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Abstract: With the development of wireless technology, signals propagating in space are easy to
mix, so blind detection of communication signals has become a very practical and challenging
problem. In this paper, we propose a blind detection method for broadband signals based on a
weighted bi-directional feature pyramid network (BiFPN). The method can quickly perform detection
and automatic modulation identification (AMC) on time-domain aliased signals in broadband data.
Firstly, the method performs a time-frequency analysis on the received signals and extracts the
normalized time-frequency images and the corresponding labels by short-time Fourier transform
(STFT). Secondly, we build a target detection model based on YOLOv5 for time-domain mixed
signals in broadband data and learn the features of the time-frequency distribution image dataset of
broadband signals, which achieves the purpose of training the model. The main improvements of the
algorithm are as follows: (1) a weighted bi-directional feature pyramid network is used to achieve
a simple and fast multi-scale feature fusion approach to improve the detection probability; (2) the
Efficient-Intersection over Union (EIOU) loss function is introduced to achieve high accuracy signal
detection in a low Signal-Noise Ratio (SNR) environment. Finally, the time-frequency images are
detected by an improved deep network model to complete the blind detection of time-domain mixed
signals. The simulation results show that the method can effectively detect the continuous and burst
signals in the broadband communication signal data and identify their modulation types.

Keywords: BiFPN; signal blind detection; automatic modulation identification; short-time Fourier
transform; EIOU

1. Introduction

With the rapid development of communication technologies such as 5th generation
mobile networks (5G) and satellite communications, the electromagnetic spectrum, and
space have become very crowded and complex due to the increasing number of different
radiation sources and advanced waveforms in modern society. This has resulted in the
situation that signal processing systems may be affected by multiple intentional or unin-
tentional interfering signals injected simultaneously into their receivers [1]. Therefore, the
safe use and effective control of the electromagnetic spectrum have become a priority task
for radio monitoring [2]. In the cognitive radio (CR) communication system, the signal
blind detection technology can achieve the accurate discovery, information restoration,
and user identity adjudication of illegal authorized users, and further conduct location
monitoring, spectrum suppression, and investigation and forensics to protect the safe use
of radio spectrum resources by legitimate users, which is of great practical importance. In
this paper, the main goal of blind detection of communication signals is the detection and
preliminary automatic modulation identification (AMC) of communication signals under
blind information conditions (i.e., reception of non-cooperating party signals) [3–6].

Normally, many broadband signal detection algorithms in previous studies have
been based on energy detection (ED) [7]. In 1967, Ulkowitz [8] first investigated how
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to detect unknown deterministic signals. That is, the energy distribution is modeled
as a variable non-central basis distribution random, and the threshold for determining
the detection is determined by the degrees of freedom of this basis distribution and the
non-central parameters. Ma et al. addressed the cognitive radio spectrum perception
problem by constructing a matched filter detector using sub-user signal sequences and an
energy detector using primary user signal energy and fused the results of both detectors
for verdict detection, effectively mitigating the impact of sub-user out-of-connection on
spectrum perception [9]. When using the spectrum-based energy detection method, simple
parameters such as the number of signals, carrier frequency, and signal bandwidth can be
roughly obtained. However, it is still difficult to accurately obtain the signal’s moment of
appearance, modulation type, and other relevant parameters [2,10].

Deep learning (DL) techniques, developed in recent years, provide new ideas for blind
detection and identification of communication signals in complex environments [11]. Some
existing studies have obtained good results on AMC tasks by transforming signals into time-
frequency images and then inputting them into classifiers built by neural networks [12,13].
Che et al. proposed a spatial-temporal hybrid feature extraction network for AMC, which
maps wireless communication signals into spatial feature space and temporal feature
space, respectively, to improve the effectiveness in the few-sample AMC task [5]. After
the development in recent years, AMC techniques based on deep learning have become
mature [12,14]. In 2020, the Cascaded Human-Object Interaction Recognition [15] proposed
by Zhou et al. effectively improved the quality of the target detection model. In ref. [3],
Cha et al. first introduced deep learning methods into a multi-signal detection task. Based
on the Single Shot MultiBox Detector (SSD) target detection method [16,17], the papers
performed blind detection and modulation identification on broadband signals using time-
frequency images and constellation images as input of the neural network. Based on this,
Dr. Rundong Li proposed an improved target detection network based on You Only Look
Once version 3 (YOLOv3) to further improve the performance of deep learning methods
in signal blind detection tasks and demonstrated that the You Only Look Once (YOLO),
series of methods [18–20] outperformed Faster Region Convolutional Neural Network
(FRCNN) [21,22] and traditional energy detection methods [7,10] on this task.

