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Abstract: The Internet of things (IoT) combines different sources of collected data which are processed
and analyzed to support smart city applications. Machine learning and deep learning algorithms
play a vital role in edge intelligence by minimizing the amount of irrelevant data collected from
multiple sources to facilitate these smart city applications. However, the data collected by IoT sensors
can often be noisy, redundant, and even empty, which can negatively impact the performance of
these algorithms. To address this issue, it is essential to develop effective methods for detecting and
eliminating irrelevant data to improve the performance of intelligent IoT applications. One approach
to achieving this goal is using data cleaning techniques, which can help identify and remove noisy,
redundant, or empty data from the collected sensor data. This paper proposes a deep reinforcement
learning (deep RL) framework for IoT sensor data cleaning. The proposed system utilizes a deep
Q-network (DQN) agent to classify sensor data into three categories: empty, garbage, and normal. The
DQN agent receives input from three received signal strength (RSS) values, indicating the current and
two previous sensor data points, and receives reward feedback based on its predicted actions. Our
experiments demonstrate that the proposed system outperforms a common time-series-based fully
connected neural network (FCDQN) solution, with an accuracy of around 96% after the exploration
mode. The use of deep RL for IoT sensor data cleaning is significant because it has the potential to
improve the performance of intelligent IoT applications by eliminating irrelevant and harmful data.

Keywords: IoT; DQN; edge intelligence; data cleaning

1. Introduction

In the time of the 4.0 industrial revolution, real-world things can be converged and
implemented with the help of the Internet of things (IoT) [1]. Therefore, millions of
devices with sensors and actuators are connected via wired or wireless channels for data
transmission to operate the IoT. However, IoT devices generate a lot of data from connected
devices with various modalities and qualities. It is predicted in [2] that the connected
devices may generate approximately 79.4 zettabytes (ZBs) of real-time data. The IoT is a
rapidly growing field that involves the connection of a wide range of devices and sensors
to the internet, enabling the collection and analysis of data from these devices in real
time. The IoT has the potential to revolutionize a wide range of industries, including
healthcare, transportation, and agriculture, by providing organizations with insights into
the operations and performance of their systems. However, the success of the IoT depends
on the quality of the data being collected and analyzed. Due to the significant enhancement
of IoT-based sensing data, it is crucial to maintain the quality of the data with a higher
priority. To meet the IoT services for the users, the IoT utilizes three to five layers of
architecture depending on different IoT applications [3–5]. In general, the five-layers
architecture (i.e., sensing layer (SL), communication layer (CL), data processing layer (DPL),
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data management layer (DML), and application layer (AL)) is more used than the three-
layer architecture due to its high data-quality-maintaining capability in any extensive IoT
application [3].

Machine Learning (ML) is promising in the 4.0 industrial technology era, mainly uti-
lized for handling big data environments efficiently. The data processing layer is considered
the most crucial in ML-based IoT applications. A real-time IoT application’s ability to use
memory more effectively depends on the data processing layer of IoT architecture. The
likelihood of receiving undesired data from IoT sensors is very high.

Most IoT-based ML applications demand a clean data environment. However, different
undesirable and noisy data could be generated by IoT sensors [6]. To overcome noisy data,
some proposals were introduced in the literature. Three scopes were outlined in [7] for
detecting dirty data from a large dataset to ensure data quality (i.e., what to detect, how
to detect, and where to detect). Following that, the authors only focused on detecting the
integrity constant, functional dependencies, and denial constraint types of errors in an
extensive database. In the overview of their study, an ML technique called ActiveClean was
introduced and employed for generating clean data intelligently. To improve data quality in
any IoT application, [8] evaluated the data quality process under validity and completeness
criteria. The validity indicated different constraints (e.g., data efficiency, statistical validity).
On the other hand, the completeness criteria were studied by evaluating the degree to
which data were allowed to be observed. While measuring the completeness criteria, [8]
gave an example of insufficient data called “Null” data and described the consistency
problem that must be considered to maintain data quality.

