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Abstract: For the past several years, there has been an increasing focus on deep learning methods
applied into computational pulse diagnosis. However, one factor restraining its development lies in
the small wrist pulse dataset, due to privacy risks or lengthy experiments cost. In this study, for the
first time, we address the challenging by presenting a novel one-dimension generative adversarial
networks (GAN) for generating wrist pulse signals, which manages to learn a mapping strategy
from a random noise space to the original wrist pulse data distribution automatically. Concretely,
Wasserstein GAN with gradient penalty (WGAN-GP) is employed to alleviate the mode collapse
problem of vanilla GANs, which could be able to further enhance the performance of the generated
pulse data. We compared our proposed model performance with several typical GAN models,
including vanilla GAN, deep convolutional GAN (DCGAN) and Wasserstein GAN (WGAN). To
verify the feasibility of the proposed algorithm, we trained our model with a dataset of real recorded
wrist pulse signals. In conducted experiments, qualitative visual inspection and several quantitative
metrics, such as maximum mean deviation (MMD), sliced Wasserstein distance (SWD) and percent
root mean square difference (PRD), are examined to measure performance comprehensively. Overall,
WGAN-GP achieves the best performance and quantitative results show that the above three metrics
can be as low as 0.2325, 0.0112 and 5.8748, respectively. The positive results support that generating
wrist pulse data from a small ground truth is possible. Consequently, our proposed WGAN-GP model
offers a potential innovative solution to address data scarcity challenge for researchers working with
computational pulse diagnosis, which are expected to improve the performance of pulse diagnosis
algorithms in the future.

Keywords: wrist pulse signal; data augmentation; generative adversarial network

1. Introduction

Regarded as a traveling pressure generated by the cardiac cycle, the wrist pulse
contains a wealth of information on the cardiovascular (CV) system [1]. Poor health
condition may cause variations in arterial properties, affecting pulse-related parameters
including morphology, strength, rhythm, etc. [2,3]. Pulse diagnosis (PD), which evaluates
health status by analyzing tactile radial arterial palpation with trained fingertips, plays
an important role in oriental medicine including traditional Chinese medicine (TCM) and
traditional Korean medicine (TKM) [4]. In practice, however, its effectiveness is limited
by its reliance on long-term training and rich experience, which can lead to significant
differences in diagnostic results among different doctors [5,6].

To address these issues, there has been an increase in interest in developing sensors to
acquire wrist pulse signals and exploring pattern recognition/machine learning techniques
to analyze health conditions [6–11], also known as computational pulse diagnosis [12]. Gen-
erally speaking, excluding preprocessing, computational pulse diagnosis mainly consists
of two parts: feature extraction and pattern classification. For instance, lots of features
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in time domain or frequency domain (such as fast Fourier transform [13], short Time
Fourier transform, Hilbert–Huang transformation [14], Wavelet transform [15,16]), linear
or nonlinear (such as multi-scale entropy, Lyapunov exponent) are derived [17]. Regarding
pattern classification, similarity-measure-based methods (such as edit distance with the real
penalty (ERP) [18]) and conventional machine learning methods (such as support vector
machine (SVM), K-nearest neighbor classifier (KNN) and gradient boosting decision trees
(GBDT) [19]) were applied in pulse recognition. These above features and classification
methods have achieved significant progress, promoting pulse modernization. However, in
the above-mentioned methods, feature extraction and pattern classification are mutually
independent. Usually, it necessitates an extensive engineering experience from profession-
als, which is time-consuming and tedious. Additionally, traditional shallow models can
hardly represent the complex mapping relationship among pulse signals and the state of
human body.

