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Abstract: Malaria is a life-threatening disease caused by parasites that are transmitted to humans
through the bites of infected mosquitoes. The early diagnosis and treatment of malaria are crucial
for reducing morbidity and mortality rates, particularly in developing countries where the disease
is prevalent. In this article, we present a novel convolutional neural network (CNN) architecture
for detecting malaria from blood samples with a 99.68% accuracy. Our method outperforms the
existing approaches in terms of both accuracy and speed, making it a promising tool for malaria
diagnosis in resource-limited settings. The CNN was trained on a large dataset of blood smears and
was able to accurately classify infected and uninfected samples with high sensitivity and specificity.
Additionally, we present an analysis of model performance on different subtypes of malaria and
discuss the implications of our findings for the use of deep learning in infectious disease diagnosis.
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1. Introduction

Malaria is a protozoan, acute, febrile illness that has been for years one of the leading
causes of death in low-income countries and thus, still remains one of the most severe
public health challenges. This illness is caused by intracellular parasites of the Plasmodium
genus, which are transmitted to the people via the saliva of the female Anopheles mosquito.
Even though at least 150 species of Plasmodium are known, solely a few of them can
infect humans: P. falciparum, P. vivax, P. malariae, P. ovale, and, still considered as a zoonotic
malaria, P. knowlesi. Furthermore, some cases were recently reported of zoonotic infections
by P. cynomolgi and P. simum; however, their global burden and clinical impact are yet to
be investigated [1,2].

While P. falciparum accounts for the vast majority of cases and deaths, P. vivax is the
most widespread of the malaria species [3] and poses a significant health threat, particularly
in areas with intense transmission, such as Papua New Guinea. P. ovale and P. malariae are
thought to be the most benign, yet the latter was associated with the lowest concentration
of hemoglobin in certain regions [4] and may be associated with a high risk of anemia
and subsequent hospitalization [5]. P. knowlesi, although rare, remains a leading cause
of malaria in tropical regions of Southeast Asia with a clinical course that may resemble
falciparum malaria [6].

Since P. falciparum is the deadliest one, most eradication efforts, including diagnostics
availability and treatment efficiency, were directed toward this species. However, in order
to meet WHO global targets, i.e., reducing malaria mortality rates and case incidence by
90% by 2030 along with completely eradicating malaria worldwide by 2040, it is necessary
to make indispensable arrangements toward fighting off all species altogether. This may
turn out to be a significant task in the light of growing drug resistance, reports of local
vulnerability for malaria resurgence, instances of malaria rebounding, and diagnostic tests
of a poor quality in many areas [7–10]. The latter can be improved by the introduction of
new diagnostic methods, including approaches based on artificial intelligence (AI).
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When addressing the medical diagnosis field, AI-based systems can be beneficial in
their ability to mimic human brain in more simple tasks and create novel solutions to more
complicated ones. As an example can be given solving a Rubik’s cube using simulated data
and artificial neural network architecture [11] or an even more human task such as playing
a Go board game [12]. By providing valid input data, the computer could find its own way
of solving an advanced task and transform raw numerical data into an algorithm. As com-
putational power grows, there is also a rising trend in applying computer vision models
into the problems requiring visual classification and analysis. By introducing convolutional
layers, the input matrix is compressed into vectors in a smart way, allowing for a better
understanding of the image. Such networks can not only be relatively rapidly trained but
evaluation can also be performed in real time by modern hardware. Such architectures can
perform multiple tasks; however, the most common is image classification and labeling
based on the subject of the image [13]. With more computational power came the ability to
perform multi-label classification based on rectangular masking. At first, this was limited
to a slow processing of single frames; however, more research scientists discovered more
advanced methods, allowing for real-time evaluation [14,15]. In later years, a new branch
opened the possibility of reversing the convolution process, which leads to an image as an
output. Such combination is still under heavy development as its full abilities are not yet
discovered; however, some of studies focused on aspects such as image compression, where
the usage of encoder, decoder, and a bypass from the hidden layers allows for the network
to learn pixel relations and thus compress them into fewer vectors and later decode them
into the original image with very little or no visual differences. Another example can be a
generative adversarial network (GAN), where generator tries to generate an artificial image
from a random noise and label and a discriminator validates its trials to give valid feedback
about the accuracy of the model [16]. The image generation ability allows for image up-
sampling by generating new, synthetic details from low resolution data by using its trained
knowledge about the context of the photo and pixel relations [17]. By compressing the
image, some researchers also found a way for image denoising both in computer-generated
imagery and photos with results far exceeding classical denoising algorithms both in terms
of evaluation times and quality [18,19]. Such type of architecture can also be beneficial in
the classification field, as the creation of a semantic segmentation convolutional neural
network allowed for the segmentation of images into sparse numerical clusters with each
following integer describing separate abstract class. Despite the more human-like nature of
the classification process, such solution also has an advantage of per-pixel accuracy, while
previously described methods could only select an approximate region. With that also
comes an advantage in more busy areas of the image, as the network has less training noise
and learns only relevant data. Due to this, such networks are highly used in scenarios
requiring the highest possible accuracy and precision as well as best understanding of the
surroundings such as computer vision software for autonomous vehicles, medical systems,
robots, many fields of engineering, etc. [20–22].