The authors in [9] proposed an IoT gateway framework to increase data quality
efficiency. In their case, a framework that could detect outliers and missing data from a
time-series-based dataset was employed. They utilized the Message Queuing Telemetry
Transport (MQTT) protocol and a Docker container to employ the gateway. After detecting
the noisy data, they applied an exponential smoother to overcome this data issue. However,
the above works did not apply any intelligent technique to detect unwanted or dirty
data to improve the IoT data quality. To specify the intelligent system for improving
the data collection process, [10] developed a prediction system to detect noisy data in a
real-time IoT environment. The study utilized the Kalman filter to predict the upcoming
outliers from a real-time data stream to employ the prediction system. [6] proposed a
decentralized system to efficiently control the data cleaning process. They applied an
advanced decentralized-based deep learning method called federate learning to improve
the data quality independently. They focused on edge-based systems to overcome the
latency issue in any centralized system. As a result, their federated learning method
cleaned the noisy data in a decentralized manner, which increased the system’s efficiency.
Furthermore, [11] deployed an intelligent-agent-based system using deep reinforcement
learning to select robust features for cleaning the collected data from multiple sources.
Their algorithm improved data quality better than the traditional reinforcement learning
algorithm. However, there is room to improve the data quality using ML techniques.

This paper proposes a deep reinforcement learning (deep RL)-based ML technique for
handling unnecessary data from IoT sensors. The proposed method, called recurrent-neural-
network-based long short-term memory Q-network (RLQN), deploys a deep Q-network
(DQN) to take appropriate action after detecting different types of unnecessary data. In
our proposed DQN system, the input state consists of three received signal strength (RSS)
values, indicating the current RSS and the last two RSS sensor data. In addition, the garbage
status (i.e., whether the current RSS value is garbage or not) is also included in the input
state for the DQN. We evaluate our proposed RLQN using RSS sensor data and compare
it to a time-series-based fully connected neural network solution called dense Q-network
(FCDQN). The main activity of our proposed RLQN is to decide the action that achieves
the best Q-values among many predicted Q-values. The proposed DQN agent receives
reward feedback based on the predicted action it takes. Our results show that the proposed
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model is far superior to the existing FCDQN in terms of cleaning garbage and empty data,
which helps to improve the data analytics process.

Overall, the proposed RLQN is a promising approach for handling unnecessary data
from IoT sensors in a real time. One of the key advantages of the proposed RLQN is
its ability to handle a large number of inputs and make decisions in real time. This is
especially important for IoT applications, where hundreds or thousands of sensors may
send data simultaneously. By using the proposed RLQN to process these data and identify
unnecessary or irrelevant information, the proposed RLQN can significantly improve the
efficiency and accuracy of data analytics. In addition to its real-time decision-making
capabilities, the proposed RLQN is also highly adaptable and can be easily fine-tuned to
different environments and situations. This makes it a versatile solution for many IoT
applications and can help organizations better manage and analyze their data.

The remainder of this paper is organized as follows. In Section 2, we introduce the
related work and provide an overview of previous research in this field. In Section 3,
we present the system preliminaries, including a detailed description of the proposed
RLQN and its underlying algorithms. Section 4 outlines the simulation setup and presents
the results of our experiments, including a detailed analysis and comparison with other
methods. Finally, in Section 5, we provide a summary of our findings and discuss potential
future directions for this research.

2. Related Work

Data cleaning is a crucial step in the process of collecting and analyzing data from
IoT devices. It is important because it helps to ensure the accuracy and quality of the data,
which is essential for making informed decisions and taking appropriate actions. Several
studies have highlighted the importance of data cleaning in IoT. The methods used for
data cleaning can be broadly divided into three categories: user-based, rule-based, and
machine-learning-based.

User-based cleaning is the process of identifying and correcting errors, inconsistencies,
and missing values in data by manually reviewing the data and making corrections by
hand. For instance, in [12], users can manually clean the data. Data cleaning is suitable
for small to moderate datasets but can be time-consuming and prone to human errors.
Moreover, it could be a tedious task when working with large datasets.