In summary, among the existing blind detection methods for communication signals,
the speed of energy-based detection is fast, but its robustness is poor and is affected by
noise and fading. On the other hand, depth-based methods are now gradually attracting the
research interest of scholars and are still in their infancy, without many published research
results, and there is still room for improvement in detection accuracy [10]. Moreover, the
existing deep learning-based signal blind detection methods do not achieve good results
for testing under low Signal-Noise Ratio (SNR) conditions. This is mainly because, with
the addition of complex fading channel conditions and non-smooth undulating noise
environments, the signals received at the receiver side are subject to complex and diverse
interference. Furthermore, the direct application of existing deep neural network models to
signal sequences or their feature maps does not guarantee their robustness. Based on the
deep learning methods that have been proven to perform best for the signal blind detection
task, this paper will improve the deep learning methods used for signal blind detection in
terms of comprehensive performance and especially low signal-to-noise ratio.

In this paper, we discuss the problem of blind detection and modulation identification
on broadband communication signals based on deep learning. Based on previous research,
this paper proposes a blind detection method for wideband signals based on BiFPN and
Efficient-Intersection over Union (EIOU). The main contributions of our work are as follows.

(1) A system model for transmitting time-domain mixed signals in a non-cooperative
reception environment is developed, and the signals are analyzed at the receiver side by
short-time Fourier transform (STFT) for time-frequency analysis to extract the normalized
time-frequency images and the labels of the relative positions of each modulated signal in
the image.
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(2) A target detection model for time-domain mixed signals is built based on YOLOv5
to learn the features of the signal time-frequency distribution image dataset to train the
model. To the best of our knowledge, this paper introduces the YOLOv5 method improved
by BiFPN and EIOU to the field of signal blind detection for the first time.

(3) Based on the dataset generated in this paper, we validate the proposed method
through extensive experiments. The results show that the improved method outperforms
the existing methods in terms of comprehensive performance, especially under low SNR
conditions.

The rest of the paper is organized as follows. Section 2 introduces the signal model, the
dataset, and its automatic labeling method. Section 3 presents the structure of the relevant
algorithmic model and the description of the model improvement in this paper. Section 4
presents the dataset configuration, performance metrics, and comparative results of our
experiments. Finally, the conclusion and future work are given in Section 5.

2. Methods

In this paper, blind detection of broadband communication signals is formulated as
a deep learning-based target detection task, aiming to obtain the moment of occurrence,
modulation type, and other relevant parameters of each constituent signal in the composite
signal. The workflow is shown in Figure 1. Next, in this paper, our signal model and
algorithm flow are presented in parts according to the indications of the dashed boxes in
the flow block diagram.
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Figure 1. Deep learning method workflow block diagram.

The signal detection framework is shown in Figure 2, where a single receiver receives
communication signals from multiple non-cooperative transmitters. Next, the received
signal sequences are integrated into a matrix with a time-domain superposition between
individual signal sequences. Then, STFT is applied to the integrated signal matrix to extract
its time-frequency features, and a series of images that can be judged by vision is obtained
through normalization. After that, the series of images are made into data sets and input
into the target detection algorithm (DL method) proposed in this paper for training. Finally,
a model that can detect relevant parameters can be obtained.
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2.1. System Model