Malaria is a serious and potentially life-threatening disease caused by parasites that
are transmitted to people through the bites of infected mosquitoes. The early diagnosis
and treatment of malaria are crucial for the effective management of the disease and can
help to reduce the risk of complications and death. One way that artificial intelligence
(AI) is being used to support the detection and diagnosis of malaria is through the use
of a segmentation network. This is a type of neural network that is trained to analyze
images of blood smears and identify the presence of malaria parasites. The segmentation
network is able to accurately identify malaria with a high degree of accuracy, currently at
9.68%. This can be a valuable tool in the fight against malaria, as it can help to rapidly and
accurately diagnose cases, allowing for timely treatment and help to prevent the spread of
the disease. In addition, the use of a segmentation network can help to reduce the workload
of healthcare professionals and improve the efficiency of the diagnostic process. By using
AI to support detection and diagnosis of malaria, we can help to improve the management
and control of this important global health issue.
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2. Epidemiology

As detailed in the recent World Health Organisation (WHO) Malaria Report, there
were approximately 241 million cases of malaria worldwide in 2020, whereas the estimated
number of deaths stood at 627,000 [23]. Although the total number of cases remains the
same as in 2000, the ongoing eradication program initiated in the early 2000s led to the
malaria case incidence decreasing from 81 per 1000 population at risk in 2000 to 56 in 2019.
Likewise, deaths per 100,000 population at risk declined from 30.1 to 13.8 in 2019. It is
worth mentioning that those numbers have marginally risen in the year 2020, but this is
owing to the COVID-19 pandemic disruption [23].

Plasmodium falciparum is mainly found in sub-Saharan Africa, constituting 99.7% of
all cases there in 2020 [23], yet it has also been a significant issue in the areas of the Western
Pacific and Southeast Asia, where it also accounts for a significant percentage of infections.
P. vivax is believed to cause nearly 14 million malaria episodes each year, being thereby
responsible for roughly half of all malaria cases outside the African continent [24].

Nearly half of the world population is at risk of malaria infection every year, yet only
a few of the infected will develop severe malaria. However, some groups are found to be
more susceptible to severe disease, those being children aged under 5 years, the elderly,
pregnant women, and patients with impaired immunity, such as those with AIDS [23].

In countries considered as not endemic, all reported malaria cases are acquired in
endemic countries and are referred to as “imported malaria”. Country-level data on malaria
cases between 2005 and 2015 were assessed, which demonstrated that Europe carries nearly
70% of the global burden of imported malaria, followed by the United States (15%) and
Australia (2.2%) [25]. It is now mostly attributed to immigrants from endemic countries
and residents who often visit areas with high malaria occurrence [26].

3. Life Cycle

Malaria parasites’ growth and development consist in multiple stages undergoing in
both the Anopheles mosquitoes and humans. When a female Anopheles mosquito feeds
itself on humans, an infective form of the parasite (sporozoites) is inoculated from the saliva
to the dermis. Thereafter, Plasmodia migrate in the bloodstream to invade hepatocytes,
within which they asymptomatically replicate for 7–14 days, undergoing transition to
the next morphological state—schizont. This is referred to as the pre-erythrocytic stage,
and corresponds to the incubation period of malaria infection. Furthermore, P. vivax and
two sympatric species of P. ovale are able to form hypnozoites and remain dormant in the
liver from weeks to several years before causing a relapse.

In any case, Plasmodia are eventually released from the liver as merozoites, which
from now on, target erythrocytes (RBCs). Within these, parasites enter the erythrocytic stage
of their life cycle, which includes repeated cycles of replication, egress, and re-invasion
of other uninfected RBCs. P. vivax is marked with the red cell preference for reticulocytes
(immature RBCs), which make up a small fraction of RBCs, leading to a lower level of
parasitemia. Massive bursts of erythrocytic schizonts (final stage of infected RBC) occur
every 24 h for P. knowlesi; every 48 h for P. falciparum, P. vivax, and P. ovale; every 72 h for
P. malariae and are parallel to overt clinical features referred to as malaria paroxysm.

