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Abstract: Leaks from pipes and valves are a reputational issue in industry. Maintenance of pipeline
integrity is becoming a growing challenge due to the serious socioeconomic consequences. This paper
presents a secondary phase transform (PHAT) cross-correlation method to improve the performance
of the acoustic methods based on cross-correlation for pipeline leakage detection. Acoustic emission
signals generated by pipe leakage are first captured by the sensors at different locations, and are
subsequently analyzed using the cross-correlation curve to determine whether leakage is occurring.
When leakage occurs, time delay estimation (TDE) is further carried out by peak search in the cross-
correlation curve between the two sensor signals. In the analysis, the proposed method calculates
the secondary cross-correlation function before the PHAT operation. A sinc interpolation method is
then introduced for automatic searching the peak value of the cross-correlation curve. Numerical
simulations and experimental results confirm the improved performance of the proposed method for
noise suppression and accurate TDE compared to the basic cross-correlation method, which may be
beneficial in engineering applications.

Keywords: acoustic emission; leak detection; cross-correlation; phase transform; time delay estimation

1. Introduction

Maintaining the reliability and integrity of pipeline networks is becoming an increas-
ingly critical challenge in industry. A large number of pipes and valves exist in power
plants for the transport of liquids and gases, and delays in detecting and repairing the
damaged pipe sections can result in significant financial loss and hazardous situations. In
long-term service, the pipeline networks are constantly affected by high temperature, high
pressure, corrosion and damage, all of which makes them susceptible to leakage. Leakage
detection is crucially important for a company when making asset management decisions
and maintaining the resilience of the pipeline system. In recent decades, much attention
has been paid to targeting leakage effectively and efficiently in academic and industrial
communities [1–3].

Traditionally, leak detection surveys are conducted manually, for example, by listening
to the sound of leaks and applying soap bubbles to suspicious locations. These methods
have low inspection efficiency. In recent years, rapid progress in leakage detection meth-
ods have been made, including the mass balance method, flow model method, infrared
thermography, optical fiber method and acoustic method [4–10]. These methods have their
own advantages and disadvantages in terms of detection accuracy, efficiency, installation
mode and cost.

For the mass balance method, monitoring the quantity of the fluid flowing through
the inlet and outlet of the pipeline may be undertaken to determine whether leakage is
occurring [11]. The principle of this method is relatively straightforward at the expense
of its efficacy and reliability, because the change caused by a suspected leak can only be
reflected after a period of time, especially for small flow leakage. Furthermore, more
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variables and parameters, such as fluid viscosity, pipe resistance, etc. need to be taken
into account in the flow model. As such, a real-time flow model of the pipeline can be
developed, which yields more reliable results compared to the mass balance method.
Infrared thermography is mainly suitable and successful for leakage detection in pipe
networks with obvious temperature characteristics, such as heating pipes [12]. Due to high
temperature resolution, it has proven to be sensitive to small temperature differences and
hence effective for detecting small leakages, which greatly improves the applicability of
the method. More recently, optical fiber sensing technology has been developed for the
detection of the temperature changes, vibration and strain caused by leakage in the pipe
system [13]. To date, the optical fiber method has shown great promise due to its detection
accuracy and efficacy. However, there are certain difficulties in installation for the pipelines
buried under the soil or with wrapping materials.

Acoustic methods are commonly used for leakage detection due to the reliability, low
cost and easy installation, including the traditional listening method, the negative pressure
wave method and the acoustic emission method [14–16]. In principle, when leakage occurs,
acoustic signals are generated in the vicinity of the leak, which are often seen as acoustic
emission signals. The acoustic energy is transmitted in the pipe system in a variety of
modes in broadband frequencies, which can be measured by acoustic and vibration sensors.
Correspondingly, the leakage can be detected and located by analyzing the transmitted
signals that carry the information of leak sources [17].

