Ultrasensitive Optical Fiber Sensors Working at Dispersion Turning Point: Review
Abstract
:1. Introduction
2. DTP Sensing Mechanisms and Recent Advances
2.1. Fiber Coupler
2.2. Fiber Grating
2.3. In-Fiber Interferometer
2.3.1. Standard Fiber-Based Interferometers
2.3.2. Specialty Fiber-Based Interferometers
3. Challenges and Opportunities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaur, B.; Kumar, S.; Kaushik, B.K. Recent advancements in optical biosensors for cancer detection. Biosens. Bioelectron. 2022, 197, 113805. [Google Scholar] [CrossRef] [PubMed]
- He, C.; He, H.; Chang, J.; Chen, B.; Ma, H.; Booth, M.J. Polarisation optics for biomedical and clinical applications: A review. Light Sci. Appl. 2021, 10, 194. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, D.; Xu, F. Optical Microfiber Sensors: Sensing Mechanisms, and Recent Advances. J. Light. Technol. 2019, 37, 2577–2589. [Google Scholar] [CrossRef]
- Jali, M.H.; Abdul Rahim, H.R.; Md Johari, M.A.; Baharom, M.F.; Ahmad, A.; Mohd Yusof, H.H.; Harun, S.W. Optical Microfiber Sensor: A Review. J. Phys. Conf. Ser. 2021, 2075, 12021. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, Y.; Li, L.; Li, X.; Zhao, Y. A plug-and-play optical fiber SPR sensor for simultaneous measurement of glucose and cholesterol concentrations. Biosens. Bioelectron. 2022, 198, 113798. [Google Scholar] [CrossRef]
- Li, X.; Chen, N.; Zhou, X.; Zhang, Y.; Zhao, Y.; Nguyen, L.V.; Ebendorff-Heidepriem, H.; Warren-Smith, S.C. In-situ DNA detection with an interferometric-type optical sensor based on tapered exposed core microstructured optical fiber. Sens. Actuators B Chem. 2022, 351, 130942. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, X.; Moreno, Y.; Sun, Q.; Yan, Z.; Zhang, L. Sensitivity adjustable biosensor based on graphene oxide coated excessively tilted fiber grating. Sens. Actuators B Chem. 2022, 351, 130832. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Zhou, S.; Huang, L.; Wang, Y.; Li, X. Fiber-optic meta-tip with multi-sensitivity resonance dips for humidity sensing. Sens. Actuators B Chem. 2022, 352, 130957. [Google Scholar] [CrossRef]
- Xu, S.; Chang, W.; Zhang, Y.A.; Yuan, X.; Huang, Y.; Ren, X. Ultrasensitive enhanced fabrication-tolerance refractometer based on PANDA-air-hole microfiber at the birefringent dispersion turning point. Opt. Express 2021, 29, 3694. [Google Scholar] [CrossRef]
- Li, Y.; Fang, F.; Yang, L.; Tan, S.; Yan, Z.; Sun, Q. In-situ DNA hybridization detection based on a reflective microfiber probe. Opt. Express 2020, 28, 970. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, Z.; Huang, T.; Sun, Z.; Lin, W.; Huang, Y.; Xiao, P.; Yang, M.; Li, J.; Guan, B. Ultrasensitive sensing in air based on Sagnac interferometer working at group birefringence turning point. Opt. Express 2019, 27, 29501. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Su, J.; Dong, X.; Lu, L.; Sun, T.; Grattan, K.T.V. Studies on Temperature and Strain Sensitivities of a Few-Mode Critical Wavelength Fiber Optic Sensor. IEEE Sens. J 2019, 19, 1794–1801. [Google Scholar] [CrossRef]