In tandem with the ongoing erythrocytic stage, some merozoites produce sexual
forms, which takes place after 1 to 14 days since the infection onset, depending on the
species [27]. This way, gametocytogenesis (sexual cycle) yields gametocytes, which circulate
within human blood for several days. If another female Anopheles mosquito bite appears,
these sexual forms of Plasmodia may be absorbed to its mesenteron where they will
undergo full gametogenesis. The gametes fuse to produce the zygote, afterwards forming
an oocyst in the midgut wall. After up to 14 days, the transmission cycle ends with
new sporozoites migrating to the salivary glands, from where they can be injected to the
human’s bloodstream.
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4. Clinical Features of Malaria and General Pathogenesis

The evolution of the disease and its sequelae depend heavily on the Plasmodium
species, previous exposure to this parasite, patients’ comorbidities, human polymorphisms,
and the quality of the conducted treatment. According to the statistics, only a fraction of
patients develop a full range of clinical manifestations as the malaria course is contained
by either effective treatment, functional immune system, or precocious death [28]. Indeed,
only 1% of falciparum malaria progresses to severe disease [29]. However, since certain
pathological processes may still covertly proceed for a long time in case of hypnozoite
presence, some patients may experience long-term health consequences that may make
prior statistics less accurate [30].

The severe clinical manifestation of malaria differs between children and adults.
While the former typifies high frequency of cerebral malaria (CM), severe malarial anemia
(SMA), and respiratory distress (RD), adults more often develop multiorgan failure and
shock [31]. Other clinical features include acidosis, hypoglycemia, jaundice, repeated
convulsions, bleeding, and pulmonary edema [6]. Despite complexity and a great number
of factors playing a significant role in the final form of malaria, there are a few fundamental,
pathological mechanisms that are linked to the systemic development of severe disease:
erythrocytes (RBC) sequestration, appearing exclusively in the P. falciparum infections,
excessive host immune response, and endothelial dysfunction [29]. Naturally, the dynamic
of pathogenesis intrinsically depends on the parasitemia level.

Severe malarial anemia remains the most common manifestation of severe malaria
and simultaneously contributes the most to overall death burden [29]. It can be present
in all types of malaria and, similarly to CM, has multiple underlying mechanisms. Firstly,
parasites hinder normal globin gene expression, resulting in ineffective erythropoiesis.
Moreover, iRBC are progressively destroyed as escaping merozoites rupture iRBCs, but less
intuitively, the accelerated loss of uninfected RBC is also observed [31]. Some research
even suggests that the latter accounts for 90% of acute anemia resulting from a single
infection [32]. SMA is also attributed to the dysregulation of RBCs macrophage-mediated
clearance, as uninfected RBCs are destructed more intensively than iRBCs.

Respiratory distress, similar to SMA, develops frequently in all types of malaria,
manifesting itself in tachypnea and increased breathing effort, i.e., labored breathing,
low chest indrawing, and nasal flaring [29]. Coexisting acidosis develops in a two-factor
way: Plasmodium spp. produce ample quantities of lactic acid reducing blood pH but at
the same time, a disrupted breathing pattern intensifies the acidosis [33]. It is estimated that
125 million pregnant women are at risk of contracting malaria. During pregnancy, parasites
tend to accumulate in the placental intervillous space, provoking local inflammation.
As a result of impaired blood flow, nutrient transport via the placenta, and many other
underlying pathomechanisms, there is an increased risk for stillbirth, low birth weight,
and later malaria infection in offspring [34].

5. Diagnosis

In the territories where malaria transmission occurs, each case of acute fever,
i.e., elevated body temperature over 37.5 °C, should be consecutively tested toward malaria,
as it remains the most common cause of that symptom there. Moreover, in all countries
with stable transmission, malaria should be suspected in children with palmar pallor or a
hemoglobin concentration of <8 g/dL [6].

In non-endemic countries, recent travel history should be always taken into account
in case of any fever of unknown origin occurrence, as well as a diagnosis of life-threatening
infections has to be conducted immediately. Parasitical diagnosis should be available
within the next 2 h after the patient’s admission. If that is not the case, however, additional
assessments should be performed for antimalarial treatment administration. This procedure
is cardinal in rapid death prevention in light of the fact that P. falciparum may progress to
death within 24 h [23].
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The most perfect diagnostic test has to enable the identification of the particular Plas-
modium species with high sensitivity, quantification of the level of parasitemia, and moni-
toring of patients’ response to administrated treatment. Along with that, it has to be easily
available, cheap, and insusceptible to human incompetence, bias, or inter-observer vari-
ability. Although no such test exists today, many innovative methods are being vigorously
developed reaching very high sensitivity and specificity. The poor diagnostic capability of
any test increases both false-positive and false-negative cases, which thereby leads to either
overuse of antimalarial drugs or undertreatment. While the former is associated with the
development of drug resistance, the second self-evidently conduces to severe consequences
of untreated malaria. Hence, the proper use of accurate diagnostic tests along with its rapid
development contributes foremost to the malaria eradication proprieties [35].