Acoustic emission based on cross-correlation is robust and widely used for pipeline
leakage detection. The basic cross-correlation (BCC) process suffers from essential draw-
backs, i.e., although this method is generally effective for white noise, the detection per-
formance suffers to some degree for other-colored noise. To overcome this problem, an
appropriate windowing or frequency weight function is introduced in the generalized cross-
correlation (GCC) methods to pre-whiten the measured signals before cross-correlation.
Nevertheless, the performance of the GCC methods varies in leak detection surveys due
to the uncertainties in the practical engineering environments. Of particular interest is
the phase transform (PHAT) cross-correlation, which uses only the phase information
directly related to the difference between the arrival times of the leak noise at the sen-
sors locations [18,19]. This method has proven to be effective for leak detection in a high
signal-to-noise (SNR) environment. Otherwise, the detection accuracy suffers, in that the
effects of background noise are neglected in the pre-whitening process. In recent years,
some new time delay estimation (TDE) algorithms have been proposed. Ji et al. proposed
a PHAT-β GCC algorithm by changing the exponential regulator β of the pre-whitening
weight function in the 3D localization of transformer patrol robot [20]. Cui et al. proposed
a variable step normalized LMS adaptive filter for leak localization in water-filled plastic
pipes [21]. The algorithm transforms the TDE into the parameter estimation of the filter
with advantages of variable step iterative learning. Alternative signal processing processes
have been attempted to improve the leak detection accuracy [22–26], such as wavelet analy-
sis, empirical model decomposition, neural network and deep learning methods. Whilst
the advantages of these processes are immediately apparent, they also bring additional
problems, such as large number of detection samples, long training time and complex
calculated model.

In this paper, a secondary phase transform (PHAT) cross-correlation method is pro-
posed to accentuate the information directly related to leakage. The method can suppress
effectively the interfering effects of background noise by calculating the secondary cross-
correlation function before the PHAT operation. Additionally, a sinc interpolation method is
introduced for automatic searching the peak value of the secondary PHAT cross-correlation
function. This can further improve the TDE accuracy since the error caused in the selection
of the maximum value is significantly reduced. The remainder of this paper is as follows.
In Section 2, the background of pipeline leakage detection is briefly discussed, followed by
a detailed description of the proposed secondary phase transform (PHAT) cross-correlation.
In Section 3 a numerical model is described, and some results are presented to show the
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detectability of the method for pipeline leakage detection. In Section 4 experimental work
is carried out to verify the effectiveness of the proposed method in comparison with the
BCC. Finally, conclusions are drawn in Section 5.

2. Methodology
2.1. Background of Pipeline Leak Detection

Figure 1 depicts the schematic diagram of the process of pipeline leak detection.
The pipeline leakage will cause the fluid to overflow under the action of pressure and
produce acoustic signals, which propagate along the pipeline upward and downstream.
Acoustic/vibration sensors are generally installed at the pipe fittings, for example values
and fire hydrants, to capture the transmitted leak signals.
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Figure 1. Schematic diagram of the process of pipeline leak detection.

Assume that the acoustic signals x1(t) and x2(t) received by sensor 1 and sensor 2 are
expressed as follows:

x1(t) =s(t)+n1(t)

x2(t) =s(t− D)+n2(t)
(1)

where s(t) and s(t−D) represent the propagating leakage signals that travel along the pipe
and are captured by sensors 1 and 2; the time delay D denotes the difference in the arrival
times of the corresponding leakage signals at the sensors’ locations; and n1(t) and n2(t)
denote the background noise at two sensor locations.

The BCC between the acoustic signals, x1(t) and x2(t), can be obtained by

R12(τ) = E[x1(t)x2(t− τ)]

= E{[s(t)+n1(t)][s(t− D− τ)+n2(t− τ)}
= Rss(τ − D) + Rsn2

(τ) + Rsn1(τ − D) + Rn1n2
(τ)

(2)

where R12( ) denotes the BCC algorithm; Rss( ) is the BCC function between leakage signals
s(t) and s(t−D); Rsn1( ) and Rsn2( ) are the BCC functions between the leakage signal s(t)
and background noise signals n1(t) and n2(t) respectively; and Rn1n2( ) is the BCC function
between background noise n1(t) and n2(t). Generally, for random white noise, leakage
signal and background noise signals are independent and uncorrelated with each other. In
this case, Rsn1( ), Rsn2( ) and Rn1n2( ) in Equation (1) are equal to 0.

The above analysis suggests that if there is no leakage in the pipeline, the acoustic
signals received by the two sensors are background noise, resulting in the cross-correlation
result being close to zero. In contrast, when leakage occurs in the pipeline, the acoustic
signals received by the two sensors include the additional transmitted leakage signals,
which leads to the correlation result being non-trivial. This is further demonstrated in the
simulations in the next section.

