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Abstract: Background and Objective: The prevalence of chronic cardiovascular diseases (CVDs)
has risen globally, nearly doubling from 1990 to 2019. ECG is a simple, non-invasive measurement
that can help identify CVDs at an early and treatable stage. A multi-lead ECG, up to 15 leads in a
wearable form factor, is desirable. We seek to derive multiple ECG leads from a select subset of leads
so that the number of electrodes can be reduced in line with a patient-friendly wearable device. We
further compare personalized derivations to generalized derivations. Methods: Long-Short Term
Memory (LSTM) networks using Lead II, V2, and V6 as input are trained to obtain generalized
models using Bayesian Optimization for hyperparameter tuning for all patients and personalized
models for each patient by applying transfer learning to the generalized models. We compare
quantitatively using error metrics Root Mean Square Error (RMSE), R2, and Pearson correlation
(ρ). We compare qualitatively by matching ECG interpretations of board-certified cardiologists.
Results: ECG interpretations from personalized models, when corrected for an intra-observer vari-
ance, were identical to the original ECGs, whereas generalized models led to errors. Mean perfor-
mance values for generalized and personalized models were (RMSE-74.31 µV, R2-72.05, ρ-0.88) and
(RMSE-26.27 µV, R2-96.38, ρ-0.98), respectively. Conclusions: Diagnostic accuracy based on derived
ECG is the most critical validation of ECG derivation methods. Personalized transformation should
be sought to derive ECGs. Performing a personalized calibration step to wearable ECG systems and
LSTM networks could yield ambulatory 15-lead ECGs with accuracy comparable to clinical ECGs.

Keywords: ECG; LSTM networks; Bayesian Optimization; personalized medicine; wearable devices

1. Introduction

Globally, the leading causes of mortality and disability are ischemic heart disease and
stroke [1]. The prevalence and mortality of cardiovascular diseases (CVD) have increased
from 271 million to 523 million and 12.1 million to 18.6 million, respectively, from 1990 to
2019. In the U.S., a conservative projection by Pearson-Stuttard et al. [2] estimated that
total coronary and stroke deaths by 2030 will increase by ≈18% and 50%, respectively.
Total costs (direct and indirect costs) of CVD were estimated to be USD 555 billion in 2015.
These costs are expected to double to USD 1.1 trillion by 2035. The looming shortages of
trained physicians further complicate the increased burden of CVDs. The U.S. could have
an estimated shortage of 54,100 to 139,000 physicians by 2033 [3]. These shortages may
continue to grow as the population ages. More Americans live longer with chronic diseases
and require longitudinal care.
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The current era of digital health may provide a means to lessen the burden of the
reduced physician-to-patient ratio. eHealth (electronic Health) and mHealth (mobile
Health) have been extensive research topics over the past two decades. In 2016 alone,
global smartphone sales reached close to 1.5 billion, one for every fifth person on earth [4].
There are several consumer devices by companies such as Apple Inc. (Cupertino, CA,
USA), Fitbit (currently owned by Google Inc., Mountain View, CA, USA), and Samsung in
the market with form factors such as wrist-worn, ring, and necklace-styles that can collect
physiological data such as heart rate and photoplethysmography. Data from the Apple
Watch device have been used to detect atrial fibrillation [5]. However, they must be used
with care [6].

There is a critical need for devices including software decision support tools that are
non-inferior to traditional medical devices used in hospital settings. Advances in this area
will play a key role in boosting healthcare providers’ capacity to meet the projected CVD
management needs.

The standard clinical version of the ECG is the 12-lead ECG consisting of Lead I, II,
and III, which are bipolar, aVR, aVL, and aVF, which are augmented unipolar, and V1
through V6, which are unipolar. This system requires the placement of 10 electrodes on the
patient’s skin. Vectorcardiography (VCG) [7] is an essential complement to the standard
12-lead (S12) ECG. It is a three-dimensional representation of the cardiac vector loop in
three orthogonal planes: vertical, transverse, and sagittal. VCG is less often used in a
clinical setting than S12. However, the VCG adds diagnostic value in several conditions
that complement the S12 [8,9].

Long-term Monitoring (LTM) utilizes a class of devices that consist of single to multi-
lead adhesive patch integrated devices, Holter monitors, event recorders, and implantable
loop recorders. They are used for ECG monitoring while the patient is ambulatory and
have a reduced set of leads ranging from a single-lead patch to a seven-lead recorder.
Many current devices have wireless connectivity and upload event-related data in real-time.
LTM is primarily used for the detection of transient rhythm abnormalities such as atrial
fibrillation, premature ventricular contractions (PVCs), pauses and tachy-and bradycardia,
and they have been proven to be more effective compared to Short-term Monitoring (STM)
for this purpose [10,11]. STM predominantly utilizes standard bedside medical equipment
to record the standard 12-lead ECG. The patient is stationary and usually supine during
the recording period, and recording lengths range from 10 to 30 s. STM is more effective in
determining persistent pathological conditions with a high specificity level than LTM.

While STM predominantly uses traditional bedside monitors, LTM has seen several
advances in recent decades. The devices that have proven to be most effective have an
internet-connected architecture [12]. Among the several devices that have been proposed
in the literature, the following ECG monitoring devices have clearance from FDA in the
U.S. and have achieved significant clinical adoption—NUVANT MCT [13], Zio Patch [14],
and Kardia Mobile [15].

