A Novel Swarm Intelligence Algorithm with a Parasitism-Relation-Based Structure for Mobile Robot Path Planning
Abstract
:1. Introduction
2. Preliminary Knowledge and Analysis of ABC Algorithm
2.1. Basic Conception of Artificial Bee Colony Algorithm
- A.
- Employed bee
- B.
- On looker
- C.
- Scout bee
2.2. The Pros and Cons Analysis of ABC
3. The Proposed Parasitism-Relation Structure and ParaPA Algorithm
3.1. The Parasitism-Relation Structure
3.2. Evolutionary Process of ParaPA
3.2.1. Independent Evolution Stage
3.2.2. The Fusion Stage
3.2.3. Interaction Stage with the Multi-Swarm Elite Strategy
Algorithm 1 Multi-swarm-elite selection strategy. |
Input: Select elites from the best personal memories in each sub-swarm based on the objective functions and add them to the mixed pool. Steps: for each sub-swarm 1. Select several worst personal memories in each sub-swarm (suppose the number is w). 2. Choose the best individuals from the mixed pool according to the cross fitness. Then, mix the worst w individuals into with them and remove other elites in the pool. 3. for each individual in the mixed pool Evaluated it by the cross function if current individual is better Record it in the pool-output group (In this paper, the population of pool-output group is equal to 1) end end 4. Replace the worst individuals in sub-swarm by the pool-output group into next iterations end Output: Each sub-swarm with elites who has the best cross fitness. To note that the replaced individuals always keep the best memories. |
4. Problem Formulation and the Strategies for Path Planning
- (1)
- Global path planning is the main target in this paper, which means all obstacles are known before algorithm execution.
- (2)
- The environment of path planning is built in a 2D workspace. The path planning will consider obstacle avoidance without height.
- (3)
- If the planning path can avoid the obstacles successfully under environmental constraints, it means the algorithm has the ability to build a safe path in the static condition. Hence, the physical characteristics of the robot are not considered in this paper.
- (4)
- In the static condition, the robot speed is constant.
4.1. Workspace Formulation
4.2. Design of Objective Function
4.3. Design of the Cross Function
4.4. Multimodal Path Planning Strategy
Algorithm 2 Multi-path-based reverse planning strategy. |
Input: Paths with segments that are infeasible. Steps: for each infeasible path 1. Find the index of the non-viable section (suppose is the infeasible segment). 2. Go through the group to check. if there is a feasible solution in the same section () Examine the segments from back to the start segment. if segments from start to in are all feasible Record the corresponding node in this and replace the corresponding positions in nectar. end else Trigger the random generation process of nectar. end end Output: New feasible paths. |
5. Experiments and Analysis
5.1. Environments and Comparison of Algorithms
5.2. Experimental Settings
5.3. Results Representation and Analysis
5.3.1. Scenario 1: Path Planning on 20 × 20 Maps with Different Types of Obstacles
5.3.2. Scenario 2: Path Planning on 50 × 50 Maps with Randomly Generated Rectangles as Obstacles
5.3.3. Scenario 3: Path Planning for Real Application on 100 × 100 Maps