- Li, K.; Zhang, N.; Zhang, N.M.Y.; Liu, G.; Zhang, T.; Wei, L. Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler. Opt. Lett. 2018, 43, 679. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Sun, Q.; Li, X.; Yan, Z.; Li, Y.; Liu, D.; Zhang, L. Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer. Opt. Lett. 2015, 40, 5042–5045. [Google Scholar] [CrossRef]
- Lu, C.; Dong, X.; Wu, C. Characteristics of Critical-Wavelength-Existed Fiber-Optic Mach–Zehnder Interferometers and Their Sensing Applications. Photonics 2022, 9, 378. [Google Scholar] [CrossRef]
- Li, K.; Zhang, N.M.Y.; Zhang, N.; Zhang, T.; Liu, G.; Wei, L. Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers. J. Light. Technol. 2018, 36, 2409–2415. [Google Scholar] [CrossRef]
- Li, K.; Zhang, N.; Ying Zhang, N.M.; Zhou, W.; Zhang, T.; Chen, M.; Wei, L. Birefringence induced Vernier effect in optical fiber modal interferometers for enhanced sensing. Sens. Actuators B Chem. 2018, 275, 16–24. [Google Scholar] [CrossRef]
- Esposito, F.; Srivastava, A.; Sansone, L.; Giordano, M.; Campopiano, S.; Iadicicco, A. Label-Free Biosensors Based on Long Period Fiber Gratings: A Review. IEEE Sens. J 2021, 21, 12692–12705. [Google Scholar] [CrossRef]
- Urrutia, A.; Del Villar, I.; Zubiate, P.; Zamarreño, C.R. A Comprehensive Review of Optical Fiber Refractometers: Toward a Standard Comparative Criterion. Laser Photonics Rev. 2019, 13, 1900094. [Google Scholar] [CrossRef]
- Zhou, W.; Wei, Y.; Wang, Y.; Li, K.; Yu, H.; Wu, Y. Ultrasensitive interferometers based on zigzag-shaped tapered optical microfibers operating at the dispersion turning point. Opt. Express 2021, 29, 36926. [Google Scholar] [CrossRef]
- Xu, S.; Chang, W.; Luo, Y.; Ni, W.; Zheng, Y.; Wei, L.; Xu, Z.; Lian, Z.; Zhang, Y.; Huang, Y.; et al. Ultrasensitive Broadband Refractometer Based on Single Stress-Applying Fiber at Dispersion Turning Point. J. Light. Technol. 2021, 39, 2528–2535. [Google Scholar] [CrossRef]
- Jung, Y.; Harrington, K.; Yerolatsitis, S.; Richardson, D.J.; Birks, T.A. Adiabatic higher-order mode microfibers based on a logarithmic index profile. Opt. Express 2020, 28, 19126–19132. [Google Scholar] [CrossRef]
- Ravets, S.; Hoffman, J.E.; Orozco, L.A.; Rolston, S.L.; Beadie, G.; Fatemi, F.K. A low-loss photonic silica nanofiber for higher-order modes. Opt. Express 2013, 21, 18325–18335. [Google Scholar] [CrossRef] [PubMed]
- Frawley, M.C.; Petcu-Colan, A.; Truong, V.G.; Nic Chormaic, S. Higher order mode propagation in an optical nanofiber. Opt. Commun. 2012, 285, 4648–4654. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, W.; Wu, Y.; Zhu, H. High Sensitivity Label-Free Quantitative Method for Detecting Tumor Biomarkers in Human Serum by Optical Microfiber Couplers. ACS Sens. 2021, 6, 4304–4314. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wan, H.; Chang, H.; Lin, X.; Hu, F. Highly sensitive RI and temperature sensor based on an asymmetric fiber coupler. Appl. Opt. 2022, 61, 4063. [Google Scholar] [CrossRef]
- Wen, J.; Yan, X.; Gao, X.; Li, K.; Wang, J. Axial Strain Sensor Based on Microfiber Couplers Operating at the Dispersion Turning Point. IEEE Sens. J. 2022, 22, 4090–4095. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Fu, J.; Li, K. High-Sensitivity, Large Dynamic Range Refractive Index Measurement Using an Optical Microfiber Coupler. Sensors 2019, 19, 5078. [Google Scholar] [CrossRef]