From a clinical perspective, the trends toward remote monitoring and diagnostics
powered by digital health have created a greater demand for tools with high diagnostic
value for home use. These tools must be comparable to the tools used in hospitals. In many
cases, data from devices such as wearable ECGs with higher specificity and sensitivity can
help save time and costs of hospital visits and minimize the number of tests required to
arrive at a diagnosis. This is evidenced by the number of commercial devices used as the
standard of care as described earlier. The standard 12-lead (S12) is still the gold standard for
diagnosis, so a blend of the diagnostic specificity of the multi-lead STM and the sensitivity
of long recording durations of the LTM is desired. Notably, the putatively best-performing
Artificial Intelligence-based methods for diagnostics based on ECG require S12 as the input
to achieve high performance [16–21].

From an engineering perspective, the following constraints exist for wearable ECG
device designs: First, standard lead systems have electrodes placed far apart. The greater
the separation between electrodes, the more noise is likely introduced due to motion. All
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electrodes or sensors need to be electrically connected to electronics, so the wearable device
must cover most of the body when sensors are far apart. Second, for remote monitoring,
the quality of data connection or connection to the internet must be adequate to support
data transfer at higher volumes, or more complex compression algorithms are needed,
increasing the computing requirements on the device and the power requirements. Third,
as the number of leads recorded increases:

• More power is needed, i.e., a larger sized and higher capacity battery to:

# Acquire, condition, and store the data on the wearable device. More channels
of Analog to Digital Conversion would be needed and the amount of energy
needed to write additional data to onboard memory on the wearable device
will also increase [22].

# Transfer the data to a smart device or data gateway device.

• More storage is needed to archive the data that is uploaded to the cloud. Cloud storage
increases in cost if retained for long periods.

• More electrodes need to be placed on the skin, making the device cumbersome.

These constraints dictate that wearable ECG monitors should be designed with a
minimal number of electrodes and a minimal number of leads. A multi-lead ECG, ideally
all 15 leads in a wearable form factor, is highly desirable in the new digital health era. The
number of electrodes that need to be placed on the skin to acquire these ECGs is depicted
in Figure 1. The S12 requires 10 electrodes, while (VCG) requires 7 electrodes. Only one
electrode location, i.e., left leg, is shared between these lead systems. Ideally, if we wanted
all 15 leads in an ECG measurement system, we would need 16 electrodes placed on the
patient. However, based on the constraints described, the constraint for wearable ECG
devices stems from the number of electrodes required to provide all the clinical information
necessary to unlock the diagnostic power of a multi-lead ECG system. It is impractical to
have 16 electrodes or sensors placed at a precise anatomic location to obtain clinical-grade
ECGs. It is also impractical to collect, store, and transfer large amounts of data per patient.
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Figure 1. Comparison of electrode placement needed for a 15-lead system and the proposed method.
For 15-lead system (a) electrode placements on the ventral side (b) electrode placements on the dorsal
side. For the proposed method (c) electrode placements only on the ventral side [7,23].

A method to compute multiple leads from a reduced lead system is desired to obtain
the combined benefit of LTM and STM. This task, in essence, is a function approximation
task. The function transforms a reduced set of leads into a larger set of leads. Therefore, a
method is presented to reduce the number of electrodes needed so that a wearable device
that captures ECG can be designed to capture all information needed for an accurate di-
agnosis without compromising the quality of life for patients and diagnostic utility. We
present this method as a complementary technique to wearable ECG monitoring technol-
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ogy that our research group has previously demonstrated using cloth-based Nanosensor
technology [24]. Even though the electrode placements in the proposed method span the
whole area of the chest, a wearable device in a textile form factor can be designed to capture
the necessary leads with the advantage of not requiring adhesives, conductive gels, or
skin preparation [25]. This paper makes the following original contributions to the body
of knowledge:

• The existing literature does not describe or extensively characterize a methodology
to transform a reduced set of ECG leads into a complete set of leads, including
Frank XYZ vectorcardiography using an LSTM neural network. A novel deep neural
network approach and a detailed validation strategy for the appropriate choice of
hyperparameters using Bayesian global optimization are presented.

• We propose a transfer learning approach to create personalized models for each patient so that
the ECG transformations can account for each individual’s unique anatomy. The personalized
models were the most accurate based on quantitative and qualitative assessments.

2. Related Work

Several of the initial research efforts on the transformation of ECGs focused on trans-
formations from S12 to Frank XYZ so that clinicians can tap into the added specificity
and sensitivity of VCGs while following the standard of care, which only requires the
measurement of the standard 12-lead ECG. From 1986 to 2009, researchers used linear
regression to approximate the transformation function. Table 1 lists the ECG transforma-
tion studies reported in the literature. The accuracy of lead transformations to Frank XYZ
could be reproduced from several results reported in the literature (Figures S12–S14 in
the Supplementary Material). Among these results, we chose the inputs to be Lead II, V2,
and V6 under the assumption that they showed a good performance in terms of errors,
and the leads were quasi-orthogonal [26], which could imply that they carry the maximal
information needed to reconstruct the remaining leads.

In 2010, the first neural network-based transformation was proposed [27]. Since then,
researchers have made several efforts to address the practical challenge of reducing leads
acquired while maintaining diagnostic yield. Most studies focus on using a three-lead
ECG as the input to a transformation that will output 12 lead ECG. Several studies have
used closed datasets explicitly acquired for the research and are now unavailable for other
researchers. A few studies used open databases, such as the Physionet data bank [28]. One
open dataset that is ideally suited for this research is the PTB diagnostic ECG repository.