According to the first half of the frame shown in Figure 2 (the first three steps), we
perform signal modeling. The communication process of a general wireless communication
system can be represented as

r0(t) = s(t)h(t) + n(t) (1)

where r0(t) is the signal received at the receiver; s(t) is the modulated signal transmitted
at the transmitter; h(t) is the channel response, and n(t) is the additive Gaussian white
noise at the receiver and in the channel with a mean of 0 and a variance of δ2. We assume
that the receiver detects transmitter signals consisting of n modulation types and treats
these signals as time-domain mixed signals. At this point, the communication process is
expressed as

r(t) =
k

∑
i=1

si(t)hi(t) + n(t) (k = 1, 2, . . . , Ns) (2)

where r(t) denotes the mixed signal detected and received by the receiver in the time
domain detection process, sihi(t) denotes the ith target signal, the number of modulation
types of radiation source signals that can be received by the receiver during operation is
denoted by k, and the number of all possible signal modulation types in the target source is
denoted by Ns. We assume that each target signal contains only one modulation parameter.

2.2. Feature Extraction

STFT essentially uses a sliding window symmetric about the center to observe the
signal inside the window and obtains the spectrum of that time slot by performing Fourier
transform on the signal inside the window. Finally, the time-frequency image of the target
signal is obtained by stitching. The operation steps on the received signal r(t) are as follows:
First, the window function is moved to the initial position of the signal. The center of the
window function is τ0, and the signal in the window is represented as

y(t) = r(t)w(t− τ0) (3)

where w(t) is the window function and r(t) is the source signal y(t). Then the Fourier
transform is performed, and the spectral distribution of the first segmented sequence R(w)
is obtained as

R(w) = F(y(t)) =
∫ +∞

−∞
r(t)w(t− τ0)e−jwtdt (4)

The window function is moved to τ after the first Fast Fourier Transform (FFT) opera-
tion, where the distance it is moved is called the bounce size. During the shift, a certain
overlap between the two windows should be ensured, i.e., the width of the window should
be larger than the distance moved, which is called “overlap”. The STFT of the signal is
obtained by continuously sliding the window and repeating the above operation.

STFT(w, τ) = F(r(t)w(t− τ)) =
∫ +∞

−∞
r(t)w(t− τ)e−jwtdt (5)

In this paper, according to our experience. We set the window length to 1024. The
window type is Hamming window. Each step length is 1.

In addition, in order to avoid the bias of feature quantities because of the difference
in input signal power, the magnitude of the short-time Fourier time-frequency image is
normalized.

As shown in Figure 3, the horizontal coordinate of the image on (a) is time, and
the vertical coordinate is frequency; the horizontal coordinate of the image on (b) is the
frequency, and the vertical coordinate is time. According to the different RGB values of
each pixel, it can reflect the energy contained in the corresponding time and frequency of
this pixel. Compared with previous images, the normalized image can make energy easier
to locate and identify its features through vision. The time-frequency distribution image is
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resized to 875 × 656 × 3 and then passed to the subsequent model for target detection (875
× 656 denotes the length × width format of the image, and 3 denotes the number of RGB
channels).
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2.3. Dataset Generation and Automatic Annotation

By the above method, we extract the individual signals at the receiving end for time-
domain superposition, record the time and frequency parameters of each signal at the time
of superposition, synthesize the composite signal with time-domain superposition, and
then perform STFT transformation to obtain its two-dimensional time-frequency image.
Based on the previously recorded time, center moment, and frequency parameters, we map
them to the two-dimensional time-frequency image to obtain the coordinate information of
the real prediction frame of each signal in the graph and then perform automatic labeling
of the data.

The block diagram of the procedure for dataset generation and automatic labeling
is shown in Figure 4. It is worth mentioning that we simulate Rayleigh fading channels
utilizing Zheng’s model [23]. Regarding the simulation of this model, all experiments in
this paper use parameters with a superimposed sine wave number of 4 and a maximum
Doppler shift of 100 Hz. By this method, we can simplify the dataset acquisition procedure
and improve the efficiency of dataset acquisition without reducing the data validity.
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3. Deep Learning-Based Target Detection