Rule-based methods rely on predefined rules and heuristics to clean the data. These
methods are simple to implement and understand but may not be able to adapt to changes
in data distribution. Examples of rule-based data cleaning methods for IoT include:

• Data validation involves checking the integrity and accuracy of data. Most ML
applications demand a clean data environment and meet specific criteria, such as
being within a certain range or having a specific format. Any piece of data that does
not meet these criteria are flagged or removed. This method was used in [13] to create
a system for validating encrypted data that allowed the edge device to process and
clean the encrypted data before they were uploaded.

• Data deduplication involves removing duplicate data from the dataset, as IoT devices
may collect the same data multiple times. Authors in [14] utilized this method and
proposed a six-step framework for removing duplicates in records. They showed
how the framework worked using a simple example from a research institution’s
information systems, including publications and research projects.

• Data normalization involves converting data into a consistent format, such as con-
verting measurements from different units into a single unit. [15] is an example of
this approach.

Machine-learning-based methods can be used to automatically identify and correct
errors and inconsistencies in the data. These methods are more flexible and able to adapt
to changes in the data but may be more complex to implement and require more com-
putational resources. Examples of machine-learning-based data cleaning methods for
IoT include:
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• Clustering: This technique involves grouping similar data points together and can be
used to identify and correct errors and inconsistencies in the data. For instance, [16]
proposed an algorithm for removing replicated records that were clustered-based, and
the effectiveness of data cleaning methods was evaluated.

• Anomaly detection: This technique involves identifying data points that deviate
from the norm and can be used to identify and correct errors and outliers in the
data. The work in [17–19] is an example of anomaly detection, and in [20], the
authors conducted a comprehensive survey. They provided context on the difficulties
that may arise when using anomaly detection methods on IoT data and presented
illustrations of IoT anomaly detection applications that had been previously reported
in the scholarly literature.

• Deep learning: This technique involves using neural networks to automatically iden-
tify and correct errors and inconsistencies in the data. Deep learning can be useful
in analyzing unstructured data generated by IoT devices, such as images and au-
dio. It can be used for image classification, speech recognition, and natural language
processing tasks. Detailed information is presented in [21] for this method.

• Reinforcement learning: This technique can be used to optimize the performance of
IoT devices by learning from their interactions with the environment and adjusting
their behavior accordingly. It can be used to optimize energy consumption, optimize
communication protocols, and learn how to avoid errors in IoT devices. Work in [11]
is an example of this technique for data cleaning.

The survey in [22] is exceptional; it examined current methods for choosing, optimiz-
ing, and updating models in the field of automated ML. This was done to find the most
suitable solutions for each stage of using ML algorithms for data analysis in the IoT and
present a summary of it. Furthermore, the authors in [21,23] conducted a survey to examine
processing techniques for data in the IoT context. The survey examined current research on
data processing and provided background information on the topic. Additionally, litera-
ture reviews of recent advanced research on processing techniques were presented. It is
important to note here that the choice of method and technique depends on the specific
characteristics of the data and the requirements of the downstream task.

One of the main advantages of using a deep RL framework for IoT data cleaning is
that it can allow the agent to learn from experience and improve its performance over time.
This is because the agent is able to learn from the consequences of its actions, rather than
being explicitly told what to do. This can be particularly useful for data cleaning tasks, as it
can allow the agent to adapt to different types of data and learn how to handle noisy or
missing data. In addition, deep RL frameworks can handle high-dimensional and complex
environments, which makes them well-suited for dealing with large datasets such as those
typically encountered in IoT applications.

One limitation is that most of the current research has focused on simulated environ-
ments, rather than real-world IoT systems. This means that the results of these studies
may not necessarily generalize to real-world scenarios, and more research is needed to
understand how well deep-RL-based approaches can perform in more complex and dy-
namic environments. Another limitation is that most of the current research has focused on
single-agent systems, rather than multiagent systems. In real-world IoT systems, there may
be multiple sensors and devices that are interacting with each other and the environment.
This means that more research is needed to understand how deep-RL-based approaches
can be extended to handle multiagent systems and the challenges that this brings.

3. System Model

Figure 1 illustrates the system overview of our proposed RLQN, where five different
terminologies appear according to the concept of deep RL. Here, the agent of our deployed
method is placed onto the data processing layer of the IoT architecture, where it decides
an appropriate action based on a particular state. Note that the state is determined from a
real-time environment.
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Figure 1. Deep reinforcement learning agent for tracking missing and garbage data.