Root mean square (RMS) and pearson correlation coefficient are the most reported
metrics. R squared, defined as in (3), is used in the literature. Therefore, the following
metrics form the most detailed evaluation: RMS error, pearson correlation coefficient, and
R2. There is a fundamental limitation to the proposed techniques from 1986 to 2009, which
assumed linearity so that the cardiac vector could be projected to the skin to obtain ECG
waveforms. The projection of the cardiac vector assumes that the transformation of the
electrical activity of the cardiac vector to the surface of the body is a strictly linear operation,
which is not true as the human body has various organs and tissue between the heart
and the skin with different electrical properties that will effectively result in an arbitrarily
complex transformation.

Therefore, the goal is to arrive at an arbitrarily complex function that transforms a
subset of ECG leads into a larger set of leads. Neural networks are ideally suited for such
arbitrary function approximation tasks.
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Table 1. Related work in the literature that proposes lead transformations.

Source Lead→ Target Lead Study Population/
Transformation Method Reported Performance Metrics

S12→ Frank XYZ [29] 41 patients (closed)/Linear regression QRS, ST and T amplitudes

S12→ Frank XYZ [30] 39 normal, 41 patients/Linear regression R wave amplitudes

S12→ Frank XYZ [26]

Development Set 147 (30% normal, 15%
hypertrophy, 30% MI, 25% other), test set
90 (30% normal, 25% hypertrophy, 30%

MI, 15% other) (closed)/Linear regression

Distance Measure D = 1
K ∑K

k=1
|Vk−V∗k |
|Vk |

S12→ Frank XYZ [31] Total 346 cases (closed)/Linear regression Pearson Correlation coefficient

S12→ Frank XYZ [32]

PTB diagnostic ECG database excluding
atrial arrhythmias or A.V. block and
patients with implanted Pacemakers.

(open)/Linear Regression

RMS error; Pearson Correlation
coefficient

S12→ Frank XYZ [33]
PTB diagnostic ECG database only

healthy and post- MI included
(open)/Linear Regression

R2

Lead I, II and V2→ S12 [27] 120 patients (closed)/Neural Network
and Linear Regression

RMS error; Pearson Correlation
coefficient

Three bipolar leads→ S12 [34] 30 normal, 35 patients (closed)/Linear
Regression

RMS error; Pearson Correlation
coefficient

Three bipolar leads→ S12 [35] 20 normal, 22
patients(closed)/Regression Trees Pearson Correlation coefficient

Lead I, II, and V2→ S12 [36]
39 patients were randomly chosen from

PTB diagnostic ECG database
(open)/Linear Regression

RMS error; Pearson Correlation
coefficient

Lead I, II, and V2→ S12 [37]
39 patients were randomly chosen from

PTB diagnostic ECG database
(open)/LSTM neural network

RMS error; Pearson Correlation
coefficient

Three bipolar leads→ S12 [38] 14 normal(closed)/Neural Network and
linear regression Pearson Correlation coefficient

Three bipolar leads→ S12 [39] 30 normal, 30 patients(closed)/LSTM
neural network

RMS error; Pearson Correlation
coefficient

This work—Lead II, V2, and V6→
S12 lead and Frank XYZ

PTB diagnostic ECG all records except
three that are corrupted with too much

noise. (open)

RMS error; Pearson Correlation
coefficient, R2

3. Materials and Methods

We implemented all data analysis programs and applications on MATLAB 2021a
Update 5 version 9.10.0.1739362 (MathWorks Inc., Natick, MA, USA). The hardware con-
sisted of an Intel processor (i7-7820X), 32 GB of RAM, and an NVIDIA RTX 3090 Graphics
Processing Unit (GPU). Since the data used in this study were publicly available, the study
was exempt from IRB approval by the Office for Research Protections at the Pennsylvania
State University.

3.1. Data Sources and Preparation

The PTB database [40] includes 15 lead ECGs from 249 patients. In some patients,
multiple recordings are included so that the total number of ECGs is 549. The ECGs are
sampled at 1 kHz. Only one diagnosis is included per patient in this dataset. Notably, patients
will usually have several comorbidities. Myocardial Infarction (MI) patients and healthy
controls account for the majority. Three recordings were rejected from further processing:

• patient095—record number 291—No V1 lead recording
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• patient285—record number 537—Completely corrupted with no visible ECG data
• patient220—record number 453—No lead III data

All 549 recordings were bandpass filtered with a passband of 0.05 Hz to 45 Hz. This
passband is acceptable according to long-term monitoring standards. Furthermore, we
down sampled the data from 1000 Hz to 200 Hz. Firstly, for adults, most of the ECG signal
content is below 100 Hz [41]. Secondly, the lower sampling rate reduces the amount of data
per iteration while training neural networks.

3.2. Preparation of Patient-Specific Training Data for Personalized Models

Some patients have several recordings at different times, whereas others only have one
recording. A sliding window data augmentation strategy was followed for each recording
to increase the number of training samples available per patient. The window size was set
to 17 s, and the overlap was 16 s. This sliding window data augmentation approach was
followed in similar related work [39].