In recent years, deep learning has been revolutionary in computer vision due to its
strong modeling and representational ability. With the advantages of its adaptive feature
learning capacity and multi-layer nonlinear mapping ability, deep learning models fre-
quently outperform classic shallow methods as an end-to-end process [20]. For wrist pulse
recognition, recently a series of work on deep learning has also been employed [5]. To clas-
sify pulse signals without extracting complicated features, a nine-layer deep convolutional
neural network was proposed [21]. Combining non-threshold recurrence plot (RP) and
deep VGG-16 nerwork, Yan et al. proposed a pulse recognition strategy, which outperforms
other approaches [22]. Treating the acquired correlations between various features as nodes
on a graph, Zhang [23] et al. utilized the graph convolutional network (GCN) to classify
pulse signals. A four-layer multi-task fusion convolutional neural network (CNN) for
type 2 diabetes detection was constructed by encoding pulse signals into 2D images using
several time-series imgaing methods, including the gramian angular field (GAF), Markov
transition field (MTF) and recurrence plots (RPs) [24]. Jiang et al. [8] adopted a recurrent
neural network (RNN) and long short-term memory (LSTM) as classifiers to identify multi-
ple diseases. In corresponding literature, compared to other conventional approaches, all
these mentioned deep learning-based algorithms obtained superior performance.

Compared with traditional pulse diagnosis methods, deep learning methods circum-
vent feature extraction procedures, extracting the hierarchy latent features in the pulse
waveform signal. However, unfortunately, largely owing to (i) data privacy and (ii) time
exhaustion when collecting data, the used datasets in existing studies of pulse diagnosis
are small (usually hundreds [5,21,23,24]). The paucity of pulse signal collected limits the
capabilities of achieving higher performance in deep learning-based models, which makes
them incapable of training a robust model. When a diagnosis is much more common than
others due to the scarcity of aberrant instances, such performance may be further hampered.
Simply put, developing deep learning models with small datasets risks overfitting, greatly
limiting generalizability [20].

In computer vision, this major limitation of small dataset is commonly treated by data
augmentation methods to increase accuracy, stability and reduce over-fitting. Most notably,
since its inception [25], generative adversarial networks (GANs) offer an very competitive
alternative by generating artificial data with the same distribution as the original training
data from the random noise, thus expanding the training dataset. Basically, GAN consists
of two separate neural networks: a generator and a discriminator. During training, the
generator captures the real distribution of the original samples to generate new samples,
and the discriminator identifies whether the inputs are from the original samples or the
generated new samples. Hopefully, the generated new samples are different from the
original samples but have a similar distribution, resulting in an expansion of the sample
set. To date, GANs have made significant progress in image-based applications [26] and
also start being applied to time series data [27,28]. In our closely related biomedical
community, for one-dimensional signals, GANs also have begun to show their power for
data augmentation, such as electrocardiogram (ECG) [29–31], electroencephalographic
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(EEG) [32–35] and photoplethysmogram (PPG) [36–38]. However, to date, there has not
yet been an attempt at exploring the use of GANs for generating wrist pulse signals, to
the best of our knowledge. Therefore, its performance remains unclear in the case of wrist
pulse signals.

Motivated by these successful applications and also aiming to overcome the data
scarcity problem, the present study presents a novel one-dimension generative adversarial
networks (GAN) for generating synthetic wrist pulse signals using a small dataset of real
pulse signals. We structure this work as follows. In Section 2, we elaborately describe
theoretical background about generative adversarial networks, the proposed WGAN-
GP network and the evaluation metrics. The database and experimental settings are then
introduced in Section 3, followed by a description and discussion of the experimental results
and findings in Section 4. Section 5 concludes with conclusions and recommendations for
future work. Section 6 summarizes the results of the current work.

2. Methods
2.1. Vanilla GANs

As shown in Figure 1, the vanilla GANs consist of a generator (abbreviated as G) and
a discriminator (abbreviated as D). θG and θD represent the generator and discriminator
parameters, respectively. Moreover, xr is sampled from the real data and x f from the
simulated data. The input of the generator is denoted as z, which is usually sampled from
uniform or Gaussian noise distribution. G(z) represents the generated samples by G, which
is expected to have data distribution similar with original samples. Then, the generated
samples are fed into the discriminator to assess their similarity with the real data, which
also improve continuously as well.

D

N 
(0

,1
)

Gz

Real

Simulated

Dataset

Discriminator

Generator

Normal distribution

Figure 1. Architecture of the Vanilla GAN.