- Yuan, M.; Pu, S.; Li, D.; Li, Y.; Hao, Z.; Zhang, Y.; Zhang, C.; Yan, S. Extremely high sensitivity magnetic field sensing based on birefringence-induced dispersion turning point characteristics of microfiber coupler. Results Phys 2021, 29, 104743. [Google Scholar] [CrossRef]
- Harasim, D. Temperature-insensitive bending measurement method using optical fiber sensors. Sens. Actuators A Physical. 2021, 332, 113207. [Google Scholar] [CrossRef]
- Chiavaioli, F.; Gouveia, C.A.J.; Jorge, P.A.S.; Baldini, F. Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors. Biosensors 2017, 7, 23. [Google Scholar] [CrossRef]
- Chiavaioli, F.; Biswas, P.; Trono, C.; Bandyopadhyay, S.; Giannetti, A.; Tombelli, S.; Basumallick, N.; Dasgupta, K.; Baldini, F. Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings. Biosens. Bioelectron. 2014, 60, 305–310. [Google Scholar] [CrossRef]
- Śmietana, M.; Dominik, M.; Mikulic, P.; Bock, W.J. Temperature and refractive index sensing with Al2O3-nanocoated long-period gratings working at dispersion turning point. Opt. Laser Technol. 2018, 107, 268–273. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Liu, Z.; Liu, Y.; Yang, Y.; Zhang, X. Refractive Index Sensing Characteristics of Long-Period Fiber Gratings Near Dispersion Turning Points at 2 μm Waveband. In Proceedings of the 2020 IEEE 5th Optoelectronics Global Conference (OGC), Shenzhen, China, 7–11 September 2020; pp. 101–104. [Google Scholar]
- Liu, S.; Zhou, M.; Zhang, Z.; Sun, Z.; Bai, Z.; Wang, Y. Ultrasensitive refractometer based on helical long-period fiber grating near the dispersion turning point. Opt. Lett. 2022, 47, 2602–2605. [Google Scholar] [CrossRef] [PubMed]
- Del Villar, I.; Fuentes, O.; Chiavaioli, F.; Corres, J.M.; Matias, I.R. Optimized Strain Long-Period Fiber Grating (LPFG) Sensors Operating at the Dispersion Turning Point. J. Light. Technol. 2018, 36, 2240–2247. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W.; Liu, Y.; Liu, S.; Zhang, S.; Yan, Q.; Sun, W.; Geng, T. Sensitivity-Enhanced Strain Sensor With a Wide Dynamic Range Based on a Novel Long-Period Fiber Grating. IEEE Sens. J 2022, 22, 3196–3201. [Google Scholar] [CrossRef]
- Janczuk-Richter, M.; Dominik, M.; Roźniecka, E.; Koba, M.; Mikulic, P.; Bock, W.J.; Łoś, M.; Śmietana, M.; Niedziółka Jönsson, J. Long-period fiber grating sensor for detection of viruses. Sens. Actuators B Chem. 2017, 250, 32–38. [Google Scholar] [CrossRef]
- Luo, B.; Liu, Z.; Wang, X.; Shi, S.; Zhong, N.; Ma, P.; Wu, S.; Wu, D.; Zhao, M.; Liang, W. Dual-peak long period fiber grating coated with graphene oxide for label-free and specific assays ofH5N1 virus. J. Biophotonics 2021, 14, e202000279. [Google Scholar] [CrossRef]
- Quero, G.; Zuppolini, S.; Consales, M.; Diodato, L.; Vaiano, P.; Venturelli, A.; Santucci, M.; Spyrakis, F.; Costi, M.P.; Giordano, M.; et al. Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria. Sens. Actuators B Chem. 2016, 230, 510–520. [Google Scholar] [CrossRef]
- Quero, G.; Consales, M.; Severino, R.; Vaiano, P.; Boniello, A.; Sandomenico, A.; Ruvo, M.; Borriello, A.; Diodato, L.; Zuppolini, S.; et al. Long period fiber grating nano-optrode for cancer biomarker detection. Biosens. Bioelectron. 2016, 80, 590–600. [Google Scholar] [CrossRef]