3.3. Transformation Performance Evaluation

All evaluations and measurements of performance are only calculated on the vali-
dation dataset for all methods. This is carried out to avoid bias due to expected higher
performance, i.e., lower RMSE, of the neural network methods on the training data. We
split the complete data set with uniform randomization into 80%/20% (training/testing).
We computed the performance of the transformation only on the testing data set for all
transformation methods for an unbiased comparison of performance. As mentioned ear-
lier in the related work section, we computed the following metrics: RMS error, pearson
correlation coefficient, and R2. The definitions of the metrics are as follows:

RMSE =

√
∑N

i=1(y[i]− ŷ[i])2

N
(1)

Pearson Correlation Coe f f icient =


∑N

i=1 ŷ [i] ∗ y [i](
∑N

i=1 y [i]2 ∗∑N
i=1 ŷ [i]2

) 1
2

 (2)

R2 =

{
1− ∑N

i=1 [ŷ [i]− y [i]]2

∑N
i=1 [y [i]]2

}
∗ 100 (3)

where N is the length of the ECG segments in samples, y is the actual measured ECG, and
ŷ is the derived ECG.

3.4. Transformation Performance Evaluation

We used a neural network that we believe is well-suited for time-series data, including
the ECG, specifically the Long-Short-term Memory (LSTM) network. The LSTM architecture
was proposed in 1997 by Hochreiter and Schmidhuber [39]. Greff et al. have performed a
comprehensive search through several variants of the LSTM architecture to find that there is
no significant improvement over the original LSTM architecture [40], so the original LSTM
architecture is used in this research. In this work, we trained a deep learning model to learn
a transfer function to derive a set of ECG leads from a different set of ECG leads. Since
this is a regression type of problem that falls under the category of sequence-to-sequence
translation, the loss function or cost function is half mean-square without normalization
for the number of output dimensions (4); in this case, channels of ECG that are estimated.
Adam optimizer [42] was chosen for the rule to apply the weight updates.

loss =
1

2S ∑S
i=1 ∑R

j=1

(
ŷij − yij

)2 (4)
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where S is the length of the sequence or number of samples of ECG, R is the number of
channels of ECG at the output of the network, ŷ is the estimated output at an instant of
time, and y is the observed sample of ECG at that instant of time. The input weights were
initialized with glorot initialization [43], where the weights were independently sampled
from a uniform distribution with mean = 0 and

variance = 2/((Input Size + 4 ∗ number o f hidden units)) (5)

The recurrent weights were initialized as Q, the result of Q.R. decomposition of a
random matrix sampled from a unit normal distribution [44]. The forget gate biases were
initialized with ones, and zeros were used for the remaining gates.

The following is a list of hyperparameters whose values need to be defined to finalize
a network architecture before training.

• Number of layers.
• Number of hidden units per layer.
• Learning rate.
• Minibatch Size (number of training samples per iteration)
• Learning rate schedule whether no changes or change rules for the learning rate as

training progresses. The learning rate can be reduced as training progresses to allow
more refined tuning of the network weights closer as the cost function reaches the
global minimum.

• Adam optimizer parameters:
• β1 —momentum coefficient.
• β2—RMS prop coefficient.

These hyperparameter values influence the performance obtained from the networks
in terms of error (RMSE, R2, and pearson correlation coefficient). A grid search is a deter-
ministic method of obtaining the global minimum that a particular set of hyperparameter
choices can define. All possible permutations of hyperparameters are used to train several
neural networks, and the network that yields the lowest error can then be chosen. Conse-
quently, this network would have the ideal choices for hyperparameters. However, this
is a brute force method that is impractical when evaluating computationally expensive
functions such as the training of a multilayer neural network. Alternatively, one might
randomly choose and evaluate sets of hyperparameters, but this method may not be repro-
ducible and could lead to optimal results only by chance. A superior approach is to use a
guided search method in the space of hyperparameters. Bayesian optimization (BOpt) is an
approach that is best suited for computationally expensive functions [45].

The 546 usable records were sequestered into training and testing with an approximate
ratio of 80/20. The number of records in the training set was 437, and the testing was
109. All networks were trained for 100 epochs. The number of layers was not part of
the hyperparameter exploration experiments described. We chose to evaluate the best
performance across multiple layered networks to understand the impact of additional
layers on the optimal performance found through BOpt. Therefore, hyperparameter tuning
was conducted for 1-, 2-, 3-, 4-, and 5-layer networks independently, and results were
compared thereafter to determine the impact of the number of layers of LSTM on the best
performance achievable.

3.5. Hyperparameter Tuning Using Bayesian Optimization

BOpt is utilized to obtain optimal values for the hyperparameters of the LSTM network.
Table 2 provides the stepwise description of the algorithm for BOpt.

The method of applying BOpt involves three key elements:

• A Gaussian Process Model ( Q( f |x, y) ), where f (x) is the objective function defined
as the final validation RMSE for a network trained with the hyperparameters defined
in x, and y is the value of this RMSE. The model uses the kernel function ARD
Matérn 5/2.
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kARD Matern 5
2
(xi, xi

∣∣∣∣θ) = σ2
f

(
1 +
√

5r +
5
3

r2
)

exp(−
√

5r
)

(6)

where r =

√
∑d

m=1
(xim−xjm)

2

σ2
m

, xi and xj are vectors of length d.

• An update procedure for ( Q( f |x, y) ) upon each new evaluation.
• An acquisition function a(x) that is based on ( Q( f |x, y) ) that is maximized so that

the next evaluation point x can be chosen. The choice of a(x) was expected improve-
ment [46].

Table 2. Description of Bayesian optimization algorithm used for hyperparameter tuning (pseu-
docode included in Supplementary Material).

Setup

• Set the bounded range of values that each hyperparameter can
assume.

• Set the sampling probability transformation that should be
applied to the range of values (Logarithmic-scaled or
Uniform).

• Set the limit for the total number of evaluations of the neural
network training function as a stopping criterion.