More specifically, the training between the generator G and the discriminator D can
be formulated as a two-player minimax game

min
θG

max
θD

V(D, G) = Exr∼Pr [log(D(xr))] +Ez∼Pz [log(1− D(G(z)))] (1)

where Pr is the real data distribution and Pz is the random noise distribution, D(x) is the
probability that x is derived from real data.

2.2. Proposed Wasserstein GAN with Gradient Penalty Term

An important drawback of vanilla GAN in practice is the infamous volatility of the
discriminator during training. If the discriminator collapses during training and only recog-
nizes a small number of narrow modes of the input distribution as real, the generator will
only create a limited range of outputs. The recent years have seen significant improvements
in sample quality and training stability. Among others, it has been demonstrated that
the WGAN-GP loss function, which uses a gradient penalty, efficiently increases training
stability and convergence [39].
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Wasserstein GAN (WGAN) [40] is the foundation for WGAN-GP. In order to discrimi-
nate between real and simulated data distributions forWGAN, the so-called earth moving
distance, also known as the Wasserstein distance, is used.

W(Pr, Pf ) = Exr∼Pr [DθD (xr)]− Ex f∼Pf [DθD (x f )] (2)

The discriminator is trained to minimize the Wasserstein distance for a fixed generator
or θ∗G,

LD(θD, θ∗G) = W(Pr, Pf ) (3)

Pf stands for the simulated data distribution. The training for the generator entails maxi-
mizing the following loss with a fixed θ∗D.

LG(θG, θ∗D) = Ex f∼Pf [Dθ∗D
(x f )] = Ex f∼Pf [DθD (Gθ∗G

(z))] (4)

Since D requires to be K-Lipschitz in WGAN, the initial response was to limit the
discriminator’s weights to the range [−c, c] in order to satisfy these requirements. Even
though stability has greatly improved, using weight clipping directly to impose a Lipschitz
constraint can occasionally result in subpar samples or a failure to converge [39]. As
an alternative, WGAN-GP implemented a solution by including the following gradient
penalty to the WGAN loss in order to more effectively impose the Lipschitz continuity on
the discriminator.

W̃(Pr, Pf ) = W(Pr, Pf ) + λEx̂∼Px̂ [(‖∇x̂D(x̂)‖2 − 1)2] (5)

where x̂ denotes the samples on the line between Pr and Pf and λ is a hyper-parameter that
modifies the trade-off between the WGAN loss and gradient penalty.

2.3. Architecture Details

According to previous work on GAN, the structure configuration and training setting
of GAN are particularly crucial for model optimization. For configuration, we followed
the the model architecture suggested in [39], which is illustrated in Table 1. Basically,
we designed our networks according to the setup described in Karras et al. [41]. They
showed that by gradually raising the resolution of the network, the quality of the generated
sampless could be improved. Firstly for the first layer of network input, we empirically
select 100 sample points. Accordingly, to reach the final resolution of 2000 samples, we
gradually raise the resolution by a factor of 2, that is, over five steps. Also note that, for
WGAN, batch normalization is frequently used in both the generator and the discriminator
to help stabilize training. However, for the discriminator in WGAN-GP, layer normalization
is instead used due to that WGAN-GP penalizes the norm of the discriminator’s gradient
with respect to each input independently, and not the entire batch [39].

More precisely, it is divided into two components:

• Generator: The generator component takes an N-dimensional noise vector (in our case
N = 100). Then it is feed to the first block consists of a 1D transposed convolutional
layer with 1× 125 kernel size. It has four hidden layers; each block consists of with a
1D transposed convolutional layer with 1× 4 kernel size, then a batch normalization
followed by ReLU activations. Note that Tanh activations are employed for the last
block. Finally, the generated signal of the output serves as input to the subsequent
discriminator component.

• Discriminator: The discriminator component is learned in a supervised manner to
minimize the error for classifying false signals from real signal samples. Specifically,
it has three hidden fully connected layers. Each block consists of a 1D convolutional
layer with 1× 4 kernel size, then a instance normalization followed by Leaky ReLU
activations. The last block consists of a 1D transposed convolutional layer with 1× 125
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kernel size. Finally, the output layer computes the probabilities of the two classification
categories: simulated or real.