As of today, WHO recommends malaria confirmation with the use of the either
light microscopy technique or rapid diagnostic tests, whereas the former has been a gold
standard for years. Blood smears, preferably from capillary blood, should be obtained
as fast as possible, enabling a first laboratory assessment to be performed within 24 h of
patient presentation. If possible, thick and thin blood films should be made collectively.
A thick blood smear consists of nearly 30 layers of lysed cells, allowing for a large volume of
blood to be examined at once and therefore, provide high sensitivity for malaria screening
as well as simple parasite density evaluation [36]. Thin blood film, however, made from
a single blood drop, enables the fast evaluation of parasite morphology, and thereby,
the detection of the Plasmodium species, including their cycle stage. The only exception
is observed in frequently misdiagnosed P. knowlesi, due to its asynchronous development
and high resemblance to other species on each stage. It was reported that P. knowlesi was
misdiagnosed as a P. malariae in more than a half of the examined cases [37]. Nevertheless,
light microscopy has high specificity, making malaria diagnosis improbable with negative
blood smear acquisition [38]. However, because that might be the case for patients with
immunodeficiency, the Centers for Disease Control and Prevention (CDC) recommend to
re-examine another blood film every 12 to 24 h for a total of three examinations [39].

As often regions most stricken with malaria are also affected by poverty and commu-
nication exclusion, they lack well-trained personnel along with properly equipped facilities.
Consequently, where it is mostly needed, diagnosis is least accurate.

In general, novel approaches may require the development of complex computational
software to drive efficient diagnosis, but also treatment monitoring. In fact, that also applies
to any other branch of medicine, such as cardiovascular imaging, where diverse forms of
software are being constantly developed and compared in studies [40,41].

6. Treatment and Prevention

Preventive procedures in endemic countries pertain to both visitors and the indige-
nous people, especially in the areas of constant malaria transmission risk. Basic measures
comprise clothes that cover most of the body, repellents, and mosquito bed nets, such as
long-lasting insecticidal nets (LLINs) [42]. There is an array of commercially available
repellents, including coils, candles and sprays. While the aforementioned primarily con-
tributes to mosquito bite prevention, other interventions, such as indoor residual spraying,
prevents the transmission of infection to other people. It involves coating the walls and
other surfaces of a house with a residual insecticide [29,43]. Though effective preven-
tion against malaria itself has always been an arduous task, more and more mosquito
adaptations are being widely observed in response to insecticide pressure. Apart from
morphological adaptations, e.g., thickening of cuticle, behavioral changes are also noted,
including shifts in biting time and negative deterrence reaction [44]. When a high risk of
transmission is considered, highly effective preventive drugs are easily available. They are
fundamental precautions for travelers, but do not play a significant role in continuous
malaria prevention. The primarily used drug remain atovaquone with proguanil, which
was observed to have up to 100% protection efficiency against P. falciparum. Chloroquine
and hydroxychloroquine may also be used with exceptions for resistance, where meflo-
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quine becomes an alternative [6]. Ill patient management has to be conducted forthwith,
pursuant to the up-to-date algorithms, as prompt treatment implementation reduces severe
malaria mortality from 100% to 20% [31]. Treatment is selected with regard to the patient’s
age and general condition, region of infection, parasite species, drug resistance, and clinical
form of malaria. According to the 2022 WHO guidelines for malaria management [6],
artemisinin or its derivatives in combination with a longer-lasting drug is recommended as
a frontline therapy for most cases. For uncomplicated malaria of all species, a three-day
long Artemisinin-based combination therapy (ACT), such as artesunate with mefloquine,
is preferably used, although, in non-resistant malaria, oral chloroquine or hydroxychloro-
quine has been also successfully applied with good tolerance as per the CDC guidelines.
In the case of P. vivax and P. ovale, the main treatment has to be followed with primaquine
administration for radical liver hypnozoites eradication, as the vast majority of drugs do
not have any effect on them. ACTs are also willingly used among children and infants since
they are generally well tolerated. Apart from ACT, all patients should always be closely
monitored, as even well-treated asymptomatic hyperparasitemia has a high risk of severe
malaria development. If malaria occurs again in the next 28 days following first-line ACT
administration, alternative ACTs known to be effective in the region are recommended to
be applied [6].

Much effort has been put toward vaccine development, but the polymorphic nature
of Plasmodium makes this task utterly difficult. As of today, no fully efficient vaccine
exists in worldwide use; however, the most prospective malaria vaccine, RTS,S/AS01,
already undergoes pilot trials in African countries for effectiveness assessment. Since
partial immunoprotection was observed in prior investigations, WHO recommends to
use this vaccine for the prevention of falciparum malaria in children [23]. Nevertheless,
the results of those pilot trials are highly anticipated.

