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Abstract: Recent advances in unmanned aerial vehicles (UAV), mini and mobile sensors, and GeoAI
(a blend of geospatial and artificial intelligence (AI) research) are the main highlights among agri-
cultural innovations to improve crop productivity and thus secure vulnerable food systems. This
study investigated the versatility of UAV-borne multisensory data fusion within a framework of
multi-task deep learning for high-throughput phenotyping in maize. UAVs equipped with a set of
miniaturized sensors including hyperspectral, thermal, and LiDAR were collected in an experimental
corn field in Urbana, IL, USA during the growing season. A full suite of eight phenotypes was in
situ measured at the end of the season for ground truth data, specifically, dry stalk biomass, cob
biomass, dry grain yield, harvest index, grain nitrogen utilization efficiency (Grain NutE), grain
nitrogen content, total plant nitrogen content, and grain density. After being funneled through a
series of radiometric calibrations and geo-corrections, the aerial data were analytically processed in
three primary approaches. First, an extended version normalized difference spectral index (NDSI)
served as a simple arithmetic combination of different data modalities to explore the correlation
degree with maize phenotypes. The extended NDSI analysis revealed the NIR spectra (750–1000 nm)
alone in a strong relation with all of eight maize traits. Second, a fusion of vegetation indices, struc-
tural indices, and thermal index selectively handcrafted from each data modality was fed to classical
machine learning regressors, Support Vector Machine (SVM) and Random Forest (RF). The prediction
performance varied from phenotype to phenotype, ranging from R2 = 0.34 for grain density up
to R2 = 0.85 for both grain nitrogen content and total plant nitrogen content. Further, a fusion of
hyperspectral and LiDAR data completely exceeded limitations of single data modality, especially
addressing the vegetation saturation effect occurring in optical remote sensing. Third, a multi-task
deep convolutional neural network (CNN) was customized to take a raw imagery data fusion of
hyperspectral, thermal, and LiDAR for multi-predictions of maize traits at a time. The multi-task
deep learning performed predictions comparably, if not better in some traits, with the mono-task deep
learning and machine learning regressors. Data augmentation used for the deep learning models
boosted the prediction accuracy, which helps to alleviate the intrinsic limitation of a small sample size
and unbalanced sample classes in remote sensing research. Theoretical and practical implications to
plant breeders and crop growers were also made explicit during discussions in the studies.

Keywords: UAV; data fusion; multi-task deep learning; high-throughput phenotyping; hyperspectral;
LiDAR; GeoAI

1. Introduction

Timely and accurate crop estimates prior to harvest have a great impact on national
food policy [1], food security, and personal living standards [2]. The conventional estima-
tion, however, has heavily relied on ground-based field surveys, which are labor-costly
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and prone to poor crop assessment [3]. Therefore, developing a low-cost, rapid, and accu-
rate high-throughput method for phenotyping at a field scale is acutely desired for crop
production. Recent technological advancements in unmanned aerial vehicles (UAV) and
sensor miniaturization have filled the current explosive demand for precision agriculture
in general and for high-throughput plant phenotyping in particular. With a UAV system,
aerial data at very fine and high spectral, spatial, and temporal resolutions can be remotely
acquired over small to medium fields for crop monitoring in cost-efficient and rapid flight
missions [4,5]. The choice of UAV is generally not a matter when both fixed- and rotary-
wing can carry automated phenotyping tasks; the matter rests in the payload and mounted
sensors that would dictate the purpose of the study.

Countless previous studies conducted unmanned aerial missions to scout various
crops: soybean [5], corn [6], sunflower [7], rice [8], maize [9], cotton [10], but most of them
exploited crop properties from passive remote sensing data recorded on a few to several
spectral wavelengths such as red–green–blue (RGB) and multispectral sensors mounted
on UAV platforms. Fewer studies used UAV-based hyperspectral imaging (HSI) in plant
phenomics including biochemical traits: chlorophyll [11,12], nitrogen [13], biophysical
traits: biomass [12,14], height and leaf area index (LAI) [12]), physiological traits (water sta-
tus [15], stomatal conductance and fluorescence [16]), biotic stress (i.e., disease) [17,18], and
grain yield [19–22]. Its broad applicability is perhaps because that hyperspectral imaging
increases the wavebands to hundreds and even thousands of contiguous spectra in both
visible (VIS) and near-infrared (NIR) regions, which provides enriched pertinent spectral
information of objects. As an imagery cube, it concurrently offers spatial information
along the image height and width, as well as continuous spectral information along the
image depth.

