Margin-Based Modal Adaptive Learning for Visible-Infrared Person Re-Identification
Abstract
:1. Introduction
2. Related Work
2.1. Recent VIPR Progress
2.2. Domain Adaption
3. Methodology
3.1. Margin-Based Modal Adaptive Learning
3.1.1. Marginal Maximum Mean Discrepancy Loss
3.1.2. Appearance-Discriminative Loss
3.2. Deep Network-Based VIPR
Algorithm 1 Margin-based Modal Adaptive Learning for VIPR |
|
4. Experiments
4.1. Datasets
4.2. Performance Metrics
4.3. Experimental Conditions and System Configurations
4.4. Results
4.5. Analyses
4.5.1. Role of Modal Discrepancy Suppression
4.5.2. The Role of Marginal Strategy
4.5.3. The Analysis of Running Time
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VIPR | Visible-infrared person re-identification |
GAN | Genaration adversarial network |
MMAL | Margin-based modal adaptive learning |
MMD | Max mean discrepancy |
MD | Margin max mean discrepancy |
CSMMD | Class-specific maximum mean discrepancy |
GeM | Generalized-mean pooling |
BN | Batch normalization |
Tri | Triplet |
LSCE | Label-smoothing cross-entropy |
BNNeck | Batch normalization neck |
mAP | Mean average precision |
CMC | Cumulative match characteristic |
Rank1 | rank-1 accuracy |
SGD | Stochastic gradient descent |
References
- Wu, Z.; Wen, T. Minimizing Maximum Feature Space Deviation for Visible-infrared Person Re-identification. Appl. Sci. 2022, 12, 8792. [Google Scholar] [CrossRef]
- Ye, M.; Lan, X.; Li, J.; Yuen, P. Hierarchical Discriminative Learning for Visible Thermal Person Re-identification. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 7501–7508. [Google Scholar]
- Ye, M.; Wang, Z.; Lan, X.; Yuen, P. Visible Thermal Person Re-identification via Dual-constrained Top-ranking. In Proceedings of the International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 1092–1099. [Google Scholar]
- Dai, H.; Xie, Q.; Ma, Y.; Liu, Y.; Xiong, S. RGB-infrared Person Re-identification via Image Modality Conversion. In Proceedings of the International Conference on Pattern Recognition, Milan, Italy, 10–15 January 2021; pp. 592–598. [Google Scholar]
- Liu, H.; Tan, X.; Zhou, X. Parameter Sharing Exploration and Hetero-center Triplet Loss for Visible-thermal Person Re-identification. IEEE Trans. Multimed. 2021, 23, 4414–4425. [Google Scholar] [CrossRef]
- Dai, P.; Ji, R.; Wang, H.; Wu, Q.; Huang, Y. Cross-Modality Person Re-Identification with Genertive Adversarial Training. In Proceedings of the International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 677–683. [Google Scholar]
- Liao, S.; Shao, L. Graph Sampling Based Deep Metric Learning for Generalizable Person Re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 7359–7368. [Google Scholar]
- Gu, H.; Li, J.; Fu, G.; Wong, C.; Chen, X.; Zhu, J. AutoLoss-GMS: Searching Generalized Margin-based Softmax Loss Function for Person Re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 4744–4753. [Google Scholar]
- Zeng, W.; Wang, T.; Cao, J.; Wang, J.; Zeng, H. Clustering-guided Pairwise Metric Triplet Loss for Person Re-identification. IEEE Internet Things J. 2022, 9, 15150–15160. [Google Scholar] [CrossRef]
- Zhu, J.; Zeng, H.; Huang, J.; Zhu, X.; Lei, Z.; Cai, C.; Zheng, L. Body Symmetry and Part-locality-guided Direct Nonparametric Deep Feature Enhancement for Person Re-identification. IEEE Internet Things J. 2019, 7, 2053–2065. [Google Scholar] [CrossRef]
- Pu, N.; Chen, W.; Liu, Y.; Bakker, E.M.; Lew, M. Dual Gaussian-based Variational Subspace Disentanglement for Visible-infrared Person Re-identification. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 2149–2158. [Google Scholar]