Currently, deep learning is the most common and efficient means to solve the target
detection problem. The existing target detection methods are divided into two main
categories: two-stage and single-stage [24]. The two-stage method is a deep convolutional
network based on candidate regions. Possible candidate blocks containing the detection
target are first generated, and then the candidate blocks are classified and corrected to
obtain detection frames for target detection. The common algorithms are RCNN (Region
CNN) [25] and others. These methods have a high detection accuracy but a low detection
speed. Single-stage methods are target detection based on deep convolutional networks
with regression computation using end-to-end target detection methods such as YOLO
series [18–20] and so on. These methods have faster detection speeds and can meet real-time
requirements. Considering the detection efficiency, we prefer the single-stage model to
complete the signal-blind detection task. With the progress of recent research advances, the
single-stage YOLO series methods can even achieve higher performance than the two-stage
RCNNs for some tasks [10]. Therefore, the YOLO series of target detection models are very
suitable for us.
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In this part, based on the standard YOLOv5 network structure, we propose a method
to improve the target detection model using a weighted BiFPN in order to achieve simple
and fast multi-scale feature fusion and introduce the EIOU loss function to achieve higher
accuracy signal detection.

3.1. Basic YOLOv5 Network Overview

YOLOv5 is a single-stage target detection network proposed by Ultralytics LLC. As
the most mature and stable target detection network in the YOLO series at present, it is
the product of improvements based on YOLOv4 and YOLOv3 [18–20]. After learning the
advantages of the previous versions and other networks, YOLOv5 changes the previous
YOLO target detection algorithm’s characteristics, i.e., faster detection but not high accuracy.
This network improves detection accuracy and real-time performance, which not only
meets the need for real-time image detection but also has a smaller structure. Therefore, in
this paper, we use the standard YOLOv5 as the target detection model, and the network
structure is shown in Figure 5 [20], whose network model is divided into four parts: input,
backbone, neck, and prediction head.
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Firstly, the collated dataset images are input to the network after preprocessing op-
erations such as data enhancement and scaling. Then, the focus module downsampling,
CSP structure, and SPP pooling layer are used to extract the image features and com-
pose the main part. The focus module can segment the input image into four parts to
piece together a 12-dimensional image with features and obtain 3 × 3 feature information
from it to generate a 32-dimensional image that contains feature information. The focus
module downsampling has the advantage of preserving image information and reducing
computation, and its use can improve the overall training speed. The structure of CBL
consists of a convolution (Conv) layer and a batch normalization (BN) layer, while the
signal is passed to the activation function layer. The Conv module in SPP has the advantage
of achieving a reduced number of input feature maps. By using the Conv module, the
maximum set of subsamples can be covered in the case where there are three different
convolution kernels, and the results are stitched to the input feature maps by channel.
YOLOv5 has the advantage of implementing SPP by using convolution kernels of the same
step size. Therefore, although the feature maps obtained by this network are of the same
size, the regional sensitivities vary, and the features are also fused. Thirdly, the neck part
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uses the structure of a Path Aggregation Network (PANet) combined with Feature Pyramid
Networks (FPN) as the feature aggregation layer of the whole network architecture, and the
function of this part is to obtain the multi-scale information of the image. Finally, we use
three loss functions to form the prediction head part as a way to calculate feature classifica-
tion, feature localization, and confidence loss and to make accurate network predictions by
non-maximal rejection (NMS). The output of the algorithm consists of a vector of prediction
frame categories, confidence levels, and coordinate positions. This network structure is
used as a basis for improving the characteristics of the signal blind detection task in this
paper.

3.2. Improved Neck Network

The weighted BiFPN is an efficient neck network structure proposed by Tan et al. in
EffificientDet, a single-stage target detection model [26]. The network, which also belongs
to convolutional neural networks, introduces learnable weights to learn the importance of
different scale features extracted from an efficient backbone network and iteratively uses
top-down and bottom-up sampling methods to fuse multi-scale features. Then, the fused
features are fed into the class prediction network and box prediction network for detection.
Finally, we note that the performance of the network improves with increasing network
depth based on the superposition of BiFPN. The structure is as follows.