Initialization

• Evaluate f (x) for neural network architectures defined with
four randomly sampled sets of hyperparameters from the
transformed and bounded range of hyperparameters.

• Obtain an initial Q( f |x, y)

Iteration (while total number of f (x) evaluations < 50) • Find for evaluation that maximizes the function a(x)
• Update Q( f |x, y) after computing f (x) for the new point x

Stopping • Return the best result as set of hyperparameters associated
with the lowest Final Validation RMSE.

(Expected Improvement)EI(x, Q) = EQ

[
max

(
0, µQ

(
xOptimal

)
− f (x)

)]
(7)

where µQ

(
xOptimal

)
is the lowest value of the posterior mean and xOptimal is the location

in hyperparameter space of the lowest posterior mean. In addition to this choice of a(x),
another criterion was applied to increase the propensity for sampling x and avoid overex-
ploitation of more granular sampling within a local minimum of x. This is implemented as
a further constraint in the selection of the next x to evaluate. x is chosen as the next point to
evaluate if the following criterion is met:

σf (x) ≥ 0.8 ∗ σ (8)

where σf (x) is the standard deviation of the posterior objective function at x, and σ is the
posterior standard deviation of the additive noise. Table 3 lists the bounded range of values
for each hyperparameter and the sampling transformations.
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Table 3. BOpt search space for each of the hyperparameters that were optimized.

Hyperparameter Bounds for Optimization Sampling Transformation

Number of Hidden Units [10, 50] Linear, Uniform

Minibatch Size [16, 32] Linear, Uniform

Learning Rate Schedule
‘none’ or ‘piecewise’ (reduced
by a factor of 0.1 every
10 epochs)

Linear, Uniform

Learning rate [1 × 10−3, 1 × 10−1] Log-scaled, Uniform

β1(Momentum coefficient) [0.9, 0.999] Log-scaled, Uniform

β2is RMS prop coefficient [0.9, 1] Log-scaled, Uniform

3.6. Personalized Network Training

The optimal network architectures that are chosen through the hyperparameter tuning
process described in the previous section (Section 3.5) can be trained further with data from
each patient to obtain networks that are specific for each patient. This approach of further
training pre-trained networks with more specific data falls under a class of techniques
for problem-solving using machine learning called transfer learning [47]. The advantage
of this approach is that the amount of data available from one patient can be small. The
learned weights from the general model provide an optimal starting point from which the
training of a personalized model can result in an accurate model with fewer data. In the
data set used for this work, there are 549 recordings across 290 patients, an average of 200 s
per recording, and some patients may have only 100 s of data. Using all the patients’ data
to obtain a general model and then further training the model with data from a specific
patient alleviates the need for long recordings from each patient to train an accurate model.

The network architectures, including hyperparameter values and the weights, were
inherited from the optimal models found through BOpt. Each network was trained for
100 epochs with the augmented data described in Section 3.2. The loss function was the
same as the generalized models (4). We split the augmented data into 80/20 sets for training
and validation, similar to the general networks described in Section 3.3.

3.7. Blinded Assessment for Qualitative Comparison

Clinically, the ECGs derived through personalized models and the original ECG data
should result in the same diagnosis. Twenty patients from the validation data set were
chosen, and their respective actual ECG data was plotted with the conventional grid lines
indicating time and amplitude (vertical amplitude grid 10 mm = 1 mV; horizontal time
grid 25 mm = 1 s). For the same 20 patients, data derived using their personalized and
generalized models was also charted similarly. Figure 2 depicts a sample chart.

Figure 2. Sample of the ECG chart presented to cardiologists blinded to the source of the waveform,
whether actual or derived from a subset of ECG leads.
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These charts were assigned I.D.s referred to as Chart ID, random numbers from 1 through
90. The association between the source of the data, whether actual or derived, and the
I.D. numbers assigned were maintained. Cardiologists were presented with 12-lead ECG
waveforms from the actual data, as well as the data derived from a subset of leads using the
L2V2V6→ S15 models while they were blinded to the source of the waveforms. They were
requested to provide interpretation for each of the presented charts. The interpretations were
then compared between the actual and derived ECG waveforms to determine the level of
agreement. Due to potential intra-observer variations, all sets of charts with any mismatches
in the interpretation were simultaneously charted to analyze whether the differences are
evident from the waveforms. The qualitative blinded assessment results are presented as
quantitative measures of mismatches by a direct comparison of the number of mismatches that
were counted for each of the four interpretation types. Namely, rhythm, conduction blocks,
Anatomical findings (chamber enlargement, ischemia and associated region, and MI and
associated region or time of occurrence), ST-T abnormalities, and benign findings. The total
number of differences in the interpretation, including missing or additional interpretations,
are counted as errors. The total number of errors is then compared between the Personalized
Model (PM)-ECG and Generalized model (G.M.)-ECG. The charts where discrepancies were
found and resolved are included in the Supplementary Information.

4. Results
4.1. Quantitative Assessments

We trained 250 neural networks as part of the BOpt experiments: 50 networks as part
of each evaluation for 1-, 2-, 3-, 4-, and 5-Layer networks. The final test set RMSE values for
the networks are shown in Figure 3.
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Figure 3. Final Test Set RMSE values for the optimal models found using BOpt.

We observed that the 4-layer network had the lowest test set RMSE value
(0.3385 mV). The difference between the best and worst RMSE is ~40 µV. The hyper-
parameters associated with the optimal model are in Table 4.
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Table 4. List of Optimal hyperparameters found through BOpt.