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bounini, F.; Gingras, D.; Pollart, H.; Gruyer, D. Modified artificial potential field method for online path planning applications. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11 June 2017. [Google Scholar]
- Yan, M.; Li, S.; Chan, C.A.; Shen, Y.; Yu, Y. Mobility Prediction Using a Weighted Markov Model Based on Mobile User Classification. Sensors 2021, 21, 1740. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.R.; Jheng, Y.H.; Chang, C.H.; Lo, C.H. An Efficient Algorithm for Vehicle Guidance Combining Dijkstra and A* Algorithm with Fuzzy Inference Theory. J. Internet. Technol. 2015, 16, 189–200. [Google Scholar]
- Xiong, C.; Chen, D.; Lu, D. Path planning of multiple autonomous marine vehicles for adaptive sampling using Voronoi-based ant colony optimization. Robot. Auton. Syst. 2019, 115, 90–103. [Google Scholar] [CrossRef]
- Rashid, A.T.; Ali, A.A.; Frasca, M. Path planning with obstacle avoidance based on visibility binary tree algorithm. Robot. Auton. Syst. 2013, 61, 1440–1449. [Google Scholar] [CrossRef]
- Gonzalez, R.; Kloetzer, M.; Mahulea, D. Comparative study of trajectories resulted from cell decomposition path planning approaches. In Proceedings of the 2017 21st International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 19 October 2017. [Google Scholar]
- Song, B.; Wang, Z.; Zou, L. On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm. Cogn. Comput. 2017, 9, 5–17. [Google Scholar] [CrossRef]
- Yen, C.T.; Cheng, M.F. A study of fuzzy control with ant colony algorithm used in mobile robot for shortest path planning and obstacle avoidance. Microsyst. Technol. 2018, 24, 125–135. [Google Scholar] [CrossRef]
- Rajput, U.; Kumari, M. Mobile robot path planning with modified ant colony optimisation. Int. J. Bio Inspired Comput. 2017, 9, 106–113. [Google Scholar] [CrossRef]
- Lamini, C.; Benhlima, S.; Elbekri, A. Genetic algorithm based approach for autonomous mobile robot path planning. Procedia Comput. Sci. 2018, 127, 180–189. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Guo, H. A type of biased consensus-based distributed neural network for path planning. Nonlinear Dynam. 2017, 89, 1803–1815. [Google Scholar] [CrossRef]
- Yan, M.; Yuan, H.; Xu, J.; Yu, Y.; Jin, L. Task allocation and route planning of multiple UAVs in a marine environment based on an improved particle swarm optimization algorithm. Eurasip. J. Adv. Sig. Pr. 2021, 94, 2021. [Google Scholar] [CrossRef]
- Yan, F. Autonomous vehicle routing problem solution based on artificial potential field with parallel ant colony optimization (ACO) algorithm. Pattern Recogn. Lett. 2018, 116, 195–199. [Google Scholar] [CrossRef]
- Mo, H.; Xu, L. Research of biogeography particle swarm optimization for robot path planning. Neurocomputing 2015, 148, 91–99. [Google Scholar] [CrossRef]
- Montiel, O.; Orozco-Rosas, U.; Sepúlveda, R. Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles. Expert. Syst. Appl. 2015, 42, 5177–5191. [Google Scholar] [CrossRef]
- Oleiwi, B.K.; Al-Jarrah, R.; Roth, H. Multi objective optimization of trajectory planning of non-holonomic mobile robot in dynamic environment using enhanced GA by fuzzy motion control and A*. In Proceedings of the International Conference on Neural Networks and Artificial Intelligence 2014, Brest, Belarus, 3–6 June 2014. [Google Scholar]