7. Proposed Solution

The detection of Malaria can be approached by using various different techniques.
One of the most accurate include visual classification. In normal conditions, such examina-
tion is performed by a human doctor and consists in the manual classification of hundreds
of objects per patient within previously selected frames of blood smears. Due to this,
such‘process is extremely slow and requires full focus of the specialist for the whole time in
order to reduce oversight and misclassification rate, as the differences between healthy and
infected cells can be minimal.

As such examination is defined by high repeatability and a small amount of additional
stimulus, it can be near impossible for doctors to maintain the peak detection performance
and accuracy during the whole day. Considering some external factors such as tiredness,
short deadlines, or lack of special knowledge in the field, the accuracy can be even lower.

Many CNN techniques contain rectangular masking, such as in [45]; however, in this
research for better accuracy the semantic segmentation method has been used. Such archi-
tecture can provide additional data in the form of a two-dimensional matrix with element
classification for the specialist. For fast and easy verification, the data can be shown next
to the original image. Such semi-automatic approach, due to its persistence, can highly
reduce the error rate by providing an initial diagnosis made by the system and pointing
out suspicious elements, as well as improve diagnosis time by reducing the human part
from the initial analysis.
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Additionally, by choosing a semantic segmentation architecture over a rectangular
masking convolutional neural network, classification is made with per-pixel accuracy and
thus there is better clarity and accuracy improvement on images with dense overlapping
objects. Some improvement in verification is also perceived as the differences between
infected and healthy cells can be better distinguished.

In this research, a novel deep convolutional neural network solution is presented.
The proposed model is based on the semantic segmentation neural network idea with
custom architecture and layers layout. The final developed model can be seen in Figure 1.
The input of the network consists of a 300 × 300 image taken with a light microscope. Later,
the encoder section downsamples the image four times using max pooling layers with a
factor of 2. Such decision has been made as it allowed for better separation of cells in the
compressed image. During that process, the signal is additionally enhanced by skipped
connections combined using added layers and a small amount of dropout after pooling
to address the issue of overfitting. All values and rates have been chosen empirically.
The bottleneck section is minimal with only three layers as the experiments showed no
visible gains with more complications; however, adding more layers significantly increased
training and evaluation times. Finally, the decoder section consists of a mirrored encoder
with skipped connections inspired by the U-Net-shaped architecture with a total number of
parameters of 95,354,474. The entire model used the rectified linear unit (ReLU) Equation (1)
as a main activation function and the final layer used the Softmax Equation (2). The training
has been optimized with the NAdam Algorithm 1 with a constant learning rate of 0.00012.

Relu(z) = max(0, z), (1)

σ(zi) =
ezi

∑K
j=1 ezj

f or i = 1, 2, . . . , K. (2)

Algorithm 1 NAdam training algorithm.

1: Generate random weights,
2: while global error value ε < error_value do
3: Shuffle the training dataset,
4: for each batch inside training dataset do
5: Compute gradient vector g on the batch,
6: Update vector p Equation (3),
7: Update vector u Equation (4),
8: Rescale vector p̂ Equation (5),
9: Rescale vector û Equation (6),

10: Update variable ŵs Equation (7).
11: Step = Step + 1,
12: end for
13: Calculate global error ε,
14: end while
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Figure 1. Presented deep learning model architecture is designed for the task of detecting malaria
from images of blood samples. It employs an encoder/decoder scheme, with residual layers in the
encoder section and U-shaped skip connections in the decoder. The encoder/decoder architecture
is a common approach in image segmentation tasks, and involves two separate neural networks to
process the input image and generate a detailed output segmentation map. The encoder network is
responsible for extracting relevant features from the input image, while the decoder network takes
these features and uses them to generate the final output. The inclusion of residual layers and skip
connections can help improve the model’s performance by allowing it to more easily learn complex
relationships within the data and make more accurate predictions. Residual layers are a type of
layer that allows the model to learn the residual mapping between the input and output, rather than
trying to learn the mapping from scratch. This can make it easier for the model to learn from the
data and can improve its performance. Skip connections, on the other hand, allow for the model to
directly incorporate information from earlier layers in the network into the final prediction, which
can also help to improve performance. The combination of an encoder/decoder architecture with
residual layers and skip connections allows the model to perform precise segmentation of the task
and produce accurate results. This makes it a promising tool for detecting malaria from images of
blood samples.
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NAdam Algorithm

To improve training performance in terms of validation accuracy and training times,
the NAdam training algorithm has been used. The formula can be described as follows:

ps = β1 ps−1 + (1 − β1)gs, (3)

us = β2us−1 + (1 − β2)g2
s , (4)

where β parameters are constant hyper-parameters and g is the current gradient value of
an error function. Values ps and us are used later for computing the correlations marked as
p̂s and ûs according to below equations:

p̂s = (1 − β1)gs + β1s+1
ps (5)

ûs =
us

1 − βs
2

. (6)

Finally, using previously calculated variables, the final formula can be defined as:

ws = ws−1 − LR
p̂s√

β2s
+ ε

(7)

where ε is a small, constant value and LR is a learning rate.