As shown in Figure 6, compared with the PANet structure, the BiFPN base block
structure contains not only horizontal connections from left to right and vertical connections
from top to bottom and bottom to top, but also there are cross-scale connections. In this
way, we can extract more features at different levels for fusion so that we can have attention
to the whole situation and will not easily miss any information. Moreover, BiFPN blocks
can be stacked as many times as needed. BiFPN blocks can be represented as

PiPi+1 . . . Pi+n = f (CiCi+1 . . . Ci+n) (6)

where n is the number of features used for feature fusion, C is the input features of a layer,
P is the output features of a layer, and f is a function of the feature fusion process.
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Based on the above, we change the neck network of standard YOLOv5 from the
original PANet to a weighted BiFPN. The improvement of the network structure is shown
in Figure 7. The neck network structure of YOLOv5 is mainly responsible for feature
extraction and fusion and introduces learnable weights by accessing the BiFPN module to
learn from the efficient backbone features extracted from the network at different scales.
Then, repeatedly employing top-down and bottom-up sampling methods to fuse multi-
scale features, thus enhancing the fusion of features. That is, introducing BiFPN can help
us focus on the big picture and not miss any information. In the time-frequency images
generated by the system modeling in this paper, most of the signals to be detected are
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rectangular and strip-shaped. Due to the aliasing of continuous signals and burst signals in
the time domain, each target signal to be detected in the figure globally is more relevant, so
we think this improvement is helpful for our task.
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3.3. Improved Loss Function

The standard Intersection over Union (IOU) loss function is shown in Equation (7)
below when the prediction frame A does not intersect with the real frame B, i.e., A ∩ B = Ø
when the loss function has no gradient. In addition, the IOU may be different when the
prediction frame and the real frame have the same size, and the IOU loss function cannot
distinguish between these two cases.

IOU_Loss = 1− IOU = 1− A ∩ B
A ∪ B

(7)

In order to overcome the above problems, new IOU loss functions have been continu-
ously developed by researchers, and their development has resulted in Generalized-IOU
(GIOU), Distance-IOU (DIOU), Complete-IOU (CIOU) and Efficient-IOU (EIOU), which
are loss functions that can effectively improve the target detection performance [27–30].
Among them, EIOU is the current relatively advantageous one, which is developed based
on DIOU and CIOU. The formulas of DIOU and CIOU loss functions are as follows.

DIOU_Loss = 1− (IOU− ρ2(b, bgt)

c2 ) (8)

CIOU_Loss = 1− (IOU− ρ2(b, bgt)

c2 − αγ) (9)

where, α = γ
1−IOU+γ , γ = 4

π2 (arctan wgt

hgt − arctan w
h )

2
, b and bgt respectively are the middle

points of the prediction box and the real box; w and wgt respectively are the width of the
prediction box and the real box; h and hgt respectively are the height of the prediction
box and the real box; ρ is the Euclidean distance between the two middle points; c is the
diagonal distance of the best that can include the prediction and real box.
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As shown in Equation (10) below, EIOU takes into account not only the centroid
distance and aspect ratio but also the real differences in width and height of the target and
anchor boxes. The EIOU loss function directly minimizes these differences and accelerates
the convergence of the model.

EIOU_Loss = 1− (IOU− ρ2(b, bgt)

c2 − ρ2(w, wgt)

c2
w

− ρ2(h, hgt)

c2
h

) (10)

When the SNR is too low, the overall texture of the time-frequency image becomes
blurred, and the detection frame obtained by the target detection model for the signals with
the time-domain aliasing relationship with each other is more prone to false detection or
omission of detection. In Section 3.2, we describe the method to enhance the neck network
by replacing the PANet module with a BiFPN module. The introduction of the BiFPN
module allows the original model to discover more features, thereby adding more candidate
sample frames. However, this improvement increases the number of correctly detected
sample frames but also increases the number of false detections or missed detections.
Compared with the previous CIOU loss function, the EIOU loss function takes into account
the overlapping area, the distance between the center points, and the real difference in
length, width, and side length. Based on CIOU, the fuzzy definition of aspect ratio and
the problem of sample imbalance in bounding box regression are solved. Therefore, It is
believed that the introduction of the EIOU loss function can inhibit the increase in false
detection frames caused by the introduction of the BiFPN module to a certain extent.