Table 1. The adopted architecture of the proposed generator and discriminator in our GAN-based
data augmentation for wrist pulse signals.

Generator

Layer Output Shape

Input layer 100 × 1
Transposed Conv1d 521 × 125

ReLU 521 × 125
Batch Norm 521 × 125

Transposed Conv1d 256 × 250
ReLU 256 × 250

Batch Norm 256 × 250
Transposed Conv1d 128 × 500

ReLU 128 × 500
Batch Norm 128 × 500

Transposed Conv1d 64 × 1000
ReLU 64 × 1000

Batch Norm 64 × 1000
Transposed Conv1d 1 × 2000

Tanh 1 × 2000

Discriminator

Layer Output Shape

Input layer 1 × 2000
Conv1d 64 × 1000

LeakyReLU 64 × 1000
Instance Norm 64 × 1000

Conv1d 128 × 500
LeakyReLU 128 × 500

Instance Norm 128 × 500
Conv1d 256 × 250

LeakyReLU 256 × 250
Instance Norm 256 × 250

Conv1d 521 × 125
LeakyReLU 521 × 125

Instance Norm 521 × 125
Conv1d 1 × 1

3. Materials and Experiment Design
3.1. Data Collected

The study recruited 320 healthy college students (166 females and 154 males), summa-
rized in Table 2. The study was fully disclosed to all participants, who gave their informed
consent. After a 10-minute rest period during which personal information (age, height and
weight) was acquired and the study protocol was given. All measurements were performed
in a quiet environment and pulse collectors had been trained by professional doctors.
The Chun position of left wrist pulse was chosen and recorded for 10 s for each subject
using pressure sensor: ZM-300 intelligent TCM pulse pressure detector (manufactured
by Shanghai University of Traditional Chinese Medicine in Shanghai, China, as shown in
Figure 2), which is mainly composed of single-head pulse transducer, pulse amplifier, A/D
conversion card and computer, among which the pulse amplifier is composed of two parts:
pulse collector AC amplification loop (pulse wave loop) and DC amplification loop (pulse
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pressure loop), similar to that of TCM in perceiving the pulse. The acquired pulse signals
were sampled at 200 Hz. That gives a total of 2000 samples for each subject.

3.2. Preprocessing

As a weak physiological signal, acquired pulse data are easily interfered by other
signals, including the subject’s limb and power frequency interference [5]. For the prepro-
cessing of the pulse signals, we adopted the denoising and baseline drift correction methods
in [42]. Specifically, the effective frequency of the pulse signal is generally 0∼10 Hz and
will not exceed 40 Hz. First, a low-pass filter with a cut-off frequency of 40 Hz was adopted
to filter the original pulse signal. As for the baseline drift, the wavelet-based cascaded
adaptive filter method proposed in [43] was employed. Finally, the obtained pulse data
points were min-max normalized to be within [0, 1].

Table 2. Total subject characteristics (mean value ± standard deviations).

Variable Male (154) Female (166)

Age (year) 20.21 ± 0.53 20.35 ± 0.46
Height (cm) 175.32 ± 4.25 161.35 ± 4.36
Weigth (kg) 65.32 ± 8.35 55.07 ± 5.35

Figure 2. The pulse wave acquisition system.

3.3. Model Training

For adversarial training in WGAN-GP, the discriminator and generator are not trained
equally, but the discriminator is trained until optimality first. In one epoch, we trained the
discriminator for five iterations, as originally proposed by Arjovsky et al. [41], then the
generator for one iteration. The gradient clipping value in the loss is set 0.01 and the λ is set
10, as originally recommended by Gulrajani et al. (2017) [39]. The optimizer used in training
is the ADAM optimizer with lr = 0.0001, β1 = 0 and β2 = 0.9. For the generator model,
as mentioned, the input latent variables z size is empirically sampled from 100 dimension
normal distribution N(0, 1).