- Zhong, X.; Lu, T.; Huang, W.; Yuan, J.; Liu, W.; Lin, C. Visible-infrared Person Re-identification via Colorization-based Siamese Generative Adversarial Network. In Proceedings of the 2020 International Conference on Multimedia Retrieval, Dublin, Ireland, 8–11 June 2020; pp. 421–427. [Google Scholar]
- Hu, B.; Liu, J.; Zha, Z. Adversarial Disentanglement and Correlation Network for Rgb-infrared Person Re-Identification. In Proceedings of the IEEE International Conference on Multimedia and Expo, Shenzhen, China, 5–9 July 2021; pp. 1–6. [Google Scholar]
- Wang, G.; Zhang, T.; Yang, Y.; Cheng, J.; Chang, J.; Liang, X.; Hou, Z. Cross-modality Paired-images Generation for Rgb-infrared Person Re-identification. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 12144–12151. [Google Scholar]
- Lu, Y.; Wu, Y.; Liu, B.; Zhang, T.; Li, B.; Chu, Q.; Yu, N. Cross-modality Person Re-identification with Shared-specific Feature Transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual Event, 14–19 June 2020; pp. 13376–13386. [Google Scholar]
- Wang, G.; Zhang, T.; Cheng, J.; Liu, S.; Yang, Y.; Hou, Z. RGB-infrared Cross-modality Person Re-identification via Joint Pixel and Feature Alignment. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3622–3631. [Google Scholar]
- Liu, J.; Wang, J.; Huang, N.; Zhang, Q.; Han, J. Revisiting Modality-specific Feature Compensation for Visible-infrared Person Re-identification. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7226–7240. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, Q.; Xu, J.; Zhong, Y.; Zhang, P.; Zhang, Z. Alleviating Modality Bias Training for Infrared-visible Person Re-identification. IEEE Trans. Multimed. 2022, 24, 1570–1582. [Google Scholar] [CrossRef]
- Seokeon, C.; Lee, S.; Kim, Y.; Kim, C. Hi-CMD: Hiererchical Cross-modality Disentanglement for Visible-infrared Person Re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual Event, 14–19 June 2020; pp. 10254–10263. [Google Scholar]
- Chen, Y.; Song, S.; Li, S.; Wu, C. A Graph Embedding Framework for Maximum Mean Discrepancy-based Domain Adaptation Algorithms. IEEE Trans. Image Process. 2019, 29, 199–213. [Google Scholar] [CrossRef]
- Yang, G.; Xia, H.; Ding, M.; Ding, Z. Bi-directional Generation for Unsupervised Domain Adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 6615–6622. [Google Scholar]
- Zhu, R.; Jiang, X.; Lu, J.; Li, S. Cross-Domain Graph Convolutions for Adversarial Unsupervised Domain Adaptation. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–12. [Google Scholar] [CrossRef]
- Kang, G.; Jiang, L.; Wei, Y.; Yang, Y.; Hauptmann, A. Contrastive Adaptation Network for Single-and Multi-source Domain Adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1793–1804. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhuang, F.; Wang, J.; Ke, G.; Chen, J.; Bian, J.; Xiong, H.; He, Q. Deep Subdomain Adaptation Network for Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1713–1722. [Google Scholar] [CrossRef]
- Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep Domain Confusion: Maximizing for Domain Invariance. arXiv 2014, arXiv:1412.3474. [Google Scholar]
- Alehdaghi, M.; Josi, A.; Cruz, R.; Granger, E. Visible-infrared Person Re-identification Using Privileged Intermediate Information. arXiv 2022, arXiv:2209.09348. [Google Scholar]
- Feng, Y.; Chen, F.; Ji, Y.; Wu, F.; Sun, J. Efficient Cross-modality Graph Reasoning for Rgb-infrared Person Re-identification. IEEE Signal Process. Lett. 2021, 28, 1425–1429. [Google Scholar]