To a certain extent, the great abundance of information of hyperspectral cubes poses a
variety of challenges in processing and interpreting the data. The imbalance between the
high dimensionality of the imagery data and the limited availability of training samples of-
ten occurs in remote sensing datasets, which is also known as the Hughes phenomenon [23].
An adoption of dimensionality reduction strategies is necessary to alleviate the issue, includ-
ing but not limited to selecting a set of wavelengths [24–26], handcrafting representative
features such as vegetation indices [16,18], orthogonal transformation (e.g., principal com-
ponent analysis) [27], derivative analysis [24], and wavelets and correlation plots [28].
Preserving the great richness of hyperspectral images is a strenuous task if one approaches
the process on an image-wise basis, as the nature of spatial–pectral information varies
among inter- and intra-objects in a scene of view. Machine vision with widely known
techniques, convolutional neural networks (CNNs) and its variants in 1D-CNNs, 2D-CNNs,
3D-CNNs, or hybrid, could automate the task by sliding kernel patches to obtain both spa-
tial and spectral representations for regression or classification prediction. The extraction of
interrelated spatial–spectral features can be done by two common methods. It can process
the spatial features separately by 1D-CNNs or 2D-CNN [29,30] and then incorporate the
resulting spatial features with the spectral features extracted from the Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM) [30,31] to have a complete fusion. It can
be alternatively done by leveraging 3D-CNNs [18] with 3-dimensional patches (p × p × b)
associated with p × p spatial neighborhood pixels and b spectral bands to extract spatial in
tandem with spectral abstracts, which fully exploits important discriminative patterns in
the hyperspectral data cubes. This is not to mention that the challenges are exponentially
amplified by the working complication of the UAV hyperspectral system when a moving
UAV platform and the maneuvering offsets must be taken during the imagery calibration
process [32]. The following sections in this study will address these challenges in detail
from various angles.

UAV thermal (TIR) are other passive optical remote sensing data, ranging at 3–14 µm
in the electromagnetic spectrum. The aerial thermal platform is simply and cost-effectively
operational and thus, has been widely used in monitoring terrestrial vegetation via mea-
sures of canopy temperature and spectral emissivity [33]. The aerial thermal imaging has
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been introduced as a very versatile tool for various applications: for instance, discerning
crop water stress status [34–36], irrigation scheduling [37]. In regard to plant phenotyp-
ing, thermal imaging remained underexploited [38,39] in spite of its potentials. Spectral
attributes from visual (VIS) and near infrared (NIR), or even short-wave infrared (SWIR)
regions are inadequate for capturing polysaccharides components such as cellulose and
leaf surface properties including waxes and hairs, which are mainly reflected on the TIR
domain [40]. This fact suggests that the UAV thermal could be a complement to spectral
sensing and thus deliver more accurate phenotype estimations. Only [41] showed the
effectiveness of a combination between thermal and multispectral features in predicting
nitrogen concentration and chlorophyll a (Chl a) content. In our study, the singularity of
thermal imaging and the fusion with spectral imaging will be processed both feature-wise
and image-wise under the framework of CNNs.

Light detection and ranging (LiDAR) is an active remote sensor that can rapidly and
precisely record 3D structural characteristics of terrestrial vegetation in a formation of
backscattering points (a.k.a. point clouds). Unlike optical remote sensing, airborne LiDAR
sensed information has less relation to photosynthetic scheme of crops, but is able to
detail canopy closure patterns, canopy height, and leaf angle distribution that affect the
forming of crop traits. The low-altitude airborne sensor has been successfully used in many
agricultural applications, such as canopy height [42], tree species classification [43,44], land
use land cover [45], and crop biomass-related traits such as above ground biomass [46,47].
It should be noted that in addition to height-associated factors, LiDAR also offers point
intensity, which is a measure, collected for every point, of the return strength of the laser
pulse that generated the point. It is based, in part, on the reflectivity of the object struck
by the laser pulse. Other descriptions for intensity include return pulse amplitude and
backscattered intensity of reflection that is a function of the near-infrared wavelength
used in the LiDAR. Intensity is used as an aid in feature detection and extraction, in lidar
point classification, and as a substitute for aerial imagery when none is available. The
contribution of UAV LiDAR intensity to high-throughput plant breeding is unknown. This
study was conducted to provide insights about the potential of airborne LiDAR sensing
towards crop monitoring.

It is ideal if those above-discussed data sources become intermingled by some means
of data fusion that then benefit crop estimations at a higher accuracy. Several recent studies
proved this pathway at a certain confidence level in classifying forest tree species [48,49],
detecting pine wilt disease [50], and estimating crops’ traits such as grain yield [5] and
seed compositions [51]. Among these works, very few exploited the full potential of deep
learning and convolutional neural networks, in particular, for aerial multisensory data
fusion. Adding to the further side of a more accurate multimodal fusion model, a multi-
task deep learning model consuming multiple data modalities to predict multiple crop
phenotypes simultaneously is strongly desired to surpass and has not even existed in
the literature.