3.4. Transfer Learning

For all the neural network models used in this paper, we use the transfer learning
approach. The neural network models used are pre-trained on the ImageNet dataset [31],
and the last fully connected layer of the network is changed from 1000 to 4 layers. The
network is initialized using pre-trained parameters and trained by fine-tuning the entire
network parameters with new data generated by the method in Section 2 to improve the
performance of the network on the desired task. All other networks are frozen, and all
network parameters are fine-tuned according to the pre-trained model parameters. The
transfer learning approach based on fine-tuning each layer of the network is shown in
Figure 8. A transfer learning approach based on fine-tuning entire layers of the network to
train a new dataset with weights that have been trained on ImageNet.
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4. Experiment

In this section, we first determine the parameters and experimental conditions of
the data set required for the experiment, secondly determine the experimental evaluation
metrics, and finally conduct model comparison experiments and analyze the results.
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4.1. Data set Configuration and Experimental Conditions
4.1.1. Training Dataset Parameters

Based on the signal modeling, data generation, and automatic labeling methods
mentioned in Section 2, the communication model is built by Matlab 2020b, and the
parameters of the two-dimensional time-frequency image data set for training are shown
in Table 1.

Table 1. Training dataset parameter setting.

Parameter Name Parameter Setting

Broadband data sampling rate 240 kSps
Time-frequency images horizontal coordinate

range (bandwidth range) 0–120 kHz

Time-frequency images vertical coordinate
range (time duration) 0–1 s

Time-frequency images size 875 × 656 × 3
Target signal duration 0.2–1 s

Number of target signals per image 2–8
Target signal modulation mode AM FM MFSK MPSK

Signal-to-noise ratio range 0–16dB

channel simulation conditions Rayleigh fading channel + Non-smooth
undulating noise

In the final training data set composition, we generate 20,000 time-frequency images,
of which 80% are divided into the training set and 20% into the validation set.

4.1.2. Test Data Parameters

The signal parameters of the independent test data are the same as those of the training
dataset but are not involved in training at all. The different parameters are mainly the
target SNR range of the test set. In the test set, SNR varies from 0 to 16 dB in 2dB steps.
From Figure 9. we can visualize the effect of SNR on the generated time-frequency diagram.
With the reduction in SNR, noise has more and more influence on the definition of a time-
frequency image, and it is more difficult to analyze the signal in the image through vision.
The number of time-frequency images in the test set is 1000 for each SNR condition.
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where Ti is the true signal duration, and Biw is the true signal bandwidth. 
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4.1.3. Inference Parameters at Training

For training, the time-frequency image is first scaled into a 640 × 640 image input to
the network, the maximum number of training cycles (epochs) is 100, the batch size of each
update is 16, and the SGD (Stochastic Gradient Descent) optimization algorithm [32] with
default parameters is used for training. In the experiments, the algorithm is trained and
tested using NVIDIA Titan V 12G, and the network model is implemented on PyTorch1.11.0
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framework using Python language. Other important environment configurations include
opencv4, CUDA 11.6, and Python 3.9.12.

4.2. Model Evaluation Indicators

In the analysis of the comparison of experimental results of signal detection, the
following three performance indicators [2] are mainly used in this paper.

1. Detection probability Pd: Pd is the ratio of the number of detected real signals to
the total number of actual signals. Let the total number of actual signals to be detected by
N and the number of detected target signals be detected by M, which can be expressed as
M=MT+MF, where the number of real signals is MT, and the number of false results with
no signal is M, then Pd = MF / N.

2. False alarm probability Pf: Pf is the ratio of the number of detected spurious signals
to the total number of detected signals, that is, Pf = MF / M.

3. The average error of signal parameters Eavg: Eavg is to count the frequency, band-
width, and burst start and end time parameters for all detected real signal targets: f i

c0, Bi
w0,

ti
s0, and ti

e0 with the corresponding real parameters: f i
c, Bi

w, ti
s, and ti

e, then the average
relative error between them is calculated by the formula (11).