- Ajeil, F.H.; Ibraheem, I.K.; Sahib, M.A. Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm. Appl. Soft. Comput. 2020, 89, 1–13. [Google Scholar] [CrossRef]
- Zafar, M.N.; Mohanta, J.C. Methodology for path planning and optimization of mobile robots: A review. Procedia Comput. Sci. 2018, 133, 141–152. [Google Scholar] [CrossRef]
- Gharehchopogh, F.S.; Gholizadeh, H. A comprehensive survey: Whale Optimization Algorithm and its applications. Swarm. Evol. Comput. 2019, 48, 1–24. [Google Scholar] [CrossRef]
- Yang, X.S.; He, X. Bat algorithm: Literature review and applications. Int. J. Bio Inspired Comput. 2013, 5, 141–149. [Google Scholar] [CrossRef]
- Contreras-Cruz, M.A.; Ayala-Ramirez, V.; Hernandez-Belmonte, U.H. Mobile robot path planning using artificial bee colony and evolutionary programming. Appl. Soft. Comput. 2015, 30, 319–328. [Google Scholar] [CrossRef]
- Neshat, M.; Adeli, A.; Sepidnam, G. A review of artificial fish swarm optimization methods and applications. Int. J. Smart. Sens. Int. 2012, 5, 107–148. [Google Scholar] [CrossRef]
- Qu, C.; Gai, W.; Zhang, J. A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning. Knowl-Based. Syst. 2020, 194, 1–14. [Google Scholar] [CrossRef]
- Li, X.; Yang, G. Artificial bee colony algorithm with memory. Appl. Soft. Comput. 2016, 41, 362–372. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Xiao, S.; Cui, Z.; Xu, M.; Zhou, X. Improving artificial Bee colony algorithm using a new neighborhood selection mechanism. Inform. Sci. 2020, 527, 227–240. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, J.; Huang, J.; Zhong, M.; Wang, M. Enhancing Artificial Bee Colony Algorithm with Multi-elite Guidance. Inform. Sci. 2020, 543, 242–258. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Prayogo, D. Symbiotic organisms search: A new metaheuristic optimization algorithm. Comput. Struct. 2014, 139, 98–112. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Prayogo, D. Symbiotic organisms search algorithm: Theory, recent advances and applications. Expert. Syst. Appl. 2019, 119, 184–209. [Google Scholar] [CrossRef]
- Ren, H.; Shen, X.; Jia, X. A novel dual-biological-community swarm intelligence algorithm with a commensal evolution strategy for multimodal problems. J. Supercomput. 2021, 77, 10850–10895. [Google Scholar] [CrossRef]
- Tharwat, A.; Elhoseny, M.; Hassanien, A.E. Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm. Cluster Comput. 2019, 22, 1–22. [Google Scholar] [CrossRef]
- Tuncer, A.; Yildirim, M. Dynamic path planning of mobile robots with improved genetic algorithm. Cluster Comput. 2012, 38, 1564–1572. [Google Scholar] [CrossRef]
- Melo W., D.; Jorge, D.; Marques, V. Low-cost thermal explorer robot using a hybrid neural networks and intelligent bug algorithm model. Int. J. Comput. Appl. Technol. 2021, 65, 245–252. [Google Scholar] [CrossRef]
- Nie, Z.; Yang, X.; Gao, S. Research on autonomous moving robot path planning based on improved particle swarm optimization. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24 July 2016. [Google Scholar]