8. The Dataset

The dataset, found on kaggle.com and called “Malaria Bounding Boxes”, consists of
three sets of images (1364 in total) with description of around 80,000 cells with different
researchers having prepared each one: from Brazil (Stefanie Lopes), from Southeast Asia
(Benoit Malleret), and time course (Gabriel Rangel). Blood smears were stained with Giemsa
reagent. Blood is obtained from the arm using a syringe [46] with standard procedure.
Sample dataset images can be found in Figure 2.

8.1. Labels

In terms of labels, there are two classes of uninfected cells (RBCs and leukocytes) and
four classes of infected cells (gametocytes, rings, trophozoites, and schizonts). Annotators
were allowed to mark some cells as difficult if they were not clearly in one of the cell classes.
The data had a heavy imbalance toward uninfected RBCs versus uninfected leukocytes and
infected cells, making up over 95% of all cells.

For this research case, the above labels were simplified into two classes:

• Healthy cells;
• Infected cells.

The cells marked as difficult were attached to the “infected cells” label, as the system
should mark any suspicious cells regardless its certainty and give the information to the
specialist who will later inspect and classify the cell manually for double cross-validation.

A class label and set of bounding box coordinates were given for each cell. For all
datasets, infected cells were given a class label by Stefanie Lopes, malaria researcher at
the Dr. Heitor Vieira Dourado Tropical Medicine Foundation hospital, indicating stage of
development or marked as difficult.
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Figure 2. This sample dataset consists of blood smear samples that have been analyzed under a
microscope. The samples contain a mixture of uninfected and malaria-infected red blood cells (RBCs).
The uninfected RBCs are visible as monochromatic oval shapes with a light center and smooth
surface. They have a normal appearance and do not exhibit any signs of infection. On the other
hand, the RBCs that are infected with malaria appear rather different. They are shape-distorted
and have a pinkish-purple color due to the presence of the malaria parasites within them. These
parasites can take various forms, such as single rings or multiple eosinophilic dots, which can be seen
inside the RBCs. The infected RBCs are generally larger and more irregular in shape compared to the
uninfected RBCs. In addition to the RBCs, the blood smear samples may also contain singular white
blood cells (WBCs). These cells are part of the body’s immune system and help to defend against
infections. The WBCs in these samples are generally bigger in size and have a smooth shape with
eosinophilic nuclei. They may be present in higher numbers due to the body’s immune response to
the malaria infection.

8.2. Preprocessing

As the labels are in rectangle form, which is highly inaccurate with overlapping objects
and background noise, in this research the conversion to semantic segmentation mask has
been made using a custom algorithm for better accuracy. The algorithm automatically
clusters darker pixels inside the rectangular mask based on the pre-computed average
values combined with custom heuristics and separates them from the lighter background.
In later steps, some artifact removal is performed if needed. Appropriate labels are attached
based on the masks’ metadata. Example separated cells are shown in Figure 3.

8.3. Normalization

As all images were in 8 bit, the normalization after float conversion has been made by
dividing all values by 255.0.
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8.4. Augmentation

Image augmentation can be useful when working with small datasets. Such technique
is widely used in computer vision field. From simple transforms to more advanced prin-
cipal component resampling [47], it can artificially enlarge the training dataset and thus
improve the training process and final accuracy. In this research, for simplicity, the basic
augmentation has been used, such as:

• Horizontal flip;
• Vertical flip;
• Random noise addition;
• Random rotation;
• Random zoom;
• Random hue shift.

All the masks were augmented accordingly. From the initial tests, the augmentation
proved to enhance the validation accuracy by over 7%.

(a) Sample malaria cell. (b) Sample malaria cell. (c) Sample malaria cell. (d) Sample malaria cell.

(e) Sample red blood cell. (f) Sample red blood cell. (g) Sample red blood cell. (h) Sample red blood cell.