The environment contains multiple sensor data, which are denoted by circles. In this
case, we considered RSS-based sensor data which appeared under different media access
control (MAC) addresses or access points. The environment is the key and essential concept
in a DQN-based deep RL method because the agent constantly interacts with a particular
environment for better performance. The interaction between the agent and environment
generally occurs after selecting a specific action. Further, the environment helps to provide
feedback to evaluate the agent’s action. The evaluated feedback (reward) plays a significant
role in improving the agent’s performance. After getting the reward, the agent jumps
to the next state from the environment to decide the following possible action using the
epsilon-greedy method.

There are three types of sensor data (good, null, and garbage) received from sensing
during data collection. In Figure 1, the good, null, and garbage data are represented by
green, black, and red circles, respectively. Based on these different characteristics of the
RSS-based state, our proposed agent takes an appropriate action which is further evaluated
by providing a reward when interacting with the environment.

3.1. State Space

According to our presumption, unwanted data can be collected by the IoT sensor
anytime due to noisy interactions or other vulnerable issues. As a result, it is imperative
to deal with the properties of unwanted sensor data in the state space. In our proposed
state space, we store three RSS values, where the first RSS represents the current RSS value
(RSScurrent), the next two RSS values are assumed to be the previous two RSS values (RSSP1 ,
RSSP2 ), and one Boolean value represents the status of garbage value. The main reason for
choosing the current RSS in the state space is to not identify the missing RSS data from the
sensor. The RSSC can contain zero if there are any missing RSS values; otherwise, it can
contain the actual RSS value received.

Furthermore, to replace the missing and garbage data, surround data (e.g., RSSP1 ,
RSSP2) are also required along with the current RSS (i.e., RSSC) value. Usually, the RSSP1

and RSSP2 would contain the RSS values of the last two data points unless there were no
preceding data. Thus, in such cases, the value of RSSP1 would be minus one, whereas
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RSSP2 would be minus two for the state, or only the value RSSP2 would be minus one for
the after state.

Figure 2 represents the state as an example, where we can observe that if the RSS value
appears from the left index, the value of RSSC exists in this index. As there is no preceding
data before the left index, the RSSP1 and RSSP2 are minus one and minus two, respectively.
If the current RSS exists next to the left index, then the values of RSSP1 and RSSP2 are the
values of the left index and minus one, respectively. After choosing these three RSS values,
it is also essential to identify whether the RSS value is garbage or not; thus, we need to
maintain a flag to keep track of it.

The state space in our proposed RLQN model is st = {RSSC, RSSP1 , RSSP2 , f lagG}.
Table 1 explains these state space variables. Note that the value of the state space changes
at each time step (t) during the data collection from the sensors.

0 1 2 3 4 

left Index Left + 1 Index 

Figure 2. State space representation.

Table 1. State space description.

Symbols Description

RSSC Current RSS value
RSSP1 RSS value before the current RSS value RSSC
RSSP2 RSS value before RSSP1
f lagG Whether the current RSS value RSSC represents garbage data or not

3.2. Action Space

After receiving the state at a particular time from the state space, the proposed RLQN
agent needs to take action from the designed action option. As the value of the state space
is based on good RSS, garbage RSS, and null RSS, our proposed agent takes a specific action
depending on the status of the RSS value in the state space.

Furthermore, due to noise and other environmental factors, some missing (null) or
distorted (garbage) data are inevitable during data collection from sensors. These data
types should not be stored on servers since they can significantly degrade performance. To
prevent storing null and garbage data, our suggested approach seeks to recognize them.
Therefore, the action space for this model is assumed to be limited from zero to two. The
action is zero for identifying null or missing data, one for garbage data, and two for the
rest of the data received.

Following that, the action space in this model can be represented as APK = { AP1 , AP2 , AP3},
where K is the number of data types, and K = 3 in our work. Note that we assumed different
index numbers 0, 1, 2 for AP1 ,AP2 , AP3 , respectively. Figure 3 illustrates different types of
action (APK ) that the proposed model can choose based on a state condition.
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Empty Data Garbage Data Normal Data 

0 1 2 

Action Space 

Figure 3. Possible three action spaces (AP1 , AP2 , AP3 ) of the proposed model.