- Fu, C.; Hu, Y.; Wu, X.; Shi, H.; Mei, T.; He, R. CM-NAS: Cross-modality Neural Architecture Search for Visible-infrared Person Re-identification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual Event, 11–17 October 2021; pp. 11823–11832. [Google Scholar]
- Nguyen, D.; Hong, H.; Kim, K.; Park, K. Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras. Sensors 2017, 17, 605. [Google Scholar] [CrossRef]
- Zheng, A.; Wang, Z.; Chen, Z.; Li, C.; Tang, J. Robust Multi-modality Person Re-identification. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021; Volume 35, pp. 3529–3537. [Google Scholar]
- Wang, Z.; Wang, Z.; Zheng, Y.; Chuang, Y.; Satoh, S. Learning to Reduce Dual-level Discrepancy for Infrared-visible Person Re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 618–626. [Google Scholar]
- Zhao, J.; Wang, H.; Zhou, Y.; Yao, R.; Chen, S.; El Saddik, A. Spatial-channel Enhanced Transformer for Visible-infrared Person Re-identification. IEEE Trans. Multimed. 2022, 1. [Google Scholar] [CrossRef]
- Zhang, Q.; Lai, C.; Liu, J.; Huang, N.; Han, J. FMCNet: Feature-level Modality Compensation for Visible-infrared Person Re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 7349–7358. [Google Scholar]
- Chen, Y.; Wan, L.; Li, Z.; Jing, Q.; Sun, Z. Neural Feature Search for Rgb-infrared Person Re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual Event, 19–25 June 2021; pp. 587–597. [Google Scholar]
- Ye, M.; Shen, J.; Crandall, D.; Shao, L.; Luo, J. Dynamic Dual-attentive Aggregation Learning for Visible-infrared Person Re-identification. In Proceedings of the European Conference on Computer Vision, Virtual Event, 23–28 August 2020; pp. 229–247. [Google Scholar]
- Ye, M.; Chen, C.; Shen, J.; Shao, L. Dynamic Tri-level Relation Mining with Attentive Graph for Visible Infrared Re-identification. IEEE Trans. Inf. Forensics Secur. 2022, 17, 386–398. [Google Scholar] [CrossRef]
- Cheng, Y.; Xiao, G.; Tang, X.; Ma, W.; Guo, X. Two-Phase Feature Fusion Network for Visible-infrared Person Re-identification. In Proceedings of the IEEE International Conference on Image Processing, Anchorage, AL, USA, 19–22 September 2021; pp. 1149–1153. [Google Scholar]
- Ye, M.; Shen, J.; Lin, G.; Xiang, T.; Shao, L.; Hoi, S. Deep Learning for Person Re-identification: A Survey and Outlook. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 2872–2893. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Lai, J.; Xie, X. Learning Modality-specific Representations for Visible-infrared Person Re-identification. IEEE Trans. Image Process. 2020, 29, 579–590. [Google Scholar] [CrossRef]
- Zhang, L.; Du, G.; Liu, F.; Tu, H.; Shu, X. Global-local Multiple Granularity Learning for Cross-modality Visible-infrared Person Reidentification. IEEE Trans. Neural Networks Learn. Syst. (Early Access) 2021, 1–11. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, X.; Wang, N.; Gao, X. Flexible Body Partition-based Adversarial Learning for Visible Infrared Person Re-identification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 4676–4687. [Google Scholar] [CrossRef]
- Wu, Q.; Dai, P.; Chen, J.; Lin, C.; Wu, Y.; Huang, F.; Zhong, B.; Ji, R. Discover Cross-modality Nuances for Visible-infrared Person Re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual Event, 19–25 June 2021; pp. 4328–4337. [Google Scholar]
