57 | 69.54 | 96.17 | 0.21 | 94.09 |
1000 | 77.35 | 2.67 | 71.39 | 72.11 | 1.73 | 67.36 | 82.12 | 2.09 | 77.13 | 97.65 | 0.56 | 95.21 |
b04 | ||||||||||||
100 | 58.56 | 0.57 | 54.33 | 67.16 | 2.57 | 63.12 | 62.77 | 1.29 | 59.36 | 97.96 | 1.24 | 94.31 |
500 | 61.35 | 2.11 | 59.83 | 71.88 | 1.88 | 68.57 | 69.19 | 1.38 | 62.18 | 98.12 | 2.12 | 95.67 |
1000 | 73.12 | 1.67 | 70.72 | 78.24 | 2.36 | 73.52 | 78.33 | 2.89 | 71.38 | 98.89 | 2.56 | 96.88 |
b05 | ||||||||||||
100 | 54.88 | 1.77 | 50.56 | 64.22 | 1.87 | 61.33 | 69.86 | 1.37 | 66.78 | 97.87 | 0.78 | 96.36 |
500 | 64.78 | 1.88 | 61.67 | 69.88 | 1.34 | 65.46 | 73.55 | 2.87 | 70.37 | 96.79 | 0.57 | 95.32 |
1000 | 77.47 | 1.93 | 71.99 | 72.17 | 2.09 | 68.21 | 81.26 | 1.77 | 79.98 | 98.81 | 1.16 | 97.26 |
b06 | ||||||||||||
100 | 46.77 | 1.77 | 45.14 | 48.12 | 1.31 | 45.31 | 53.52 | 1.21 | 50.21 | 95.88 | 0.92 | 94.32 |
500 | 62.77 | 0.87 | 61.36 | 59.71 | 2.76 | 54.68 | 68.31 | 1.32 | 66.98 | 97.67 | 0.37 | 95.12 |
1000 | 78.33 | 1.32 | 73.17 | 74.16 | 1.88 | 71.27 | 72.31 | 1.10 | 70.32 | 98.32 | 0.56 | 96.21 |
Algorithm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Tasks | ACO | GA | PSO | TAFFA | ||||||||
δ | Best | δ | Best | δ | Best | δ | Best | |||||
b01 | ||||||||||||
100 | 48.42 | 1.33 | 44.17 | 51.13 | 1.48 | 49.83 | 58.72 | 1.86 | 53.56 | 97.28 | 0.57 | 95.27 |
500 | 56.12 | 0.97 | 52.17 | 59.35 | 1.71 | 56.17 | 60.36 | 1.37 | 58.77 | 96.48 | 0.26 | 96.39 |
1000 | 62.77 | 2.18 | 58.53 | 66.13 | 2.82 | 63.91 | 63.67 | 1.37 | 60.32 | 98.17 | 0.92 | 97.11 |
b02 | ||||||||||||
100 | 53.31 | 1.22 | 56.78 | 61.82 | 1.64 | 59.56 | 68.37 | 1.88 | 65.18 | 97.32 | 1.88 | 95.36 |
500 | 61.87 | 2.56 | 59.92 | 68.33 | 1.24 | 62.18 | 71.37 | 1.35 | 69.88 | 96.75 | 2.21 | 94.96 |
1000 | 68.99 | 1.36 | 62.37 | 69.98 | 1.72 | 67.38 | 76.67 | 1.41 | 72.51 | 95.77 | 1.12 | 96.31 |
b03 | ||||||||||||
100 | 68.76 | 1.09 | 66.32 | 69.17 | 1.25 | 66.12 | 72.86 | 2.53 | 69.76 | 96.31 | 1.47 | 95.17 |
500 | 70.35 | 1.11 | 68.18 | 74.85 | 1.63 | 71.29 | 75.47 | 1.65 | 74.18 | 98.48 | 1.28 | 96.37 |
1000 | 75.21 | 0.98 | 73.87 | 79.63 | 1.42 | 75.18 | 82.57 | 1.87 | 79.23 | 98.76 | 0.76 | 97.46 |
b04 | ||||||||||||
100 | 64.65 | 1.21 | 61.37 | 74.17 | 2.47 | 70.87 | 77.67 | 1.62 | 72.19 | 95.43 | 0.12 | 94.98 |
500 | 71.77 | 2.57 | 68.71 | 79.37 | 1.57 | 76.73 | 79.37 | 2.15 | 75.18 | 96.19 | 0.32 | 95.27 |
1000 | 77.31 | 1.75 | 73.21 | 83.17 | 2.53 | 79.21 | 82.56 | 2.37 | 79.67 | 98.47 | 0.56 | 96.76 |
b05 | ||||||||||||
100 | 49.67 | 1.29 | 47.38 | 53.26 | 0.27 | 51.37 | 65.78 | 1.67 | 63.67 | 96.87 | 0.46 | 95.21 |