- Zuppolini, S.; Quero, G.; Consales, M.; Diodato, L.; Vaiano, P.; Venturelli, A.; Santucci, M.; Spyrakis, F.; Costi, M.P.; Giordano, M.; et al. Label-free fiber optic optrode for the detection of class C β-lactamases expressed by drug resistant bacteria. Biomed. Opt. Express 2017, 8, 5191. [Google Scholar] [CrossRef] [PubMed]
- Janczuk-Richter, M.; Piestrzyńska, M.; Burnat, D.; Sezemsky, P.; Stranak, V.; Bock, W.J.; Bogdanowicz, R.; Niedziółka-Jönsson, J.; Śmietana, M. Optical investigations of electrochemical processes using a long-period fiber grating functionalized by indium tin oxide. Sens. Actuators B Chem. 2019, 279, 223–229. [Google Scholar] [CrossRef]
- Wang, K.; Dong, X.; Kohler, M.H.; Kienle, P.; Bian, Q.; Jakobi, M.; Koch, A.W. Advances in Optical Fiber Sensors Based on Multimode Interference (MMI): A Review. IEEE Sens. J 2021, 21, 132–142. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, H.; Wang, X.; Farrell, G.; Brambilla, G. A Review of Multimode Interference in Tapered Optical Fibers and Related Applications. Sensors 2018, 18, 858. [Google Scholar] [CrossRef]
- Qian, Y.; Zhao, Y.; Wu, Q.; Yang, Y. Review of salinity measurement technology based on optical fiber sensor. Sens. Actuators B Chem. 2018, 260, 86–105. [Google Scholar] [CrossRef]
- Hoffman, J.E.; Ravets, S.; Grover, J.A.; Solano, P.; Kordell, P.R.; Wong-Campos, J.D.; Orozco, L.A.; Rolston, S.L. Ultrahigh transmission optical nanofibers. Aip. Adv. 2014, 4, 067124. [Google Scholar] [CrossRef]
- Magi, E.; Nguyen, H.; Eggleton, B. Air-hole collapse and mode transitions in microstructured fiber photonic wires. Opt. Express 2005, 13, 453–459. [Google Scholar] [CrossRef]
- Lize, Y.; Magi, E.; Ta’Eed, V.; Bolger, J.; Steinvurzel, P.; Eggleton, B. Microstructured optical fiber photonic wires with subwavelength core diameter. Opt. Express 2004, 12, 3209–3217. [Google Scholar] [CrossRef]
- Mägi, E.C.; Steinvurzel, P.; Eggleton, B.J. Tapered photonic crystal fibers. Opt. Express 2004, 5, 776–784. [Google Scholar] [CrossRef]
- Lu, C.; Su, J.; Dong, X.; Sun, T.; Grattan, K.T.V. Simultaneous Measurement of Strain and Temperature With a Few-Mode Fiber-Based Sensor. J. Light. Technol. 2018, 36, 2796–2802. [Google Scholar] [CrossRef]
- Wang, J.; Liao, Y.; Wang, S.; Wang, X. Ultrasensitive optical sensing in aqueous solution based on microfiber modal interferometer. Opt. Express 2018, 26, 24843. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.M.Y.; Li, K.; Zhang, N.; Zheng, Y.; Zhang, T.; Qi, M.; Shum, P.; Wei, L. Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point. Opt. Express 2018, 26, 29148. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Huang, T.; Yuan, Z.; Lin, W.; Xiao, P.; Yang, M.; Ma, J.; Ran, Y.; Jin, L.; Li, J.; et al. Ultra-high sensitivity of dual dispersion turning point taper-based Mach-Zehnder interferometer. Opt. Express 2019, 27, 23103. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, J.; Li, H.; Xu, M.; Li, J.; Jing, C.; Ding, L.; Gao, Y.; Zhou, A. An ultra-sensitive gas pressure sensor based on tapered fiber coated with PDMS film working at TAP. Opt. Laser Technol. 2022, 151, 107998. [Google Scholar] [CrossRef]
- Yang, T.; Liu, C.; Liu, X.; Feng, Y.; Shen, T.; Han, W. Fiber optic high temperature sensor based on ZnO composite graphene temperature sensitive material. Opt. Commun. 2022, 515, 128222. [Google Scholar] [CrossRef]