Number of Hidden Units

• Layer 1—27
• Layer 2—22
• Layer 3—23
• Layer 4—46

Minibatch size 27

Learning rate Schedule None—No change to the learning rate

Gradient Decay Factor (β1 ) 0.90034

Squared Gradient Decay Factor (β2 ) 0.9175

Learning Rate 0.028805

The accuracy of lead transformations to Frank XYZ could be compared to several
results reported in the literature (Figures S12–S14 in the Supplementary Material). However,
the accuracy of conversion to all leads other than the inputs (Lead II, V2, and V6) is
a novel exploration in this work. In addition to the personalized and general models,
linear regression transformations for personalized data were also determined, and their
performance was charted for comparison. The linear transformations were computed
using Q.R. factorization [48]. Figures 4–6 compare the RMSE, R2, and Pearson Correlation
Coefficient values for all the derived leads of ECG between the generalized model, the
personalized model, and linear regression applied to the personalized models. The boxplots
present the median values, lower and upper quartiles, and the minimum and maximum
values. The Supplementary Information provides the mean and standard deviation of
RMSE, R2, and ρ for the general, personalized linear regression and personalized models.
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Figure 6. Compare the Pearson Correlation Coefficient of each derived channel between a GM-ECG,
personalized linear regression, and PM-ECG for Lead II, V2, and V6 to all other leads transformation model.

4.2. Qualitative Assessments

As described in the methods section, since the ECG interpretations were not categorical
and entered in a free-form text by the cardiologists, the interpretations were grouped by
diagnostic criterion. Table 5 lists the identified error counts and the subsequent correction
of errors due to intra-observer variance in parenthesis. The simultaneous charts of the
ECG waveforms from actual, PM-ECG, and GM-ECG are presented in the Supplementary
Information to reveal the rationale for the corrections made.
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Table 5. Error Rates for ECG interpretation compared to actual ECG with correction for intra-
observer errors.

Diagnostic Criterion Actual PM-ECG GM-ECG

PM-ECG GM-ECG

(Errors in Observations (Errors after
Correcting for Intra-Observer Errors))

Rhythm

Sinus rhythm (n = 18) Sinus rhythm (n = 18) Sinus rhythm (n = 18)

2(0) 0

Atrial fibrillation
with rapid

ventricular rate
(n = 1)

Atrial fibrillation
with rapid

ventricular rate
(n = 1)

Atrial fibrillation
with rapid

ventricular rate
(n = 1)

Sinus tachycardia
(n = 1)

Sinus tachycardia
(n = 1)

Sinus tachycardia
(n = 1)

PVC (n = 2) PVC (n = 2) PVC (n = 2)

Conduction blocks

Left bundle branch
block or LBBB (n = 3)

Left bundle branch
block or LBBB (n = 3)

Left bundle branch
block or LBBB (n = 3)

0(0) 0Left anterior
fascicular block

(n = 1)

Left anterior
fascicular block

(n = 1)

Left anterior
fascicular block

(n = 1)

Anatomical findings Left ventricular
hypertrophy (n = 3)

Left ventricular
hypertrophy (n = 3)

Left ventricular
hypertrophy (n = 4,

1 error)
0(0) 1

ST-T wave findings
(ischemia)

ischemia (n = 4) ischemia (n = 4) ischemia (n = 2,
2 errors)

3(0) 8

Tall T wave (n = 1) Tall T wave (n = 1) Tall T wave (n = 0,
1 error)

ST depression (n = 1) ST depression (n = 1) ST depression (n = 1)
T wave inversion

(n = 2)
T wave inversion

(n = 3)
T wave inversion
(n = 1, 2 errors)

T wave abnormality
(n = 3)

T wave abnormality
(n = 2)

T wave abnormality
(n = 3, 2 findings
don’t match with
actual ECG, total

errors = 3)

MI region and time
of occurrence

recent anterior MI
(n = 1)

recent anterior MI
(n = 1)

recent anterior MI
(n = 1, 1 error)

1(0) 4
recent inferior MI

(n = 1)
recent inferior MI

(n = 1)
recent inferior MI

(n = 0, 1 error)

old inferior MI (n = 1) old inferior MI (n = 2,
1 error)

old inferior MI (n = 3,
2 errors)

Miscellaneous or
benign findings left axis (n = 1)

left axis (n = 1)
prominent U waves

(n = 0)
left atrial

enlargement (n = 0)

left axis (n = 0)
early repolarization

(n = 0)
3(0) 2(0)

Total errors 9 (0) 15 (13)

5. Discussion

The results obtained through this study show that the personalized models result
in a more accurate derivation of the 12-lead ECG waveforms for all patients in terms
of three quantifiable measures of error, namely, RMSE, R2, and pearson correlation co-
efficient. The methodology of applying transfer learning to obtain personalized models
from the generalized models shows promising results in terms of quantitative accuracy
of derivations.

For the problem of designing an optimal algorithm for the derivation of all leads
from a subset of leads, two broadly defined approaches could be identified. Namely, a
hybrid approach, and an end-to-end approach. In the hybrid approach, we would use a
priori knowledge regarding linear associations between the leads, which are established
through Einthoven’s equations and use a function approximation method to derive the
remaining leads. In the end-to-end approach, a single function approximation method
may be used to find the relationship between a chosen set of leads and all other leads. The
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end-to-end approach, which is followed in this paper, selects inputs that resulted in the
high-performance transformations in the literature in terms of low errors, Lead II, V2, and
V6 [49]. Under the assumption that these leads form an orthogonal basis that could then
be used to approximate a function to derive all other leads, LSTM models were trained to
perform this task.