- Tang, L.; Dong, Y.; Liu, J. Differential evolution with an individual-dependent mechanism. IEEE. Trans. Evolut. Comput. 2014, 19, 560–574. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Tian, H.; Wang, Y.; Wu, Z. Talking about the Construction Requirements of Multi-functional Basic-level Cultural Service Complex. Eniertainment Technol. 2020, 10, 66–72. [Google Scholar]
MAPs | ParaPA | PSO(ori) | PSO | CPSO | WPSO | MPSO | ACO | ABC | MABC | |
---|---|---|---|---|---|---|---|---|---|---|
Map1 | Mean | 28.5311 | 32.311 | 30.059 | 29.919 | 30.079 | 32.644 | 38.002 | 28.667 | 28.583 |
Std | 0.143 | 4.245 | 2.767 | 1.851 | 1.719 | 8.640 | 0.063 | 0.170 | 0.042 | |
Worst | 29.825 | 58.069 | 89.130 | 40.225 | 38.921 | 212.317 | 40.000 | 31.328 | 28.802 | |
Optima | 28.455 | 29.228 | 28.459 | 28.459 | 28.455 | 28.475 | 38.000 | 28.480 | 28.480 | |
Map2 | Mean | 27.024 | 32.526 | 28.041 | 28.007 | 28.009 | 27.496 | 38.032 | 27.044 | 27.033 |
Std | 0.005 | 5.596 | 1.116 | 1.077 | 1.015 | 0.492 | 0.251 | 0.018 | 0.006 | |
Worst | 27.098 | 53.125 | 36.749 | 34.031 | 32.926 | 30.317 | 41.000 | 27.173 | 27.060 | |
Optima | 27.022 | 27.295 | 27.022 | 27.022 | 27.022 | 27.025 | 37.000 | 27.022 | 27.022 | |
Map3 | Mean | 28.265 | 39.905 | 31.822 | 30.668 | 30.541 | 30.171 | 38.000 | 29.777 | 28.670 |
Std | 0.419 | 7.300 | 6.352 | 2.084 | 1.885 | 2.056 | 0.000 | 1.542 | 0.571 | |
Worst | 30.495 | 84.383 | 99.917 | 41.312 | 39.035 | 42.676 | 38.000 | 37.597 | 33.039 | |
Optima | 27.848 | 29.482 | 27.882 | 27.900 | 27.914 | 27.994 | 38.000 | 28.102 | 28.170 | |
Map4 | Mean | 57.444 | 47.617 | 72.308 | 52.553 | NaN | 82.221 | 81.612 | 84.206 | 73.934 |
Std | 14.674 | 3.723 | 14.388 | 5.138 | NaN | 16.069 | 17.741 | 15.514 | 13.658 | |
Worst | 96.037 | 69.024 | 108.846 | 60.659 | NaN | 114.122 | 150.000 | 113.900 | 114.461 | |
Optima | 41.738 | 40.665 | 46.061 | 38.334 | NaN | 55.814 | 50.000 | 56.989 | 48.293 | |
Map5 | Mean | 28.922 | 36.411 | 31.515 | 31.430 | 31.538 | 29.455 | 38.004 | 30.795 | 29.431 |
Std | 1.795 | 7.086 | 2.341 | 2.370 | 2.238 | 1.845 | 0.089 | 2.635 | 1.627 | |
Worst | 33.343 | 69.188 | 41.791 | 42.173 | 39.855 | 36.349 | 40.000 | 39.659 | 32.952 | |
Optima | 27.290 | 27.828 | 27.297 | 27.302 | 27.295 | 27.275 | 38.000 | 27.376 | 27.395 | |
Map6 | Mean | 28.482 | 37.455 | 29.827 | 29.868 | 29.787 | 29.600 | 38.000 | 29.899 | 29.117 |
Std | 0.379 | 6.885 | 1.434 | 1.276 | 1.017 | 1.598 | 0.000 | 0.532 | 0.119 | |
Worst | 29.487 | 63.969 | 53.169 | 37.791 | 37.399 | 73.792 | 38.000 | 32.878 | 29.724 | |
Optima | 27.982 | 29.696 | 28.046 | 28.001 | 28.041 | 28.421 | 38.000 | 28.936 | 29.111 | |
Map7 | Mean | 30.918 | 37.452 | 33.140 | 33.169 | 32.956 | 32.700 | 38.038 | 33.414 | 30.018 |
Std | 1.916 | 3.087 | 3.128 | 3.238 | 3.036 | 2.730 | 0.273 | 2.795 | 0.388 | |
Worst | 37.353 | 54.301 | 47.069 | 46.973 | 42.344 | 29.084 | 40.000 | 40.827 | 34.502 | |
Optima | 29.139 | 29.594 | 29.151 | 29.127 | 29.136 | 42.175 | 38.000 | 29.385 | 29.285 |
Maps | ParaPA | PSO(ori) | PSO | CPSO | WPSO | MPSO | ACO | ABC | MABC | |
---|---|---|---|---|---|---|---|---|---|---|
Maps 20 × 20 | Map1 | 1 | 0.988 | 0.998 | 0.998 | 0.999 | 0.998 | 1 | 1 | 1 |
Map2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Map3 | 1 | 0.493 | 0.871 | 0.94 | 0.944 | 0.966 | 1 | 1 | 1 | |
Map4 | 0.499 | 1 | 0.07 | 0.041 | 0 | 0.04 | 0.83 | 0.016 | 0.237 | |