Eavg =
1

4MT

MT

∑
i=1

(
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c − f i
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∣∣
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∣∣Bi

w − Bi
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w
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Ti +
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e − ti

e0

∣∣
Ti ) (11)

where Ti is the true signal duration, and Bi
w is the true signal bandwidth.

In experiments where the performance gap is obvious, we will directly use mean
Average Precision (mAP) [33] as the evaluation index, as shown in the following formula:

P(k) =
TP

TP + FP
× 100% (12)

R(k) =
TP

TP + FN
× 100% (13)

mAP =
1

Cs

N

∑
M=i

P(k)∆R(k) (14)

where TP is the number of correctly identified signal samples, FP is the number of incor-
rectly or unidentified signal samples, and FN is the number of incorrectly identified signal
sample targets. Cs is the number of categories of signal samples; M and N represent the
number of IOU thresholds and IOU thresholds; P(k) and R(k) is the precision and recall
rates.

4.3. Experiments and Results Analysis

The experiments were started according to the above configuration, and all networks
in the experimental process were subjected to transfer learning in combination with pre-
trained weight models according to the method introduced in Section 3.4. After testing,
this method can improve the training effect without increasing the training cost in the task
of this paper.

In the experiments, we tested the performance metrics under each SNR according to
the above dataset configuration and created a line graph with SNR as the horizontal coor-
dinate and specific performance metrics as the vertical coordinate for analysis. Figure 10
shows the output of different models for the same graph during the experiment, and it
can be easily seen that the improved model avoids some of the initial false detection cases.
More specifically, as indicated by the thick red rectangular box in the figure, the locations
where the test results change at different stages are shown here. In the detection result of
the Baseline model, there are three target boxes in the thick red box of the first image, and
one of the target boxes clearly overlaps the other target boxes. We can easily determine that
the extra overlapping target box is caused by wrong detection. The improved detection
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result leaves only two correct target boxes, which proves that our improvement is effective.
In addition, we also calculated the average value of each performance index between SNR
0 and 16 dB, as shown in Table 2.
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Table 2. Comparison of the average parameter indicators of the four methods.

Methods
Average SNR Performance between 0 and 16 dB

Pd Pf Eavg

Baseline 90.25% 9.87% 2.06%
Baseline + BiFPN 93.63% 11.31% 1.43%
Baseline + EIOU 93.21% 9.94% 1.42%

Baseline + BiFPN + EIOU 94.09% 9.79% 1.38%

The average performance of the four methods shows that the performance of the
proposed method in this paper is improved in all aspects, which proves the effectiveness of
the method.

Figure 11 shows the comparison of the detection probabilities obtained for the models
at different stages of this paper with different signal-to-noise ratios of the test set. As
shown in Figure 11, we compare the performance of the four neural network models under
different SNR conditions. Since the model with the best results in previous studies is
the YOLOv3 + CIOU model proposed in the article [10], and through our test, YOLOv5
performs better than YOLOv3 in this task. Therefore, we use the YOLOv5 + CIOU model
as our Baseline. Overall, the detection probability increases with the increase in signal-to-
noise ratio (SNR). The experimental results demonstrate that the improved model with
the added BiFPN and EIOU module can effectively improve the performance of target
detection, and the detection probability increases by about 3–4% in the range of SNR of
0-16 dB. The model improved by the EIOU loss function is also able to improve the target
detection performance, with a detection probability improvement of about 2–3% in the
range of 0–16 dB. Obviously, BiFPN is more efficient in terms of improvement of detection
probability compared to EIOU. Finally, by comparing the final model proposed in this paper
with the model improved by the Baseline + BiFPN module, we find that in the range of
SNR of 4–16 dB, there is no marked difference in the performance between the two models
in terms of detection probability, and the effects are considered to be same. However, in
the range of SNR of 0–4 dB, the final model proposed in this paper has significantly higher
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performance with an increase in detection probability of about 1–3%. Therefore, we can
conclude that the final model proposed in this paper has an overall improved performance
in detection probability compared to the baseline model and Baseline + EIOU model and
has higher robustness and improved performance in detection probability at low SNR
compared to the Baseline + BiFPN model.
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Figure 11. Experimental results of detection probability under different signal-to-noise ratios.