The criteria for selecting the course of action are as follows:

actscene =


0, if (RSSC = 0);
1, if (RSSC < −100);
2, otherwise;

3.3. Reward Space

The proposed method determines the agent’s performance by formulating a binary
reward scheme. The primary benefit of binary rewards is their ease of estimation and
absence of computational complexity. The reward also assists in evaluating the agent’s
action to reach a decision very efficiently. As in (1), the reward is received by the proposed
RLQN as a response at time t.

rt =

{
One, if APk = actscene

Zero, otherwise,
(1)

where APk is the possible three action spaces as mentioned in Figure 1.

3.4. Agent Gaining and Storing Experience in an Experience Replay Memory

In our proposed RLQN-based system, acquiring experience by interacting with the
mentioned environment is one of the ordinary and essential tasks to perform in an optimal
manner. Initially, our designed DQN agent has no idea or experience with the system
environment; thus, the agent randomly decides on a particular action using the epsilon
parameter. Following that, the agent starts providing the best action, bestact, according to
the greedy-based exploiting procedure as in (2).

bestact = arg max(agent(state)). (2)

To remember each situation automatically, the system stores the agent’s experience
in a deque-based memory called experienced replay memory at a particular time step (t).
Note that the experience of our proposed agent indicates the collection of the current state,
action, reward, and next state together at each time step. This means the system saves these
four values as a tuple into a single deque-based experience replay memory as presented in
Figure 4.
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Figure 4. Deque-based experience replay memory.

3.5. Minibatch Exploring during Training

After storing each experience in the experience replay memory, the proposed system
starts training immediately. To achieve a better outcome from the proposed agent, the
system does not train all the experiences together at a particular time. Instead, the proposed
system utilizes a minibatch that assists in sampling a set of data (i.e., 16 experiences) during
the training period. However, sampled experiences can be correlated with each other if the
minibatch technique does not collect experiences randomly. A higher correlation between
the experiences can enhance the training complexity, which is one of the reasons for getting
bad output from the system. To overcome this issue, we randomly applied the minibatch
technique to sample a set of experiences from the experience replay memory and continue
the training at each time step.

3.6. Proposed Q-network for Greedy Action Prediction during Training

Designing a Q-network using a deep learning approach is extremely crucial for pre-
dicting a better action from the RSS-based state as input. In this study, we utilized RLQN,
where LSTM was deployed as a Q-network to identify the type of sensor data in a particular
state. The main reason for using LSTM to deploy our proposed Q-network was that LSTM
can predict an action in any time-series-based environment. Our system collected RSS data
from sections in real time; thus, LSTM was one of the best choices as a Q-network. Further-
more, we combined a fully connected dense network with our proposed RLQN to make the
overall network robust. Figure 5 represents the proposed RLQN for our designed system.

Moreover, to enhance the system’s overall performance, we utilized another RLQN
with the same structure called target-RLQN in this case. A primary objective of the DQN
was to provide optimal action by optimizing the loss (Loss(θ)) as much as possible between
predicted Q-values (Q) and target Q-values (Q′). Our two RLQNs were responsible for
giving the predicted and target Q-values results. The estimation of the loss (Loss(θ)) was
maintained according to (3).

Loss(θ) = (Q′ −Q)2. (3)

Note that, the details of Q and Q′ are given in (4) and (5), respectively, where γ
represents the discount factor ∈ [0, 1]. The overall algorithm of our proposed system is
given in Algorithm 1.
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Figure 5. Proposed RLQN.