Since there is no standardized architecture agreed upon in the literature that ap-
plied into generated wrist pulse signals, we performed an in-depth study by comparing
with other typical families of GANs, i.e., (1) vanilla GAN [25], (2) DCGAN [44] and
(3) WGAN [40]. Specifically, for DCGAN/WGAN, we refer to the original architecture
in which Binary CrossEntropy serves as the loss function and also batch normalization
were empoyed for both generator and discriminator. For WGAN, only the loss function
is different from WGAN-GP and we use the exactly same architectures as WGAN-GP. In
addition, the training of the all these GAN models followed the same protocol and we use
the PyTorch framework to implement the experiments. For each network, the model was
trained for 3000 epochs in batches of 32 examples.
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3.4. Performance Evaluations for the Generated Samples

While accurately and fairly evaluating different generative models remains a challenge,
there are certain reasonable and widely accepted measures [45,46]. In general, a well-trained
GAN can implicitly learn the distribution of the original fully observed dataset. Following
similar guiding principles, we seek out commonly adopted methods or metrics, which are
mainly divided into qualitative visual inspection and quantitative metric evaluations.

3.4.1. Qualitative Visual Inspection

Visual inspection of synthetic pulse data is considered as the intuitive way and also
quite often to inspect GANs based models [45]. In this respect, first, time samples and
frequency spectrum of generated pulse are employed to show how visually similar a
generated pulse was to the real pulse. Moreover, auto-correlation plots (ACF) [47,48],
showing the similarity between observations as a function of time lags between them, are
also adopted. The definition of autocorrelation ACFk, with k being the time lag, is given in
Equation (6).

ACFk =
∑T−k

t=1 (x(t)− x̄)(x(t− k)− x̄)

∑T
t=1(x(t)− x̄)2 (6)

where T is the length of the pulse signal and x̄ is the mean. This helps to compare the
consistency of the generated samples with the groud-truth in terms of the long-term
temporal trend.

3.4.2. Quantitative Metric Evaluations

Following similar approach [32], three quantitative indicators: maximum mean devi-
ation (MMD) [49], sliced Wasserstein distance (SWD) [50] and percent root mean square
difference (PRD) [51], were used to evaluate GANs, which are commonly adopted to how
well the generated distributions resemble the original distributions. In general, the smaller
these metrics, the closer the distributions are to each other.

MMD: The dissimilarity of two probability distributions is assessed by MMD using
samples that were taken independently of each distribution [50]. In practice, we cal-
culate the square of the MMD defined below. We use Gaussian RBF kernel K(x, x′) =

∑k
j=1 e−αj |x−x′ |2 , where the bandwidth α is equal to the pairwise distance between the joint

data. The similarity between the distributions is inversely correlated with the MMD statistic.

MMD2 =
1

M(M− 1)

M

∑
i 6=j

K(xi, xj)−
2

M2

M,M

∑
i,j=1

K
(
xi, x̂j

)
+

1
M(M− 1)

M

∑
i 6=j

K
(

x̂i, x̂j
) (7)

where xi are ith real samples and the corresponding generated samples are denototed as x̂i,
M is the number of total pulse samples.

SWD: The Wasserstein distance expresses the price of changing one distribution into
another given a cost function [39]. The sliced Wasserstein distance is a 1d projection-based
approximation of the Wasserstein distance. By computing the Wasserstein distance between
each one dimensional (slice) projection, it approximates the two Wasserstein distance
distributions. This approach offers the benefit of a closed solution and an associated
quick computation for one-dimensional situations. In practice, a limited set of random
one-dimensional projections can approximate the Wasserstein distance of the slice itself.
For more details, please refer to [50]. The lower slice Wasserstein distance shows that the
sample variation and appearance of the two distributions are similar.
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PRD: Another popular distortion measurement technique at the moment is PRD,
which measures the difference between real data and created points. The disparity between
the original signal and the reconstructed signal is quantified.

PRD =

√
∑T

t=1(x(t)− x̂(t))2

∑T
t=1 x2(t)

× 100 (8)

where x(t) are real samples and x̂(t) are generated samples. The generated data contains
less distortion than the original data with a lower RRD.