Figure 12 shows the comparison of the false alarm probability (a) and the average
error of the signal parameters (b) obtained for the models at different stages of this paper
with different signal-to-noise ratios of the test set. Similar to Figure 11, we also compare
the performance of the four neural network models at different stages. First, we can find
that the false alarm probability and the average error of signal parameters decrease as the
SNR increases. Then, in the comparison of the false alarm probability, the Baseline + BiFPN
module has the highest, which proves to be the worst performance in this regard. This
shows that although the detection probability is improved by adding the BiFPN module, the
false alarm probability also increases. Moreover, the Baseline + EIOU model clearly causes
a lower false alarm probability than the Baseline + BiFPN model. The addition of EIOU
effectively reduces the false alarm probability in the low SNR case, as well demonstrated in
Figure 12. Therefore, the suppression of false alarm probability by EIOU is evident, and we
proceeded to analyze the results of the final BiFPN + EIOU improved model on this basis.
On average, the final method proposed in this paper has the lowest one, which proves to
be the best performance in this regard. In other words, the final method can improve the
increased false alarm probability with the addition of the BiFPN module and has excellent
performance. Finally, in the comparison of the average error of signal parameters, we find
that the final method proposed in this paper is the lowest and the baseline method is the
highest. The BiFPN improved model and the EIOU improved model are in the middle of
this performance, and the data for both are very similar, leading to almost overlapping
curves. Compared with the baseline method, the final method proposed in this paper
shows the greatest improvement at 0 dB, with a reduction in about 1%. In the range of SNR
of 0-16dB, the average error of signal parameters is reduced by about 1–0.25%, which can
prove its excellent performance.
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Finally, we conducted comparison experiments among the proposed method with the
FRCNN method to demonstrate that our model still has advantages in the face of two-stage
target detection models. The results are shown in Table 3. It is worth mentioning that due
to the large arithmetic power required by FRCNN, we generated an additional training set
consisting of 2000 time-frequency images, and the other parameters of the dataset are kept
consistent. In the experiments, the FRCNN and our method used the same training dataset.
With the assurance of model convergence, we used mAP to measure the effectiveness of
the model. Because of the huge disparity in mAP, we did not evaluate these two models
with other metrics anymore. In addition, we also tested the mAP of the SSD model [18]
and compared its results with the results of the model proposed in this paper.

Table 3. Comparison of the mAP of YOLOv5 and other methods.

Methods YOLOv5 + BiFPN + EIOU SSD FRCNN

mAP 92.46% 84.11% 77.10%

Obviously, by comparing the performance of mAP with SSD and FRCNN, we conclude
that our model works much better than FRCNN and SSD.

5. Conclusions

According to the application scenarios of signal blind detection, we first propose
a high-performance target detection model combined with STFT time-frequency image
feature extraction to test the effect of different SNRs on target detection in a Rayleigh fading
channel + Non-smooth undulating noise environment. Subsequently, we improved the
YOLOv5 model, which combines BiFPN and EIOU to accomplish the target detection task
for signal blind detection of STFT time-frequency images. According to the requirements
of practical applications, we detect four modulation types, AM, FM, MFSK, and MPSK,
and then compare the performance of these four types of detection with that of the baseline
model detection to check the differences between the improved model and the original
model. Finally, through comparative experimental studies, we demonstrate the superiority
of our model. Therefore, we strongly believe that this important area will be a fruitful
research direction, but we have just touched the tip of the iceberg. We have provided a
novel strategy to process signals and hope to attract some attention from the relevant area.

In our future work, we will consider blind detection on broadband communication
signals in more complex environments, such as Multiple Input Multiple Output (MIMO)
communication systems [34,35]. We will consider model compression and acceleration us-
ing the Filter Pruning via Geometric Median (FPGM) algorithm and TensorRT framework.
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