Q = Q(st, actt; θ). (4)

Q′ = rt + γ max(Q(st+1, actt+1; θ′)). (5)

Algorithm 1: Proposed RLQN algorithm.
Input : Current and previous RSS . input = st
Output : Identify unwanted RSS
initialization() . Total episodes tep, total steps tstep, additional hyperparameters
for (Episode one to tep) do

restart state, st
total rewards, treward = 0
for (Step one to tstep) do

if (the agent is not in epsilon_period) then
take random action

else
predict a greedy action from our proposed RLQN . From (1)

end
state = st+1
Calculate rewardt
treward = treward + rewardt . the rewards in one episode
save experiences(st, at, rewardt, st+1) into experience replay memory .
From (Figure 4)

Start minibatch training and optimize the loss . From (3), (4), (5)
end

end

4. Result and Analysis

The proposed model was deployed on the TensorFlow 2.2.0 API under python 3.10
along with the Keras library. We evaluated our proposed DQN performance total rewards
in one episode and unwanted data detection accuracy.

4.1. Proposed Environment for Evaluation

The environment is one of the essential factors in our proposed system to enhance the
interactive performance of the agent. In our proposed environment, we assumed a grid-
based architecture with a size of 20× 20. Each index of the grid represented an RSS value
that was collected from the sensor. As a result, we collected 400 RSS values in total, where
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each row had 20 RSS values. In other words, our proposed system evaluated 400 different
state spaces, which could be achieved from the environment. Note that with the proposed
state space, the proposed experience-driven method was efficient for inferring the solution
after training. Figure 6 represents some row examples with 20 RSS values where all RSS
data (good, null, and garbage) are available.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Rows

200

175

150

125

100

75

50

25

0
RS

S V
alu

es RSS Values on Row-1
RSS Values on Row-2
RSS Values on Row-3
RSS Values on Row-4

Figure 6. Example of some rows with 20 RSS values.

Furthermore, Figure 7 illustrates the total number of different types of RSS values
(good, null, garbage) in a specific row. It can be observed from the Figure that the system
never achieved the RSS value from the sensor with 100% accuracy. During data collection,
some data could be null or garbage. Due to this kind of unwanted RSS data, we needed to
check the status of each RSS value based on our state space to improve the data collection
process efficiently. Moreover, from Figures 6 and 7, it can be seen that the variation of the
RSS value was not fixed, and the status of the RSS value changed frequently over time. As
a result, it was essential to take a particular action by considering our proposed state space
(environment) at each time instead of taking the whole space.
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Figure 7. Total numbers of different RSS values.

4.2. Training Hyperparameters

To design the RLQN, we initialized some hyperparameters (e.g., learning rate, number
of episodes, and so forth) by a trial-and-error strategy during the training period. These
hyperparameters controlled the characteristics of the Q-network to provide the best action.
Table 2 describes the training hyperparameters of the proposed DQN in detail.

Table 2. Training hyperparameters.

Hyperparameter Value

Optimizer Adam
Loss Categorical cross-entropy
Batch Size 32
Experience replay memory size (E) 1000
Learning rate (∂) 0.0001
Factor of discount (γ) 0.7
The maximum epsilon one
The minimum epsilon 0.001
The decay of the epsilon 0.995

4.3. Total Rewards (Each Episode)

Estimating total rewards in a particular episode was essential to properly evaluate the
action of our proposed DQN agent. Figure 8 represents the total rewards for each episode.
Note that we ran our model for 400 episodes because our environment had 400 RSS values.

As can be seen from Figure 8, both methods were able to achieve total rewards of
more than 150 from the beginning and throughout the entire experiment. However, it can
be noted that the total rewards achieved by FCDQN (184) were significantly lower than
that of the proposed RLQN (241) at the start of the experiment. Furthermore, it can be
observed that the proposed system experienced a significant increase in total rewards after
45 episodes, whereas the FCDQN experienced this increase only after 150 episodes, which
was a much slower rate of improvement than that of the proposed method. Additionally,
from the point of the increase in total rewards, the proposed Q-network was able to maintain
a consistent level of rewards until the final episode. On the other hand, the FCDQN was
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able to maintain a consistent level of rewards for only a short period of time between 150 to
252 episodes, after which it again decreased in an inconsistent manner. This is evidence
that the proposed system was able to produce better results than the FCDQN.
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Figure 8. Total rewards for each episode.