- Hu, W.; Liu, B.; Zeng, H.; Hu, H. Adversarial Decoupling and Modality-invariant Representation Learning for Visible-infrared Person Re-identification. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5095–5109. [Google Scholar] [CrossRef]
- Ye, M.; Lan, X.; Leng, Q.; Shen, J. Cross-modality Person Re-identification via Modality-aware Collaborative Ensemble Learning. IEEE Trans. Image Process. 2020, 29, 9387–9399. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Z.; Ju, Y.; Wang, C.; Xie, Y.; Qu, Y. Dual Mutual Learning for Cross-modality Person Re-identification. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5361–5373. [Google Scholar] [CrossRef]
- Can, Z.; Hong, L.; Wei, G.; Mang, Y. Multi-scale Cascading Network with Compact Feature Learning for Rgb-infrared Person Re-identification. In Proceedings of the International Conference on Pattern Recognition, Milan, Italy, 10–15 January 2020; pp. 8679–8686. [Google Scholar]
- Liu, H.; Tan, X.; Zhou, X. Bi-directional Center-constrained Top-ranking for Visible Thermal Person Re-identification. IEEE Trans. Inf. Forensics Secur. 2020, 15, 407–419. [Google Scholar]
- Park, H.; Lee, S.; Lee, J.; Ham, B. Learning by Aligning: Visible-infrared Person Re-identification Using Cross-modal Correspondences. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual Event, 11–17 October 2021; pp. 12046–12055. [Google Scholar]
- Zhang, Y.; Yan, Y.; Lu, Y.; Wang, H. Towards a Unified Middle Modality Learning for Visible-infrared Person Re-identification. In Proceedings of the ACM Multimedia Conference, Virtual Event, 20–24 October 2021; pp. 788–796. [Google Scholar]
- Chen, C.; Ye, M.; Qi, M.; Wu, J.; Jiang, J.; Lin, C. Structure-aware Positional Transformer for Visible-infrared Person Re-identification. IEEE Trans. Image Process. 2022, 31, 2352–2364. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, Z.; Wang, L.; Zhao, S.; Hu, X.; Tao, D. Hetero-center Loss for Cross-modality Person Re-identification. Neurocomputing 2020, 386, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Xu, J.; Ji, Y.m.; Wu, F. LLM: Learning Cross-modality Person Re-identification via Low-rank Local Matching. IEEE Signal Process. Lett. 2021, 28, 1789–1793. [Google Scholar] [CrossRef]
- Zhong, X.; Lu, T.; Huang, W.; Ye, M.; Jia, X.; Lin, C. Grayscale Enhancement Colorization Network for Visible-infrared Person Re-identification. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 1418–1430. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, D.; Song, Y.; Zhang, F.; O’Donnell, L.; Huang, H.; Chen, M.; Cai, W. Unsupervised Instance Segmentation in Microscopy Images via Panoptic Domain Adaptation and Task Re-weighting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual Event, 14–19 June 2020; pp. 4243–4252. [Google Scholar]
- Liu, D.; Zhang, D.; Song, Y.; Zhang, F.; O’Donnell, L.; Huang, H.; Chen, M.; Cai, W. Pdam: A Panoptic-level Feature Alignment Framework for Unsupervised Domain Adaptive Instance Segmentation in Microscopy Images. IEEE Trans. Med. Imaging 2020, 40, 154–165. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, D.; Zhang, J.; Ouyang, W. Progressive Modality Cooperation for Multi-modality Domain Adaptation. IEEE Trans. Image Process. 2021, 30, 3293–3306. [Google Scholar] [CrossRef]
- Gretton, A.; Sejdinovic, D.; Strathmann, H.; Balakrishnan, S.; Pontil, M.; Fukumizu, K.; Sriperumbudur, B. Optimal Kernel Choice for Large-scale Two-sample Tests. Adv. Neural Inf. Process. Syst. 2012, 25. Available online: https://proceedings.neurips.cc/paper/2012/hash/dbe272bab69f8e13f14b405e038deb64-Abstract.html (accessed on 16 December 2022).
- Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning Transferable Features with Deep Adaptation Networks. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 97–105. [Google Scholar]
- Mekhazni, D.; Bhuiyan, A.; Ekladious, G.; Granger, E. Unsupervised Domain Adaptation in the Dissimilarity Space for Person Re-identification. In Proceedings of the European Conference on Computer Vision, Springer, Virtual Event, 23–28 August 2020; pp. 159–174. [Google Scholar]
- Lin, S.; Li, H.; Li, C.; Kot, A. Multi-task Mid-level Feature Alignment Network for Unsupervised Cross-dataset Person Re-identification. arXiv 2018, arXiv:1807.01440. [Google Scholar]
- Li, Y.; Lin, C.; Lin, Y.; Wang, Y. Cross-dataset Person Re-identification via Unsupervised Pose Disentanglement and Adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7919–7929. [Google Scholar]
- Yang, F.; Yan, K.; Lu, S.; Jia, H.; Xie, D.; Yu, Z.; Guo, X.; Huang, F.; Gao, W. Part-aware Progressive Unsupervised Domain Adaptation for Person Re-identification. IEEE Trans. Multimed. 2020, 23, 1681–1695. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, C.; Lou, Y.; Liu, J.; Duan, L. Hierarchical Connectivity-centered Clustering for Unsupervised Domain Adaptation on Person Re-identification. IEEE Trans. Image Process. 2021, 30, 6715–6729. [Google Scholar] [CrossRef]
- Luo, H.; Gu, Y.; Liao, X.; Lai, S.; Jiang, W. Bag of Tricks and a Strong Baseline for Deep Person Re-identification. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 1487–1495. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Loffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1063–6919. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A. Rectifier Nonlinearities Improve Neural Network Acoustic Models. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 30, p. 3. [Google Scholar]
- Li, D.; Wei, X.; Hong, X.; Gong, Y. Infrared-visible Cross-Modal Person Re-identification with an X Modality. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 4610–4617. [Google Scholar]
- He, L.; Liao, X.; Liu, W.; Liu, X.; Cheng, P.; Mei, T. FastReID: A Pytorch Toolbox for General Instance Re-identification. arXiv 2020, arXiv:2006.02631. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F. Imagenet: A Large-scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Jiang, W.; Gu, Y.; Liu, F.; Liao, X.; Lai, S.; Gu, J. A Strong Baseline and Batch Normalization Neck for Deep Person Re-identification. IEEE Trans. Multimed. 2019, 22, 2597–2609. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhang, J. Local Alignment Deep Network for Infrared-visible Cross-modal Person Re-identification in 6G-enabled Internet of Things. IEEE Internet Things J. 2021, 8, 15259–15266. [Google Scholar]
- Liu, H.; Ma, S.; Xia, D.; Li, S. SFANet: A Spectrum-aware Feature Augmentation Network for Visible-infrared Person Reidentification. IEEE Trans. Neural Netw. Learn. Syst. (Early Access) 2021, 1–14. [Google Scholar] [CrossRef]
- Miao, Z.; Liu, H.; Shi, W.; Xu, W.; Ye, H. Modality-aware Style Adaptation for Rgb-infrared Person Re-identification. In Proceedings of the International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 19–26 August 2021; pp. 916–922. [Google Scholar]
- Xie, Y.; Shen, F.; Zhu, J.; Zeng, H. Viewpoint Robust Knowledge Distillation for Accelerating Vehicle Re-identification. EURASIP J. Adv. Signal Process. 2021, 2021, 48. [Google Scholar] [CrossRef]