- Li, J.; Sun, L.; Gao, S.; Quan, Z.; Chang, Y.; Ran, Y.; Jin, L.; Guan, B. Ultrasensitive refractive-index sensors based on rectangular silica microfibers. Opt. Lett. 2011, 36, 3593. [Google Scholar] [CrossRef]
- Sun, L.; Li, J.; Gao, S.; Jin, L.; Ran, Y.; Guan, B. Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing. Opt. Lett. 2014, 39, 3531. [Google Scholar] [CrossRef]
- Yan, S.; Lou, S.; Lian, Z.; Zhang, W.; Wang, X. Tunable Single-Polarization Single-Mode Negative-Curvature Fiber With an Asymmetrical Refractive Index Cladding for Mid-Infrared Region. J. Light. Technol. 2019, 37, 5707–5713. [Google Scholar] [CrossRef]
- Antonopoulos, G.; Bakoglou, E.; Kakarantzas, G. Fine, Reversible and Broadband Tuning of the Group Velocity Dispersion of Tapered Silica Fibers in a Thermo-Optic Polymer Matrix. J. Light. Technol. 2020, 38, 4086–4092. [Google Scholar] [CrossRef]
- Chang, W.; Xu, S.; Cheng, M.; Liu, D.; Zhang, M. Inverse design of a single-step-etched ultracompact silicon polarization rotator. Opt. Express 2020, 28, 28343. [Google Scholar] [CrossRef]
- Young, J.T.; Wei, C.; Menyuk, C.R.; Hu, J. Mode coupling at avoided crossings in slab waveguides with comparison to optical fibers: Tutorial. J. Opt. Soc. America. B Opt. Phys. 2021, 38, F104. [Google Scholar] [CrossRef]
- Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vucković, J.; Rodriguez, A.W. Inverse design in nanophotonics. Nat. Photonics 2018, 12, 659–670. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Gui, Y.; Gan, H.; Guan, Y.; He, L.; Wang, X.; Shen, X.; Dai, S. Characteristics and preparation of a polarization beam splitter based on a chalcogenide dual-core photonic crystal fiber. Opt. Express 2021, 29, 39601–39610. [Google Scholar] [CrossRef]
- Al-Zahrani, F.A.; Kabir, M.A. Ring-Core Photonic Crystal Fiber of Terahertz Orbital Angular Momentum Modes with Excellence Guiding Properties in Optical Fiber Communication. Photonics 2021, 8, 122. [Google Scholar] [CrossRef]
- Cao, H.; Zhu, J.; Ge, D.; Chen, Z.; He, Y.; Li, J. Weakly-Coupled Multi-Ring-Core Few-Mode Fiber for Optical Parametric Amplification; OSA: Washington, DC, USA, 2019; pp. 1–3. [Google Scholar]
- He, Z.; Du, J.; Chen, X.; Shen, W.; Huang, Y.; Wang, C.; Xu, K.; He, Z. Machine learning aided inverse design for few-mode fiber weak-coupling optimization. Opt. Express 2020, 28, 21668. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wen, J.; Wang, J.; Li, K. Broadband Acoustic Sensing with Optical Nanofiber Couplers Working at the Dispersion Turning Point. Sensors 2022, 22, 4940. [Google Scholar] [CrossRef]
- Viveiros, D.; de Almeida, J.M.M.M.; Coelho, L.; Vasconcelos, H.; Maia, J.M.; Amorim, V.A.; Jorge, P.A.S.; Marques, P.V.S. Turn Around Point Long Period Fiber Gratings With Coupling to Asymmetric Cladding Modes Fabricated by a Femtosecond Laser and Coated With Titanium Dioxide. J. Light. Technol. 2021, 39, 4784–4793. [Google Scholar] [CrossRef]
- Algamili, A.S.; Khir, M.; Dennis, J.O.; Ahmed, A.Y.; Alabsi, S.S.; Ba, H.S.; Junaid, M.M. A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices. Nanoscale Res. Lett. 2021, 16, 16. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Advancement in Silicon Integrated Photonics Technologies for Sensing Applications in Near-Infrared and Mid-Infrared Region: A Review. Photonics 2022, 9, 331. [Google Scholar] [CrossRef]