Figure 3. The figure presents a dataset of samples that have undergone segmentation and pre-
processing. These samples have been labeled according to whether they contain malaria-infected
or healthy cells. Some of the samples show clear visual differences between the infected and
healthy cells, with the infected cells displaying distinct features such as shape distortion and the
presence of parasites. However, most of the samples in the dataset show only subtle differences,
making it difficult to diagnose the infection based on visual inspection alone. The figure provides
an ideal example of the visual differences between infected and healthy cells, but in reality, most of
the samples in the dataset may not be so clear-cut. This highlights the importance of using more
advanced diagnostic techniques, such as molecular testing, to accurately identify and diagnose
malaria infections.
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9. Our System

In Figure 4, we can see the image of the device we have generated. Its assumption
is very simple. The sample is smeared on the glassware, and then it is illuminated from
behind. The resulting image is projected by means of mirrors through lenses so that it can
be properly focused. The resulting approximation is then used by the sensor that collects
the results. Finally, the image is analyzed using a neural network.

Figure 4. The images above show the generated images of the developed device. A micro-microscope,
a type of microscope that is designed to be small and portable, is easy to use in resource-limited
settings or in the field. It consists of a set of mirrors and lenses that are arranged in such a way so
as to allow for the size of the lens to be reduced, while still providing a high level of magnification.
This enables the microscope to be used to examine small samples, such as blood smears, for the
presence of malaria parasites.

Our system in Figure 5 of operation assumes that a field agent will test a sample taken
from the patient with our device. Depending on the result, we describe the patient as
positive or negative; if the patient is marked positive, their location is recorded. If there
is a significant number of cases in a given location, we know that we are dealing with an
epicenter and thus we can better use the resources intended to combat malaria.



Sensors 2023, 23, 1501 13 of 21

Figure 5. The described process is a system for detecting and responding to cases of malaria in a
given population. It begins with field agents collecting blood samples from individuals and bringing
them to a mini-microscope for analysis. The mini-microscope is a device that is capable of rapidly
and accurately detecting the presence of malaria parasites in a blood sample. If the samples are found
to be negative for malaria, they are labeled as such and the process is complete. However, if samples
test positive for the disease, the process branches off and a decision is made based on the number
of positive cases. If there is a large number of positive cases, the location is marked as an outbreak
center. This indicates that there is a high prevalence of malaria in the area and that further action,
such as increased efforts to control the spread of the disease, may be necessary. On the other hand, if
there is just a single positive case, the person is isolated to prevent any further spread of the disease.
This is particularly important in the early stages of an outbreak, as swift action can help to prevent
the disease from spreading further. Overall, this system is designed to provide a fast and accurate
means of detecting and responding to cases of malaria, with the goal of reducing morbidity and
mortality rates associated with the disease.

Figures 6 and 7 show individual segments of information transmission in our system.
As we assume that most of the operating time of our device will not have Internet access,
we want to use every chance to supplement the database with new entries. Therefore,
we start one by one with the sample that is examined by our device based on our neural
network which gives as an output an estimate of the probability of abstraction classes. At
this point, depending on whether the device has the ability to connect to the Internet, it
sends the data, but if it works independently, the process ends. Data are sent to be analyzed
by specialists and then labeled. The tagged data are sent to the general database where we
teach new generations of neural networks. Ultimately, if a network performs better than
the one installed on the devices, it is released as an update.
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Figure 6. In the diagram above, we can see the data transfer in our device. When Internet access is
difficult, the device switches to independent operation, which is marked in the diagram with a violet
outline. If the connection is possible, the device forwards the data to enable augmentation of data
used to learn the next generation of the neural network.

Figure 7. The pictures above are a graphical representations of a user use of our system. It is enough for
the appropriate person to take a sample from the patient and place it on laboratory glassware, and the
device will easily detect indications of malaria infection by using proposed deep learning scheme.
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10. Hardware

During this research, all computations were made on a PC with the specifications below:

• CPU: Ryzen Threadripper 2950X 16c/32t;
• RAM: 128GB;
• GPU: NVidia RTX 3090 24GB.

11. Results

The segmentation model achieves a 97.1% of per-pixel accuracy, while being light-
weight enough to be rapidly run on less powerful devices during the image evaluation.
On the testing hardware, the evaluation time per image is around 22 ms with the resolution
of 300 × 300 but the times may vary between devices. Training plots can be seen in Figure 8.
As the per-pixel accuracy is not needed in practical situations, the final accuracy has been
computed using Algorithm 2 and reaches a 99.68% accuracy. The presented method creates
bounding boxes on top of the segmentation mask to count all cells separately and compares
results with real data provided in JSON file with the dataset. In this way, the doctor is given
not only a clean mask image but also the numerical data for faster diagnosis. Comparison
of the presented model with other state-of-the-art papers can be seen in Table 1.

(a) Accuracy plot during training. (b) Loss plot during training.