- Zhu, J.; Zeng, H.; Liao, S.; Lei, Z.; Cai, C.; Zheng, L. Deep Hybrid Similarity Learning for Person Re-identification. IEEE Trans. Circuits Syst. Video Technol. 2017, 28, 3183–3193. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Wu, H.; Shen, F.; Zhu, J.; Zeng, H. Object Re-identification Using Teacher-like and Light Students. In Proceedings of the British Machine Vision Conference, Virtual Event, 22–25 November 2021; pp. 1–13. [Google Scholar]
Method | V2I | I2V | Reference | ||
---|---|---|---|---|---|
Rank1 (%) | mAP (%) | Rank1 (%) | mAP (%) | ||
TSLFN+HC [51] | 56.96 | 54.95 | 59.74 | 64.91 | Neurocomputing 2020 |
X modality [68] | 62.21 | 60.18 | N/A | N/A | AAAI 2020 |
cm-SSFT [15] | 65.4 | 65.6 | 63.8 | 64.2 | CVPR 2020 |
DDAG [35] | 69.34 | 63.46 | 68.06 | 61.80 | ECCV 2020 |
Hi-CMD [19] | 70.93 | 66.04 | N/A | N/A | CVPR 2020 |
MACE [44] | 72.37 | 69.09 | 72.12 | 68.57 | TIP 2020 |
AGW [38] | 70.05 | 66.37 | N/A | N/A | TPAMI 2021 |
ADCNet [13] | 72.9 | 66.5 | 72.4 | 65.3 | ICME 2021 |
FBP-AL [41] | 73.98 | 68.24 | 70.05 | 66.61 | TNNLS 2021 |
LLM [52] | 74.85 | 71.32 | N/A | N/A | SPL 2021 |
ECGRAPH [27] | 75.58 | 67.86 | N/A | N/A | SPL 2021 |
MLCNN [73] | 76.2 | 74.1 | 75.8 | 73.8 | IEEE IOT 2021 |
SFANet [74] | 76.31 | 68.00 | 70.15 | 63.77 | TNNLS 2021 |
GECNet [53] | 82.33 | 78.45 | 78.93 | 75.58 | TCSVT 2021 |
MPANet [42] | 83.7 | 80.9 | 82.8 | 80.7 | CVPR 2021 |
CM-NAS [28] | 84.54 | 80.32 | 82.57 | 78.31 | ICCV 2021 |
MSA [75] | 84.86 | 82.16 | N/A | N/A | IJCAI 2021 |
HC-Triplet [5] | 91.05 | 83.28 | 89.30 | 81.46 | TMM 2021 |
GLMC [40] | 91.84 | 81.42 | 91.12 | 81.06 | TNNLS 2021 |
DMiR [43] | 75.79 | 69.97 | 73.93 | 68.22 | TCSVT 2022 |
DTRM [36] | 79.09 | 70.09 | 78.02 | 69.56 | TIFS 2022 |
MMAL | 93.24 | 83.77 | 91.02 | 81.54 | Ours |
Method | V2I | I2V | Reference | ||
---|---|---|---|---|---|
Rank1 (%) | mAP (%) | Rank1 (%) | mAP (%) | ||
TSLFN+HC [51] | 26.4 | 22.9 | 18.4 | 22.0 | Neurocomputing 2020 |
DDAG [35] | 73.5 | 45.5 | 73.35 | 45.8 | ECCV 2020 |
CM-NAS [28] | 75.3 | 43.3 | 75.6 | 45.3 | ICCV 2021 |
AGW [38] | 71.2 | 38.9 | 69.0 | 39.6 | TPAMI 2022 |
DTRM [36] | 82.0 | 44.5 | 83.9 | 45.1 | TIFS 2022 |
MMAL | 92.33 | 54.13 | 91.10 | 53.83 | Ours |
V2I | I2V | |||
---|---|---|---|---|
Rank1 (%) | mAP (%) | Rank1 (%) | mAP (%) | |
0 | 89.37 | 52.54 | 90.90 | 52.86 |
0.005 | 89.67 | 53.14 | 93.10 | 52.61 |
0.01 | 92.33 | 54.13 | 91.10 | 53.83 |
0.015 | 90.43 | 55.68 | 92.87 | 56.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Wu, H.; Zhu, J. Margin-Based Modal Adaptive Learning for Visible-Infrared Person Re-Identification. Sensors 2023, 23, 1426. https://doi.org/10.3390/s23031426
Zhao Q, Wu H, Zhu J. Margin-Based Modal Adaptive Learning for Visible-Infrared Person Re-Identification. Sensors. 2023; 23(3):1426. https://doi.org/10.3390/s23031426
Chicago/Turabian StyleZhao, Qianqian, Hanxiao Wu, and Jianqing Zhu. 2023. "Margin-Based Modal Adaptive Learning for Visible-Infrared Person Re-Identification" Sensors 23, no. 3: 1426. https://doi.org/10.3390/s23031426
APA StyleZhao, Q., Wu, H., & Zhu, J. (2023). Margin-Based Modal Adaptive Learning for Visible-Infrared Person Re-Identification. Sensors, 23(3), 1426. https://doi.org/10.3390/s23031426