Following the hybrid approach could lead to lowered power consumption overall due
to lower complexity of the function approximation method, while potentially retaining or
lowering the power consumption levels on the electronics that are used to acquire the signal.
The end-to-end approach, on the other hand, leads to more complex computation, which
could lead to greater power consumption overall. An objective comparison of these two
methods is not attempted as part of this work. Such a comparison would have to account
for several factors such as hardware design, choice of signal compression methods or their
effectiveness, dependent on the choice of leads, implementation of the software libraries
that implement the algorithms for transformations and the underlying computational
hardware that supports the application, to name a few.

The most harm that could result from errors is the misinterpretation of the ECG
waveforms, leading to a misdiagnosis or loss of time due to suspicion of pathologies that
are not present. These can lead to delays in the appropriate treatment and deterioration
of the quality of life for the patient. Therefore, a pilot assessment of the reproducibility of
ECG interpretations was conducted in this study. We found that the level of agreement of
the interpretations from ECG derived using personalized models and the actual ECGs was
significantly higher than with generalized models. There were findings with the GM-ECG
that were misleading compared to the actual ECGs and could have led to the loss of time and
were potentially harmful to the patient in an actual clinical setting. Based on the findings in
this study, personalized models should be the preferred approach. A more extensive study
comparing ECG interpretations from a larger sample of patients with different pathologies
and more board-certified cardiologists is warranted to validate these results further. The
difference in diagnostic yield in terms of detail and specificity of diagnoses from a 12-lead
ECG between a GM-ECG and PM-ECG was exposed in this study. The use of more complex
deep learning models without accounting for a physiological difference from patient to
patient could potentially propagate errors, leading to misdiagnosis.

On balance, there are some known limitations to the application of blinded assessment
as a qualitative comparison method for the level of agreement between ECG waveforms.
Namely, intra-observer variability of ECG interpretations is expected because the cardi-
ologists are, in this case, interpreting the ECG alone without patient history information.
Knowledge of patient history has been shown to modulate cardiologists’ attention to spe-
cific patterns in the ECG [50]. In clinical practice, ECG interpretation alone is never used
to formulate a plan for the treatment of patients, so the emphasis on diagnosis from inter-
pretation is not representative of the standard practice. Furthermore, systematic reviews
have reported that cardiologists’ aggregate accuracy of ECG interpretation is 74.9% (95%
CI, 63.2–86.7%) [51]. In this study, the simultaneous charting of the ECGs from the three
sources is used to rule out any differences in interpretation that are not discernible from
the waveforms.

For all machine learning and deep learning approaches, the data set utilized to develop
the model must be truly representative of the intended patient population. Therefore, the
larger and more representative the data set used for the generalized model, the more likely
it will generalize well to all patients and be more accurate. Moreover, in this study we
have explored LSTM models exclusively due to the best performance reported thus far for
the ECG lead transformation problem. It is possible to use more innovative deep learning
architectures to discover a generalized model architecture that could provide diagnostically
equivalent ECGs compared to actual ECGs, but this remains an active area of research that
must validate clinical diagnostic equivalence through qualitative assessments and not just
quantitative measures of error.
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However, the observations from this study suggest that the desired approach should
be personalized models and not generalized models. ECGs identical to the actual ECG
waveforms could be derived using the data set utilized in this study and the trained
personalized models. Whether a larger data set would improve the generalized model
accuracy, which would translate to a more accurate personalized model, requires further
empirical evaluation. However, clinical equivalence was achievable with this data set as
seen by the level of agreement of the ECG interpretations between actual and PM-ECGs.

The validity of the transformations for the same patient before and after a major car-
diovascular event needs to be evaluated in a longitudinal study. Such a study would help
evaluate the hypothesis that the neural network has learned the nonlinear transfer function
reflective of the subject’s anatomy rather than overfitting to the data obtained at that moment
in time. The nature of data available for this research does not allow that evaluation.

Finally, the proposed methodology of personalized transformations has practical limita-
tions that must be addressed from a cost and labor perspective for healthcare providers. A
personalized model for each patient will require a controlled clinical measurement of 15-lead
ECG, placing all 16 electrodes to obtain the data needed to train a personalized model for each
patient. Since there is added cost beyond a routine clinical indication, such a personalized
approach would require a risk vs. benefit analysis to determine if the direct and indirect costs
for such a procedure would be justified. To reach a stage of adoption, there would also need
to be evidence to support an increased diagnostic yield using this method.

6. Conclusions

An LSTM neural network was explored as a transformation method to transform a
subset of ECG leads into all the 12-leads. The subset of leads chosen for this study were
leads II, V2, and V6. The deep learning model trained on a large corpus of data was fine-
tuned with patient-specific ECGs to yield personalized lead transformation models. These
personalized transformations were evaluated to determine the extent of performance gain
that can be achieved in terms of accuracy of the transformations compared to ground truth
(actual measurement of biopotentials). The personalized models showed RMSE values
lower than the generalized models and pearson correlation coefficient, and R2 values higher
than the generalized models, establishing that personalized models should be preferred
over generalized models from an accuracy of transformation perspective.

Blinded assessment of the diagnostic yield of such models was explored to determine
the level of agreement between the diagnosis from the actual ECG waveforms and those
derived from generalized models and personalized models. The PM-ECGs were found to
be diagnostically equivalent to the actual ECGs.