500 | 52.77 | 1.21 | 51.21 | 58.54 | 0.78 | 57.31 | 69.11 | 1.79 | 68.66 | 96.38 | 0.21 | 95.55 |
1000 | 64.36 | 1.62 | 61.66 | 60.67 | 1.07 | 58.26 | 76.88 | 1.89 | 73.21 | 99.08 | 0.21 | 98.43 |
b06 | ||||||||||||
100 | 66.88 | 1.74 | 64.92 | 62.27 | 2.59 | 58.65 | 70.39 | 1.21 | 69.87 | 97.57 | 0.68 | 97.01 |
500 | 73.53 | 1.36 | 71.38 | 67.18 | 2.16 | 63.19 | 75.77 | 1.95 | 71.48 | 96.98 | 0.54 | 96.22 |
1000 | 78.28 | 1.73 | 76.49 | 75.38 | 1.53 | 72.36 | 80.84 | 1.82 | 78.37 | 99.15 | 0.26 | 98.82 |
Algorithms | |||
---|---|---|---|
Improvement of Makespan | |||
ACO | GA | PSO | |
b01 | 25.09% | 37.6% | 32.38% |
b02 | 27.73% | 26.62% | 16.92% |
b03 | 25.49% | 30.1% | 25.65% |
b04 | 11% | 19.86% | 16.74% |
b05 | 22.55% | 32.08% | 33.48% |
b06 | 27.45% | 35.75% | 23.11% |
Algorithms | |||
---|---|---|---|
Improvement of Availability | |||
ACO | GA | PSO | |
b01 | 27.28% | 19.54% | 22.4% |
b02 | 27.4% | 15.32% | 19.02% |
b03 | 34.64% | 17.93% | 24.47% |
b04 | 42.98% | 34.82% | 22.87% |
b05 | 53.56% | 49.96% | 29.62% |
b06 | 58.49% | 55.29% | 30.25% |
Algorithms | |||
---|---|---|---|
Improvement of Success Rate | |||
ACO | GA | PSO | |
b01 | 30.48% | 24.84% | 24.86% |
b02 | 66.7% | 53.79% | 33.42% |
b03 | 53.56% | 58.11% | 38.89% |
b04 | 56.82% | 40.23% | 49.48% |
b05 | 60.08% | 48.43% | 33.78% |
b06 | 65.14% | 72.36% | 55.55% |
Algorithms | |||
---|---|---|---|
Improvement of Turnaround Efficiency | |||
ACO | GA | PSO | |
b01 | 88.75% | 71.57% | 67.62% |
b02 | 59.21% | 51.91% | 38.33% |
b03 | 38.92% | 36.24% | 29.77% |
b04 | 41.85% | 26.77% | 26.55% |
b05 | 82.38% | 73.66% | 41.04% |
b06 | 37.8% | 51.41% | 33.18% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangalampalli, S.; Karri, G.R.; Elngar, A.A. An Efficient Trust-Aware Task Scheduling Algorithm in Cloud Computing Using Firefly Optimization. Sensors 2023, 23, 1384. https://doi.org/10.3390/s23031384
Mangalampalli S, Karri GR, Elngar AA. An Efficient Trust-Aware Task Scheduling Algorithm in Cloud Computing Using Firefly Optimization. Sensors. 2023; 23(3):1384. https://doi.org/10.3390/s23031384
Chicago/Turabian StyleMangalampalli, Sudheer, Ganesh Reddy Karri, and Ahmed A. Elngar. 2023. "An Efficient Trust-Aware Task Scheduling Algorithm in Cloud Computing Using Firefly Optimization" Sensors 23, no. 3: 1384. https://doi.org/10.3390/s23031384
APA StyleMangalampalli, S., Karri, G. R., & Elngar, A. A. (2023). An Efficient Trust-Aware Task Scheduling Algorithm in Cloud Computing Using Firefly Optimization. Sensors, 23(3), 1384. https://doi.org/10.3390/s23031384