4.4. Detection Accuracy

The primary objective of the proposed system was to distinguish between different
types of data, such as “Good”, “Null”, and “Garbage”, during the data collection phase
in order to decrease the amount of unwanted data (i.e., “Null” and “Garbage”). Figure 9
illustrates the detection accuracy for identifying “Good”, “Null”, and “Garbage” RSS values
until 400 episodes.
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Figure 9. Detection accuracy for each episode interval.
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From this figure, it can be observed that the proposed method consistently achieved
a higher accuracy at each episode interval. Additionally, it can be seen that the proposed
system consistently attained an accuracy greater than 80% at each interval of the episodes,
while the FCQN was unable to achieve an accuracy above 65%. It is worth noting that
initially, the accuracy of the proposed method was lower than 90% due to the agent being
in exploration mode during the first interval, but this increased to nearly 96% after the
exploration period, as the agent started taking actions greedily. In contrast, the FCDQN
never reached an accuracy of 70% by the final interval. Therefore, it can be concluded that
the proposed system was highly robust in effectively identifying and removing “Null” and
“Garbage” RSS data.

4.5. Improving Number of Good RSS

As we observed from Figure 9, our proposed RLQN detection accuracy was much
better than that of the FCDQN. To validate how much the counting of good RSS values
can be improved after applying our proposed method, Figure 10 shows a transparent
comparison of before and after applying our proposed method. Figure 10 demonstrates
that the number of good RSS values increased significantly after applying the proposed
method. Initially, the counting ratio fluctuated, but the outcome consistently increased
until the final rows. Figure 10 proves that the proposed method can handle unwanted RSS
values (null, garbage) to enhance the number of good RSS values. The larger number of
good RSS values indicate the data quality was appropriately achieved using our proposed
method.

Table 3 presents a summary comparison of various metrics between the proposed
RLQN and FCDQN. From the table, it can be observed that the proposed RLQN method
outperformed the FCDQN in terms of detection accuracy and total rewards, as the values
for minimum, maximum, and average results were higher for the proposed RLQN method
in all instances. This is important to note as the detection accuracy and total rewards are key
metrics for evaluating the performance of the proposed system in this context. It provides
a clear indication that the proposed RLQN method was more effective in identifying and
removing unwanted data. Additionally, it is noteworthy that this comparison was made
within the context of 400 episodes, highlighting the robustness of the proposed method
over a prolonged period of time.
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Figure 10. Improving the number of good RSS values before and after applying the proposed method.
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Table 3. Summary comparison of the experimental results between the proposed RLQN and FCDQN
within 400 episodes.

Metrics Proposed RLQN FCDQN

Minimum total rewards 241 184
Maximum total rewards 382 267
Average total rewards 368.48 240.03
Minimum detection accuracy 60.25% 46.0%
Maximum detection accuracy 95.5% 66.75%
Average detection accuracy 92.5% 60%

5. Conclusions

This paper proposed a deep RL IoT data cleaning framework to improve data analytics
and handle unnecessary data from IoT sensors. The main objective of the proposed system
was to identify and eliminate both null and garbage data, while preserving good data.
To achieve this, we deployed a deep Q-network (DQN) to take appropriate action after
detecting empty, garbage, and normal data. We evaluated our proposed framework using
real-time RSS sensor data, and the results were compared against a common fully connected
dense Q-network (FCDQN) solution. The results showed that the proposed solution
achieved an accuracy of around 96% after the exploration mode.

One of the key advantages of the proposed framework is its ability to handle a
large number of inputs and make decisions in real time. This is especially important for
IoT applications, where there may be hundreds or thousands of sensors sending data
simultaneously. By using the DQN to process these data and identify unnecessary or
irrelevant information, the proposed framework can significantly improve the efficiency
and accuracy of data analytics. In addition to its real-time decision-making capabilities,
the proposed framework is also highly adaptable and can be easily fine-tuned to different
environments and situations. This makes it a versatile solution for a wide range of IoT
applications and can help organizations to better manage and analyze their data.

The proposed deep RL IoT data cleaning framework is a powerful tool for handling
unnecessary data from IoT sensors and can greatly improve the efficiency and accuracy
of data analytics in a variety of settings. In future work, we plan to further optimize
and refine the proposed framework and to explore its potential for use in other domains
and applications.
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