Supplementary Materials: The following information can be downloaded at https://www.mdpi.
com/article/10.3390/s23031389/s1, Figure S1: Diagnosis from actual ECG—Normal sinus rhythm,
T wave abnormality consider ischemia, PVC.; Diagnosis from generalized model—Sinus rhythm,
consider anterior ST elevation MI, LVH, PVC The red markers indicate the regions in the GM- ECG
that deviates from the actual and PM-ECG.; Figure S2: Actual diagnosis -Normal sinus rhythm,
LVH with secondary repolarization changes; Personalized model diagnosis—Normal sinus rhythm,
LVH with secondary repolarization changes, old inferior MI; Generalized model diagnosis—Normal
sinus rhythm, LVH with secondary repolarization changes, probably old inferior MI. The red mark-
ers indicate the regions in the GM- ECG that deviates from the actual and PM-ECG.; Figure S3:
Actual diagnosis—Sinus rhythm, consider acute/recent anterior ST elevation MI; Personalized
model diagnosis—Sinus tachycardia, Acute/recent anterior ST elevation MI; Generalized model
diagnosis—Sinus rhythm, consider acute/recent anterior ST elevation MI, probable old inferior MI.
The red markers indicate the regions in the GM- ECG that deviates from the actual and PM-ECG.;
Figure S4: Actual diagnosis—Normal sinus rhythm, T wave inversion suggestive of ischemia; Person-
alized model diagnosis—Normal sinus rhythm, T wave inversion suggestive of ischemia; Generalized
model diagnosis—Normal sinus rhythm, Left ventricular hypertrophy with secondary repolariza-
tion changes. The red markers indicate the regions in the GM- ECG that deviates from the actual
and PM-ECG.; Figure S5: Actual diagnosis—Normal sinus rhythm, Left Ventricular Hypertrophy

https://www.mdpi.com/article/10.3390/s23031389/s1
https://www.mdpi.com/article/10.3390/s23031389/s1
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with secondary repolarization, probably acute/recent Inferior myocardial infarction; Personalized
model diagnosis Normal sinus rhythm, Left Ventricular Hypertrophy with secondary repolarization,
probably acute/recent Inferior myocardial infarction; Generalized model diagnosis—Normal sinus
rhythm, non-specific T wave abnormality. The red markers indicate the regions in the GM- ECG that
deviates from the actual and PM-ECG.; Figure S6: Actual diagnosis—Normal sinus rhythm, Tall T
waves consider hyperkalemia; Personalized model diagnosis Normal sinus rhythm, Tall T waves
consider hyperkalemia; Generalized model diagnosis—Normal sinus rhythm, non-specific T wave
abnormality. The red markers indicate the regions in the GM- ECG that deviates from the actual and
PM-ECG.; Figure S7: Actual diagnosis—Normal sinus rhythm, normal ECG; Personalized model
diagnosis Normal sinus rhythm, prominent U waves; Generalized model diagnosis—Normal sinus
rhythm, early repolarization. The red markers indicate the regions in the GM- ECG that deviates
from the actual and PM-ECG.; Figure S8: Actual diagnosis—Normal sinus rhythm, old inferior
MI; Personalized model diagnosis Normal sinus rhythm, old inferior MI, left atrial enlargement;
Generalized model diagnosis—Normal sinus rhythm, old inferior MI. The red markers indicate
the regions in the GM- ECG that deviates from the actual and PM-ECG.; Figure S9: Actual diagno-
sis –Sinus rhythm, low amplitude, T wave changes, possible anterior wall ischemia; Personalized
model diagnosis Sinus rhythm, T inversion, possible anterior wall ischemia, low amplitude QRS
complexes; Generalized model diagnosis—Sinus low amplitude QRS, possible anterior wall ischemia.
The red markers indicate the regions in the GM- ECG that deviates from the actual and PM-ECG.;
Figure S10: Actual diagnosis –Sinus rhythm, left axis, likely left anterior fascicular block, diffuse T
wave inversion; Personalized model diagnosis Sinus rhythm, likely left anterior fascicular block,
diffuse T wave inversion; Generalized model diagnosis—Sinus rhythm, likely left anterior fascic-
ular block, diffuse T wave inversion. The red markers indicate the regions in the GM- ECG that
deviates from the actual and PM-ECG.; Figure S11: Actual diagnosis –Normal sinus rhythm; Person-
alized model diagnosis Sinus rhythm, tall T waves; Generalized model diagnosis—Sinus rhythm.
The red markers indicate the regions in the GM- ECG that deviates from the actual and PM-ECG;
Figure S12: Comparison of Correlation Coefficients for deriving Frank XYZ from standard 12 lead
and the proposed GM-ECG and PM-ECG models; Figure S13: Comparison of RMSE for deriving
Frank XYZ from standard 12 lead and the proposed GM-ECG and PM-ECG models; Figure S14:
Comparison of R2 for deriving Frank XYZ from standard 12 lead and the proposed GM-ECG and
PM-ECG models; Table S1: Comparison of ECG interpretations from the three sources of ECG; Table
S2: RMSE (mean ± std) for the derivation of all leads using the general and personalized Lead 2, V2,
V6 to all other leads transformations; Table S3: R2 (mean ± std) for the derivation of all leads using
the general and personalized Lead 2, V2, V6 to all other leads transformations; Table S4: Pearson
Correlation Coefficient (mean ± std) for the derivation of all leads using the general and personalized
Lead 2, V2, V6 to all other leads transformations; Pseudocode for Hyperparameter search using
Bayesian Optimization.
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