Applicable leak detection process involves two phases. When pipeline leakage is
initially identified, background noise may produce signals with characteristics similar to
leakage signals. Thus, it is critical to take accurate measurements to localize the exact
location of the leak. Equation (2) can be further simplified as

R12(τ) = E[s(t)s(t− D− τ)] = Rss(τ − D) (3)
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It is apparent that when τ − D = 0, the BCC function R12(τ) achieves the maximum
value. In this case, the time delay between the two leakage signals τ = D. The time delay D
is subsequently obtained by automatic searching the cross-correlation function R12(τ) for
its peak value by using the sinc-interpolation. This can avoid the error caused by manually
selecting the maximum value.

D = argmax[
T

∑
τ=1

R12(τ)Sinc(t− τ)] (4)

where argmax denotes the argument corresponding to the maximum value of the function;
T is the signal length and Sinc denotes the sinc-interpolation.

Referring to Figure 1, given that the distance between sensor 1 and sensor 2 is L, the
propagation wavespeed is v, and the time delay is D, the relative location from sensor 1 to
the leak source, x can be obtained by

x =
L− vD

2
(5)

In the BCC method, the time delay is estimated by searching the peak of the cross-
correlation function. This method has low computational complexity and is easy to be
programmed. Accurate TDE can be achieved provided that leakage signals and background
noise are uncorrelated with each other. However, when the uncorrelated assumption is
violated in actual leak detection surveys, the TDE obtained by the BCC method will be in
significant error due to the smearing effects on the main peak or even false peaks.

2.2. Secondary PHAT Cross-Correlation

In order to suppress the interfering effects of background noise, this paper proposes
a secondary PHAT generalized cross-correlation method. The process of the proposed
algorithm is shown in Figure 2, with detailed description as follows:

Step 1: calculate the auto-correlation function R11(τ) by performing auto-correlation
operation on sensor signal x1(t)

R11(τ) = E[x1(t)x1(t− τ)] = E{[s(t)+n1(t)][s(t− τ)+n1(t− τ)] (6)

Step 2: calculate the cross-correlation function R12(τ) by performing the cross-correlation
operation on sensor signals x1(t) and x2(t)

R12(τ) = E[x1(t)x2(t− τ)] = E{[s(t)+n1(t)][s(t−D− τ)+n2(t− τ)] (7)

Step 3: calculate the secondary cross-correlation function RRR(τ) by performing cross-
correlation operation on the above auto-correlation function R11(τ) and cross-correlation
function R12(τ)

RRR(τ) = E[R11(t)R12(t− τ)] = E{[Rss(t) + Rsn1(t) + Rn1s(t) + Rn1n1(t)] (8)

Step 4: the phase transform operation is used to weight the cross-power spectral
density of RRR(τ) in the frequency domain. Finally, the secondary PHAT cross-correlation
function, RS-PHAT(τ), is obtained by performing the inverse Fourier transform

RS-PHAT(τ) =
∫ ∞

−∞
GRR(ω)ϕ12(ω)e−jωτdω (9)

ϕ12(ω) =
1

|GRR(ω)| (10)

where ϕ12(ω) is the weighting function of the secondary PHAT cross-correlation in the
frequency domain.
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3. Simulations

Simulation results are presented for comparing the performance of the proposed sec-
ondary PHAT cross-correlation and the BCC method for leak identification and localization.

3.1. Leak Identification
3.1.1. Pipe without Leakage

In the simulation model, white noise is used to simulate the signals received by the
sensors when there is no leakage. Figure 3 plots the sensor signals in the time and frequency
domains. The BCC function between the two sensor signals is calculated and shown in
Figure 4. As can be seen from Figure 4, the BCC result value is very small. As anticipated
in Section 2, it confirms that no leakage is occurring in the pipeline.
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Figure 3. Simulated signals in the pipe without leakage: (a) in the time domain; (b) in the frequency domain.