4. Results
4.1. Visual Inspection
4.1.1. Time Samples

The time examples of the ground truth and generated data using different GAN
models are displayed in Figure 3. On the whole, all models have a general trend with
the original signal. Among them, evidently GAN performed the worst, containing more
noise-like data. DCGAN performed poorly with obvious deviation. Given that its primary
goal of network configuration was generating images, it is possible that it was not able to
capture well almost of the statistical features of wrist pulse signals that were evaluated.
WGAN works well, but the details are still not good enough. Conversely, WGAN-GP
reached the best approximation of the real data without losing too much detail.

4.1.2. Frequency Spectra

Similarly, Figure 4 shows spectral distribution of artificial signals generated by the
four architectures compared to the real signals. We calculated the power spectral density
(PSD) of each signal using Welch’s periodogram with a Hanning window of 256 points,
128 points overlap and 1024 points for the fast Fourier transform. The Welch function in
the signal module of Python’s SciPy library was used for calculation.
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Figure 3. Example of the original and generated signals with different GAN models. In the figure,
the real pulse data is shown above, and the false pulse generated by the corresponding GAN model
is shown below.
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Figure 4. Comparison of the distribution of frequency spectra real signals and signals generated by
different GAN architectures: (a) GAN; (b) DCGAN; (c) WGAN; (d) WGAN-GP.

Generally speaking, it can be seen that, for all models, below 20 Hz (the main frequency
range of the pulse signal), the similarity is better. However, in the part of high frequency
(above 40 Hz), except WGAN-GP, other models deviate to real signals to a large degree.
Below 40 Hz, WGAN and WGAN-GP show a good fit, whereas WGAN-GP overall struggles
to approximate frequency trends of the raw signal. Relative to the time domain, the
advantage of applied weight clipping in WGAN-GP is more obvious.

4.1.3. Auto-Correlation Plots

In Figure 5, we plot auto-correlation plots (ACF), showing the similarity between
observations as a function of time lags. It is apparent from the figure that, again, WGAN-
GP performed reasonably best, meaning that it can generate data that have similar statistical
characteristics to the original. Also note that, for vanilla GAN or DCGAN models, especially
the second peak (about 125 in original data) in the ACF, they all have the wrong second
peak, and for WGAN, the peak value is also small. For above 150 lags, the ACF are
totally different from the original for the first three GAN models. In some sense, the auto-
correlation is related to the similarity of the pulse signal. From its time-domain waveform,
the pulse signal is similar to the quasi-periodic signal. The results indicate that there is a
large amount of deviation between time cycles in these generated pulse data, except for
WGAN-GP, which has quite consistent trends with that of ground truth data.
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Figure 5. The auto-correlation plots of generated wrist pulse signals with different GAN models. In
the figure, the real pulse data are shown above, and the false pulse generated by the corresponding
GAN model is shown below.

4.2. Quantitative Evaluation

Table 3 summarizes the overall adopted metric results to compare real and synthesized
wrist pulse data for different architectures, where the best results are written in bold type.
We find that WGAN-GP consistently produces the lowest scores for all metrics, which is a
significant improvement compared to the vanilla GAN model. Except for SWD, WGAN-GP
holds slightly better than the WGAN model. For other metrics, WGAN-GP overtakes other
GAN variants with obvious advantage. DCGAN was clearly the worst performing model,
possibly because it is not suitable for 1D signals and is originally intended to generate
synthetic images. Compared with the vanilla GAN network, the performance of WGAN
has been greatly improved. Overall, WGAN-GP is still the best performing model, well
consistent with visual inspection.

Table 3. Comparison of the metric results (mean value ± standard deviations) for different GAN
network architectures (lower is better).