- Cusano, A.; Consales, M.; Crescitelli, A.; Ricciardi, A. Lab-on-Fiber Technology; Springer: New York, NY, USA, 2015. [Google Scholar]
- Kong, L.; Chi, M.; Ren, C.; Ni, L.; Li, Z.; Zhang, Y. Micro-Lab on Tip: High-Performance Dual-Channel Surface Plasmon Resonance Sensor Integrated on Fiber-Optic End Facet. Sens. Actuators B Chem. 2022, 351, 130978. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L. Lab-on-fiber: Plasmonic nano-arrays for sensing. Nanoscale 2020, 12, 7485–7499. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Xu, F. Multifunctional integration on optical fiber tips: Challenges and opportunities. Adv. Photonics 2020, 2, 064001. [Google Scholar] [CrossRef]
- Vaiano, P.; Carotenuto, B.; Pisco, M.; Ricciardi, A.; Quero, G.; Marco Consales, A.C.E.E.; Abdollahramezani, S. Lab on Fiber Technology for biological sensing applications. Laser Photonics Rev. 2016, 10, 922–961. [Google Scholar] [CrossRef]
Configuration | Sensing Parameter | Surface Functionalization | Sensitivity/Limit of Detection | Diameter | References |
---|---|---|---|---|---|
fiber coupler | Temperature | Sealing in PDMS | 16.78 nm/°C | 3 μm | [16] |
Axial strain | - | 166.9 pm/με | 2.53 μm | [28] | |
Acoustic wave | - | 1923 mV/Pa | 1.6 μm | [68] | |
gas RI | - | 92,020 nm/RIU | 1.4 μm | [13] | |
RI | - | 35,823.3 nm/RIU | 3.2 μm | [17] | |
Tumor biomarkers | Immobilized with antibody | 34.6 fg/mL | ~2.8 μm | [26] | |
LPG | RI | - | 25,546 nm/RIU | 121 μm | [35] |
Temperature | Coated with Al2O3 | 8200 nm/RIU | 125 μm | [33] | |
RI | Coated with TiO2 | 8051.4 nm/RIU | 192.5 μm | [69] | |
Class C β-lactamases | Coated with aPS and PMMA-co-MA | 6 nM | - | [42] | |
Thyroglobulin | Coated with aPS | <6 pM | - | [41] | |
H5N1 virus | Coated with graphene oxide | 1.05 ng/mL | <125 μm | [40] | |
Standard fiber-based interferometer | Nitrate | - | 126,000 nm/RIU | 3.0 μm | [45] |
Gas RI | - | -69,984.3 nm/RIU | ~2 μm | [53] | |
RI | - | 1.46 × 105 nm/RIU | 2.3 μm | [20] | |
Gas pressure | - | 0.295 nm/KPa | ~1.57 µm | [11] | |
DNA | Immobilized with single-stranded DNA probes | 0.03 nm/ pM | 6.6 μm | [10] | |
Specialty fiber-based interferometers | RI | - | 47,223 nm/RIU | 3.2 µm | [9] |
RI | - | 30,563 nm/RIU | 2.3 µm | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Kang, P.; Hu, Z.; Chang, W.; Huang, F. Ultrasensitive Optical Fiber Sensors Working at Dispersion Turning Point: Review. Sensors 2023, 23, 1725. https://doi.org/10.3390/s23031725
Xu S, Kang P, Hu Z, Chang W, Huang F. Ultrasensitive Optical Fiber Sensors Working at Dispersion Turning Point: Review. Sensors. 2023; 23(3):1725. https://doi.org/10.3390/s23031725
Chicago/Turabian StyleXu, Shengyao, Peng Kang, Zhijie Hu, Weijie Chang, and Feng Huang. 2023. "Ultrasensitive Optical Fiber Sensors Working at Dispersion Turning Point: Review" Sensors 23, no. 3: 1725. https://doi.org/10.3390/s23031725
APA StyleXu, S., Kang, P., Hu, Z., Chang, W., & Huang, F. (2023). Ultrasensitive Optical Fiber Sensors Working at Dispersion Turning Point: Review. Sensors, 23(3), 1725. https://doi.org/10.3390/s23031725