3.1.2. Pipe with Leakage

When leakage occurs, the signals received by sensor 1 and sensor 2 are from the same
leakage point with different arrival times. For simplicity, in the analysis, the sensor signal 1
is set to be the delayed signal of sensor 2 with 10 sampling points. The time domain and
frequency domain characteristics of two sensor signals 1 and 2 are shown in Figure 5a,b,
respectively. The corresponding BCC function is plotted in Figure 6. As expected, a distinct
peak is found in the cross-correlation result. Further check of the BCC results for the pipes
with and without leakage shows the effectiveness of the cross-correlation method for pipe
leakage identification.
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3.2. Leak Localization

Evaluation of the performance of TDE using the BCC and the secondary PHAT cross-
correlation methods are performed under a high SNR (SNR = 10 dB) and a low SNR
(SNR = −10 dB). Figure 7 plots the TDE curves of the two methods. The oscillatory behavior
of the BCC result is obviously shown in Figure 7a,c, in particular, in the case of low SNR. As
shown in Figure 7c, the fluctuations in the curve lead to a series of local maxima. However,
these anomalous peaks are not generated by the leakage source; they are caused by noise
interference instead. If these pseudo-peaks are mistakenly selected, the error in TDE
will be significant. In contrast, the proposed secondary PHAT cross-correlation method
leads to more reliable results for both high and low SNRs with single pronounced peaks
corresponding to the actual time delay with some fluctuations in the magnitude being
less distinctive than expected. This is due to the reason that the proposed method has the
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ability to pre-whiten the autocorrelation and cross-correlation, thus effectively reducing
the interference effects of spurious peaks.

In order to better demonstrate the real peak corresponding to the actual time delay,
Figure 8 plots the local results marked by the red boxes in Figure 7. For the BCC, the
actual time delay is more discernible in Figure 8a, whereas it cannot be observed readily in
Figure 7c. The simulation results in this section confirm that the proposed secondary PHAT
cross-correlation method offers potential improvement for TDE over the BCC method.
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under SNR = 10 dB; (b) the secondary PHAT cross-correlation method under SNR = 10 dB; (c) the
BCC method under SNR = −10 dB; and (d) the secondary PHAT cross-correlation method under
SNR = −10 dB.
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4. Experiments
4.1. Experimental Setup

In order to evaluate the performance of the proposed method for pipeline leakage
detection, experimental results from a PE water pipe rig are discussed. Tests were carried
out at the leak detection facility built in the laboratory, as shown in Figure 9. The test pipe
section had a length of 6 m and the wall thickness of 5 mm. The inlet and outlet of the pipe
were, respectively, equipped with regulating valves. With reference to the figure, there was
a simulated leak nozzle in the middle of the pipe section. Two hydrophones were used
to capture the acoustic signals generated by the leak. The sensor model was a B&K 8103
hydrophone and the effective frequency range was 3 Hz–80 kHz. The distances between
sensors 1 and 2 and the leakage was 0.9 m and 0.1 m, respectively. The leak signals were
captured by using B&K PUSLE 3050 multi-channel signal acquisition instruments with a
sampling rate of 8192 Hz. Similar to the analysis in the simulations, measurements were
made in the cases of leak and no leak and in the pipe section.

The experimental procedures are briefly addressed as follows:
Step 1: Block the leak hole in the test pipe section to simulate the absence of leakage;
Step 2: Close the outlet valve and open the inlet valve of the test pipe section. Pressur-

ize the test pipe by filling it with water. When the pressure reaches 1 bar and is stable, the
sensors collect the acoustic signals in the pipe without leakage;

Step 3: Close the inlet valve and open the outlet valve of the test pipe section. Depres-
surize the test section. Then replace the nozzle with the leakage hole of 1 mm in diameter
to simulate the pipeline leakage;

Step 4: Close the outlet valve and open the inlet valve of the test pipe section. Pressur-
ize the test pipe by filling it with water. When the pressure reaches 1 bar and is stable, the
sensors collect the leakage signals in the pipe.

4.2. Results and Discussions

When no leakage occurs, the signals measured by sensors 1 and 2 are plotted in
Figure 10a,b in the time and frequency domains, respectively. In this circumstance, the
signals include mainly ambient and system noise. Similar trends are demonstrated in
Figure 10 for two sensor signals in both the time and frequency domains, indicating
background noise dominates in the measured data. The noise signals have amplitudes of
about 2.5 V, which is mainly concentrated at low frequencies below 50 Hz.
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Next the cross-correlation methods are adopted to determine whether there exists
leakage in the pipe section. Comparison of the BCC and the proposed secondary PHAT
cross-correlation results for TDE curves is shown in Figure 11. Clearly there are a series
of local peaks in the BCC results, as plotted in Figure 11a. In addition, these peak values
are considerably larger, indicating that pipe leakage is likely to occur. This is, however,
misleading, due to the fact that the BCC result is easily corrupted by the strong inference
of background noise. In comparison, the TDE curve given by the secondary PHAT cross-
correlation leads to very small result values in magnitude, which is close to 0 for the entire
time-history. This confirms that the proposed method is marginally affected by background
noise, and thereby can be adopted to monitor the pipe conditions more convincingly.
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Figure 11. The TDE curves for the test pipe without leakage: (a) the BCC method; and (b) the
secondary PHAT cross-correlation method.