Figure 8. Two plots above show the performance of a deep learning model on a training and
validation dataset during the training process. The plots show both accuracy and loss metrics, which
are common measures of a model’s performance. The accuracy plot shows how accurately the model
is able to classify the images in the training and validation datasets as it is trained. As the model
is trained, the accuracy on both the training and validation datasets is expected to slowly increase,
indicating that the model is learning to classify the images more accurately. Eventually, the accuracy
may reach a point of overfitting, where the model is able to classify the training data with high
accuracy but is no longer able to generalize well to new, unseen data. This is typically indicated by a
decrease in accuracy on the validation dataset. In the end, the model reaches a per-pixel accuracy of
over 99%. The loss plot shows the error of the model as it is trained. As the model learns to classify
the images more accurately, the loss should decrease, indicating that the model is making fewer
errors. Overall, the provided deep learning model is performing well on the training and validation
datasets, steadily increasing accuracy and decreasing loss as it is trained.
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Table 1. Comparison table with other solutions.

Article Type Year Accuracy

Ours Seg-Sem CNN 2022 99.68%
Divyansh et al. [48] CNN 2020 95.7%

Razin et al. [49] YOLOv5 CNN 2022 96.21%
Alqudah et al. [50] Lightweight CNN 2020 98.85%

Quan et al. [51] ADCN 2020 97.47%
Turuk et al. [52] Integrated CNN 2022 93.89%
Shekar et al. [53] Fine-Tuned CNN 2020 95.99%

Rahman et al. [54] TL-VGG16 2019 97.77%
Loh et al. [55] Mask R-CNN 2021 94.57%

Sağlam et al. [56] FPGA CNN 2019 94.7%

Visualization

The system initially outputs the data in the form of a two-dimensional mask with
sparse representation of classes using integer values. Such data are optimal for being stored
and analyzed by the computer; however, it presents little value for the non-technical user
and requires further processing to create an informative image. Due to that, in order to make
it readable, the mask has been expanded by three additional color channels and integer
values from the [0, 2] range and has been mapped to orange, green, and blue channels,
where green is the background, orange is the healthy cells, and blue is the infected cells.
Such prepared mask is presented next to the original image for fast and easy validation by
the user. The results are shown in Figures 9 and 10.

Algorithm 2 Cells counting algorithm.

1: Calculate Segmentation Masks,
2: for each cell’s pixel cluster inside result mask do
3: cluster all neighbouring pixels with same value,
4: compute bounding box,
5: Step = Step + 1,
6: end for
7: Sum all healthy cells as β,
8: Sum all infected cells as γ,
9: Compute accuracy using β and γ compared to real count values from JSON file com-

bined with the original dataset,
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Figure 9. The original samples of the dataset are shown in the first row of the figure. The second
and third columns show different types of masks, which are used to highlight certain features or
characteristics in the images. The purpose of this evaluation is to assess the performance of the neural
network in relation to the original masks. By comparing the output of the neural network with the
original masks, it is possible to see how accurately the network is able to identify and classify the
different types of cells in the samples. This information can be used to fine-tune the network and
improve its performance for future analysis.
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Figure 10. Sample result image presents how the systems returns results of classification. Input
image is transformed into artificial background over which two types of blood cells are marked:
healthy cells in regular features and malaria ones visible in irregular shapes and marked colors for
better visibility.

12. Conclusions

This paper presents a novel solution for rapid malaria detection using a custom
semantic segmentation neural network. The model’s raw output is further processed and
presented in an easy to understand and clear way, which allows for fast diagnosis and
visual validation. The presented solution is able to improve the detection rate and time
performance by providing additional information to the microscopy image, helping the
doctor performing the evaluation to spot and analyze potential threats. After 1000 epochs
of training, the network achieved a high per-pixel accuracy of 97.1% and a 99.68% accuracy
for detecting a potential threat without the ideal border classification on testing data.
The additional advantages of such system is high persistence even after hours of constant
work, which is impossible for a human specialist, almost instant classification of the entire
frame, and low cost of usage compared to the doctor.

13. Future Possibilities

In future works, there are many possibilities for the improvement of the presented
system. Such as extension of the current dataset by additional images with adequate
masks, which can rise the accuracy of the model even more, especially in more difficult
situations, as well as extend the network’s knowledge about the exact shape of the infected
cells regardless of the conditions. Secondly, the model’s architecture could be enhanced
with more parameters fitting based on current knowledge and experience as well as
future research, and thus the system could be better optimized in terms of time and
detection performance. Another option is to extend the current model to all labeled abstract
classes and distinguish the infected cells by the malaria development phase. Finally,
more experiments could be performed with image augmentation to artificially enlarge the
amount of data and possibly reduce classes imbalance for a better detection of infected
cells. The use of PCR could be considered; however, more tests need to be performed.
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