Map5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Map6 | 1 | 0.361 | 0.944 | 0.928 | 0.926 | 0.995 | 1 | 1 | 1 | |
Map7 | 1 | 1 | 0.966 | 0.969 | 0.936 | 1 | 1 | 1 | 1 | |
Maps 50 × 50 | Map1 | 1 | 0.131 | 0.616 | 0.794 | 0.617 | 0.98 | 1 | 1 | 1 |
Map2 | 1 | 0.352 | 0.958 | 0.793 | 0.947 | 0.997 | 0.836 | 1 | 1 |
MAPs | ParaPA | PSO(ori) | PSO | CPSO | WPSO | MPSO | ACO | ABC | MABC | |
---|---|---|---|---|---|---|---|---|---|---|
Map1 | Mean | 74.776 | 94.889 | 87.125 | 96.964 | 86.833 | 80.842 | 160.233 | 82.594 | 79.882 |
Std | 3.005 | 21.593 | 24.458 | 39.288 | 20.584 | 7.851 | 22.051 | 3.939 | 1.778 | |
Worst | 103.862 | 200.684 | 295.924 | 315.496 | 219.431 | 223.645 | 266.000 | 106.806 | 86.220 | |
Optima | 70.107 | 72.954 | 72.299 | 73.702 | 72.403 | 70.300 | 114.000 | 74.303 | 74.052 | |
Map2 | Mean | 76.558 | 91.572 | 83.963 | 97.128 | 85.062 | 78.558 | 167.916 | 80.015 | 78.372 |
Std | 2.671 | 14.287 | 13.566 | 38.198 | 16.207 | 4.347 | 25.126 | 2.818 | 0.981 | |
Worst | 83.936 | 152.965 | 255.782 | 299.138 | 238.817 | 105.914 | 320.000 | 96.480 | 87.981 | |
Optima | 71.287 | 71.959 | 72.946 | 74.968 | 73.867 | 71.361 | 116.000 | 75.309 | 75.876 |
50 × 50 Maps | ParaPA | CPSO | WPSO | MPSO | MABC |
---|---|---|---|---|---|
Map1 | 8.897 | 5.073 | 4.279 | 6.776 | 7.021 |
Map2 | 9.338 | 7.523 | 5.618 | 7.013 | 5.077 |
100 × 100 Maps | ParaPA | CPSO | MPSO | ABC | MABC | |
---|---|---|---|---|---|---|
Map1 | Mean | 147.727 | 157.103 | 155.820 | 167.317 | 161.270 |
Std | 5.702 | 8.130 | 7.914 | 7.717 | 4.940 | |
Worst | 168.755 | 203.790 | 198.764 | 206.522 | 177.713 | |
Optima | 141.006 | 142.508 | 142.262 | 148.932 | 148.287 | |
Map2 | Mean | 145.878 | 154.001 | 153.771 | 161.662 | 157.390 |
Std | 9.356 | 10.786 | 10.398 | 5.013 | 4.021 | |
Worst | 347.053 | 263.723 | 347.306 | 188.500 | 169.377 | |
Optima | 139.750 | 141.253 | 141.306 | 145.790 | 145.765 | |
Map3 | Mean | 166.445 | 171.323 | 176.595 | 171.036 | 169.858 |
Std | 18.047 | 2.486 | 12.6525 | 4.1758 | 0.481 | |
Worst | 554.350 | 175.755 | 335.206 | 255.509 | 170.056 | |
Optima | 165.459 | 168.992 | 165.795 | 168.958 | 169.838 |
100 × 100 Maps | ParaPA | CPSO | MPSO | ABC | MABC |
---|---|---|---|---|---|
Map1 | 7.171 | 6.973 | 9.249 | 12.728 | 13.409 |
Map2 | 5.601 | 6.034 | 8.104 | 13.430 | 14.664 |
Map3 | 4.078 | 8.424 | 9.129 | 17.583 | 10.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Gao, L.; Shen, X.; Li, M.; Jiang, W. A Novel Swarm Intelligence Algorithm with a Parasitism-Relation-Based Structure for Mobile Robot Path Planning. Sensors 2023, 23, 1751. https://doi.org/10.3390/s23041751
Ren H, Gao L, Shen X, Li M, Jiang W. A Novel Swarm Intelligence Algorithm with a Parasitism-Relation-Based Structure for Mobile Robot Path Planning. Sensors. 2023; 23(4):1751. https://doi.org/10.3390/s23041751
Chicago/Turabian StyleRen, Hui, Luli Gao, Xiaochen Shen, Mengnan Li, and Wei Jiang. 2023. "A Novel Swarm Intelligence Algorithm with a Parasitism-Relation-Based Structure for Mobile Robot Path Planning" Sensors 23, no. 4: 1751. https://doi.org/10.3390/s23041751
APA StyleRen, H., Gao, L., Shen, X., Li, M., & Jiang, W. (2023). A Novel Swarm Intelligence Algorithm with a Parasitism-Relation-Based Structure for Mobile Robot Path Planning. Sensors, 23(4), 1751. https://doi.org/10.3390/s23041751