In the case of pipe leakage, the sensor signals are plotted in Figure 12. Compared
to the signals without leakage plotted in Figure 10, the sensor signals have very different
characteristics in both the time and frequency domains. Besides, it can be seen from Figure 12
that the signal at sensor 2 has larger amplitude compared to that at sensor 1 due to the closer
distance relative to the leak source, and hence less attenuation. As shown in Figure 12b, most
of the frequency components of the sensor signals are mainly concentrated in the frequency
range up to 600 Hz. It must be noted that, similar to the case of no leakage, at lower frequencies
below 50 Hz, the measured signals are dominated by background noise.
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The cross-correlation methods are now applied to sensor signals for leak localization.
Comparison of the TDE curves of the BCC and the proposed secondary PHAT cross-
correlation are shown in Figure 13. Both methods are effective for leakage identification,
since the main peak values of the BCC and the proposed methods are significantly large,
confirming the presence of the pipe leakage.
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As demonstrated in the simulations, several spurious peaks are found in the BCC
results for test data as shown in Figure 13a. To better compare the TDE results, Figure 14
plots the local results marked by the red boxes around the main peak in [−0.05 s, 0.05 s]
in Figure 13. The local result plotted in Figure 14a shows that the main peak has some
fluctuations with close amplitudes. Again, they are caused by the inference of background
noises at the test site. If the anomalous peaks are mistakenly selected as the peak corre-
sponding to the time delay, an appreciable error will be given in the leak detection results.
By comparison, the proposed secondary PHAT cross-correlation outperforms the BCC in
terms of leak identification and localization. As stated above, the proposed methods via
the pre-whitening process can effectively suppress the interference of background noise,
hence producing more prominent peak corresponding to the actual time delay.
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As can be found from the experimental setup, the distance difference between the
two sensors is 0.8 m. In the measurements, the propagation wavespeed obtained is deter-
mined to be 310 m/s. As a result, the actual time delay is calculated to be 2.7 ms. It can be
seen from Figure 14 that the BCC has several peaks around the actual time delay, while the
proposed method leads to only one distinct peak. Their corresponding time delay results
and calculation error are listed in Table 1. Compared to the BCC, the proposed secondary
PHAT cross-correlation method is capable of suppressing other additional peaks unrelated
to the time delay information.

Table 1. Leak localization results.

Method Peak Real Time
(ms)

Time Delay
Estimation Error (%) Mean Error

(%)

BCC

Peak 1

2.6

2.69 3.46

21.54

Peak 2 2.56 1.54

Peak 3 2.44 6.15

Peak 4 2.32 10.77

Peak 5 0.37 85.77

S-PHAT Peak 1 2.44 6.15 6.15
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5. Conclusions

In order to suppress the undesirable effects of background noise on pipeline leakage
detection, a secondary PHAT cross-correlation has been proposed. The paper introduces
the principle of the BCC and secondary PHAT cross-correlation methods for the process of
pipeline leakage detection. Simulations have been conducted to compare the performance
of the proposed method with the BCC method for leak identification and localization in the
pipe, with and without leakage. It has been found from the cross-correlation curve that
when there is no leakage, the correlation result is close to zero. However, when leakage
occurs, the correlation curve will have an obvious peak value corresponding to the time
delay resulting from the pipe leakage. The simulation results have shown that the proposed
method has sharper peaks than the traditional BCC method in a low-SNR environment.
Experiments were carried out on the pipeline test rig made in the laboratory. Test results
have shown that the BCC method has multiple peaks, while the proposed secondary PHAT
method has only one peak. Comparing the leakage detection error of different peaks,
it can be seen that the proposed secondary PHAT method outperforms the traditional
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BCC method in terms of both the number of peaks and the average error. The findings
suggest that the secondary PHAT cross-correlation method has been proposed as a potential
solution to pipeline leakage detection in complex background environments, for example,
in power plants or other industrial concerns.
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