Method MMD SWD PRD

GAN 2.4777 ± 0.1393 0.0519 ± 0.0097 8.0296 ± 0.6404
DCGAN 5.1677 ± 0.0864 0.2545 ± 0.0053 11.9029 ± 0.5347
WGAN 0.2815 ± 0.0596 0.0145 ± 0.0043 6.7092 ± 0.5350
WGAN-GP 0.2325 ± 0.1003 0.0112 ± 0.0064 5.8748 ± 0.5630

4.3. Stability of Pulse Signal Generation

For the final experimentation, we evaluate the stability of proposed GAN-GP model
during training time. According to the above evaluations, the performace of WGAN and
WGAN-GP are better. Therfore, the following compasions are conducted between these
two models. Under different epochs, these signals synthesized by the generator network of
WGAN or WGAN-GP model are illustrated in Figure 6. Overall, for both GAN models, the
quality of the generated data increased with the epoch and the training dynamics of WGAN-
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GAN are quite stable. In compasion, WGAN-GP is capable of generating pulses, with a
quality that is clearly better than the ones produced by WGAN under the same epoch.
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Figure 6. Examples of time series pair generated from WGAN and WGAN-GP models for associated
epochs, respectively: (a) 500 epochs; (b) 1000 epochs; (c) 1500 epochs; (d) 2000 epochs. In every
subfigure, the top is the simulated pulse generated by WGAN and the bottom is the simulated pulse
generated by WGAN-GP.

For example, in the early stage of training (500 or 1000 epochs), WGAN can only
capture several cycles. In contrast, WGAN-GP quickly generates roughly similar pulse
data with only a few cycles that are not well modeled. As the training process proceeds,
a relatively perfect pulse signal can be generated when the epoch is equal to 1500. From
the comparison of the above content, it can be concluded that the WGAN-GP model as a
whole has strong stability.

5. Discussion

With this work, we presented a first attempt at generating wrist pulse signals. For this
purpose, several different GAN architectures were implemented and compared with both
objective and subjective evaluations. To summarize, the main contributions of this paper
can be highlighted as follows:

• We adapted a novel, specifically designed Wasserstein generative adversarial networks
with gradient penalty (WGAN-GP), which has been shown to be effective in improving
the training stability and convergence [39] in comparison to vanilla GAN. Furthermore,
most of the GAN models are currently optimized for 2D images, which is difficult
for direct application in time domain signals. In the present study, one-dimensional
convolutional neural network (1D-CNN) is adopted as the building block of both
generator and discriminator and carefully tailored to leverage its ability to learn local
and hierarchical representations from raw data, thereby allowing the adaptation of
the GAN framework to pulse data.
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• We adopted a set of metrics to quantitatively and visually evaluate the quality of
the generated samples comprehensively. For visual comparison, the frequency and
time-domain, also including auto-correlation plots, were carefully examined between
real and generated pulse signals. In terms of quantitative metrics, three statistical
analysis: maximum mean deviation [49], percent root mean square difference [51] and
sliced Wasserstein distance [50], were employed.

• We compared the performance of the proposed method with the existing several
popular variants of GAN in literature, including vanilla GAN [25], DCGAN [44] and
Wasserstein GAN [40]. The various conducted experimental results using real col-
lected wrist pulse dataset demonstrate the effectiveness and advantage of WGAN-GP,
showing that the data generation ability of the proposed framework well reflects the
distribution of real data.

Overall, the findings are encouraging. Taking these results together, we found that
the proposed WGAN-GP reproduced an excellent data generation, demonstrating that it is
possible to generate artificial wrist pulse signals from a small ground truth data.

Although we have shown some great progress for wrist pulse generation, it does
not mean that the problem of a universal wrist pulse signal generation method is solved.
Given the fact that this research field of pulse generation is still at its early stages, we came
across various challenges that have not been discussed specifically in the literature. In the
following, we compile a list of problems with our study and also list a set of promising
directions for better wrist pulse generation in a broader sense. We hope the community
finds this work essential to advance as well.

First, on one hand, although overall the WGAN-GP method provides promising
results, there are some issues and limitations in the present study:

• A major limitation of time series GANs is the restrictions placed on the length of
the sequence specified that the architecture can manage. In our study, the length
of pulse signal (2000) is relatively long compared to other physiological signals (for
example, ECG/PPG/EEG usually several hundreds lengths in [30,31,33,34,36,38]). In
practice, the longer signal usually requires a longer training time while worsening
the performance of unstable network and requiring larger epochs. For example, we
found that the modal collapse emerges after about 700 epochs for DCGAN. The pulse
signal consists of different cycles, and the length of a cycle is roughly 150. Therefore,
decomposing pulse into different cycles and training GANs to generate a single cycle
signal may be a possible solution.
On the other hand, to balance the training cost, the depth of the generator network
we used is relatively shallow. As mentioned earlier, we started with a resolution of
100 time samples and doubled it in five steps to reach 2000 samples. Several design
choices, such as convolution size, may also impact the performance. In the future,
increasing the depth of the network may better capture the pulse characteristics.

• In the present study, WP-GAN was trained independently of the classification task.
In practice, the possibility to generate wrist signals with associated labels, especially
in the scarcity of abnormal cases, is worthy of further study. That is, whether the
computational pulse diagnosis performance can be further improved with these
generated pulse signals of different categories. For instance, class-conditioned GAN
classifier with WGAN-GP can be employed to use category labels as the auxiliary
information and therefore allow for generating labeled data [52]. This is what our
following work will focus on, with subsequent collection of wrist pulse signals of
different diseases.

Second, on the other hand, with the first step for pulse data generation this new field,
there are also many open possibilities worth further expansion or investigations in future
study to achieve better results:

• Better network structures: As mentioned, the used wrist pulse signals are relative
long (2000 samples), and also the pulse signal is similar to quasi-periodic with each
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cycle highly correlated. It has been pointed out that relying solely on the convolution
operator limits the ability of GAN to capture long-range dependencies across input
sequences due to the local receptive field of the convolution operator [53]. To address
this problem, self-attention generative adversarial networks (SAGANs) introduce
a self-attention mechanism into convolutional GANs, and exhibits a better balance
between the ability to model long-range dependencies [53]. In the image [53] and
speech domain [54], it has been empirically proved to achieve a superior perfor-
mance than the baseline. Consequently, introducing a self-attention module into the
convolution-based GAN model for pulse data generation may perform better.

• Better cost function: Another important aspect that requires further investigation is
to choose appropriate cost function to improve the generation performance, which is
orthogonal to network structures, especially considering that evaluating the quality
of the generated samples is still an open research topic [46]. Without knowing what
the ultimate goal of the learning process is, the selection of optimization functions
is to some extent a random process [55]. Furthermore, the loss function utilized
in GANs is important for reducing model training error and speeding up network
convergence [55]. For example, a reward term with encouraging intraclass/interclass
diversity was tailed to achieve better performance in PPG-GAN models [37]. Using
different loss functions with various regularizations may result in a better convergence
and further improve data generation performance.

• Better model training: In comparison to vanilla GAN, WGAN-GP serves as an effective
improvement to enhance the training stability and reduce mode collapse. Moreover,
a variety of improved variants are also emerging, with the same aim. For example,
different solutions such as normalization and regularization schemes [56,57] have
been proposed and have demonstrated their superior performance. Consequently,
the proposed WP-GAN model has space for further optimization, which could be
achieved by adjusting these regularization and normalization techniques.

6. Conclusions

At present, there is a growing interest in applications of machine learning into compu-
tational pulse diagnosis. However, the small number of existing dataset samples presents
an important obstacle to train more powerful deep learning model. In this study, we
proposed a novel generation method based on one dimensional GAN as one promising
way for wrist pulse data augmentation, which has not been deeply investigated yet. It
seems that one-dimensional GAN is an excellent methodology to capture the dynamics of
wrist pulse signals. Wasserstein training with gradient penalty consistently outperforms
several typical GAN variants.

In summary, our proposed WGAN-GP model offers a potential innovative solution
to address data scarcity challenge, for researchers working with computational pulse
diagnosis in TCM community. Moreover, since this research field is still at its early stages,
there are now many open possibilities for further investigation. For example, introducing a
self-attention mechanism with better loss functions or regularization strategies is expected
to further improve the performance of generated pulse data.
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