To fill the research gap presented above, the overarching objective of this research was
to explore the possibility of UAV remote sensing being instrumental for high-throughput
phenotyping in maize by deploying airborne multisensory data fusion with a single
multi-task deep learning model. To address it, we aimed to achieve the following sub-
objectives: (1) developing a machine learning model for multisensory data fusion of very
high-resolution UAV borne hyperspectral images, thermal images, and LiDAR point clouds
to estimate a full suite of maize phenotypic traits, (2) assembling an end-to-end multimodal
fusion multi-task deep convolutional neural network in a phenotyping regression context,
(3) examining the individual and fused contributions of each data multimodality to a
range of maize trait predictions, and (4) evaluating the impact of data augmentation on the
multimodal fusion multi-task deep learning regression to address a limited sample size in
remote sensing research.
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2. Materials and Preprocessing
2.1. Test Site and UAV Data Acquisition

An experimental corn field was set up between early May and late September in 2020
at the Crop Sciences Research and Education Center located near the University of Illinois
campus in Urbana, IL, USA (40.08 N, 88.22 W) (Figure 1a). The corn field has a north–south
dimension of 93 m and 32.6 m in the east–west dimension. The experiment was organized
in three areas: north–south edges, east–west edges, and the center field. On the north and
south edges, a block of 8 rows with 4 inside rows of genotype ILO3 × ILP1 and 4 outside
rows of commercial hybrids were grown as a cross border. The east and west edges were
grown with 29 corn inbred genotypes in single row plots. The main center field, which was
a focal interest of this study, was an experiment of a collection of 66 corn hybrid genotypes
representing two populations, diversity and high-nitrogen response. The experimented soil
type was a Drummer silty clay loam with 6.5 pH that was equivalent to a source of 60 kg
nitrogen per hectare estimated by subsequent soil sampling and measures of plant nitrogen
recovery. A primary treatment exposed maize blocks with either no supplemental nitrogen
(low N) or nitrogen fertilizer (high N) at a rate of 225 kg/ha as granular ammonium sulfate
(AMS) at the soil surface. The nitrogen fertilization was randomized along north–south
adjacent blocks at a 0.76 m alley in early June 2020 when the corns reached a V3 growth
stage. Maize was grown in a split-plot design sized approximately 5.33 m in length and
0.76 m in width, which is rounded to 4 m2 a plot. The field was controlled from weed
by a pre-plant application of herbicide atrazine and metolachlor and by hand weeding,
as needed.

2.2. Data Acquisition
2.2.1. Field Data Collection

A full suite of phenotypic metrics of hybrid corns in the center part of the field were
sampled from 369 single row plots at the R6 growing stage when corns had not yet senesced
and the kernel had been fully filled (Figure 1c). The in situ phenotyping process began
with cutting five plants from each plot at the ground level. After removing corn ears,
the fresh weight of stover comprising stalk, leaves, tassels, and husks was recorded. The
phenotyping crew used a Vermeer wood chipper to shred the fresh stover, collected a
subsample of stover shreds, weighted it, and put it into a tared cloth bag. The stover
samples were dried in an oven at 65 ◦C for at least three days, and their dried weight was
obtained for stover biomass. A Will mill was used to grind further the sheds to 2 mm
ground powder. A combustion analysis with a Fisons EA-1108 N elemental analyzer was
performed on a 100 mg portion of the powder to estimate total nitrogen concentration. The
corn ears were oven-dried to a dryness of below 10% moisture at 37 ◦C for about one week,
after which, the kernels were shelled and weighed separately from the cobs. The kernel
composition and actual moisture content was immediately measured with a near-infrared
(NIR) spectroscopy Perten DA7200 analyzer (Perten Instruments, Springfield, IL, USA).
The actual moisture value was reported at around 8% in ambient storage conditions and
was used to correct the grain yield to a dry basis. A summarized description and calculated
formula of each metric can be found in Table 1.

2.2.2. UAV Data Acquisition

An aerial data collection campaign was conducted on 28 August 2020 over the study
field to obtain a full set of remote sensing data (Figure 1b). The data collection date
corresponded to the R5 growing stage when corns had reached physiological maturity
and the kernel had been denting near their crowns. We deployed a swarm of the DJI
Matrice 600 (M600) Pro hexacopter (DJI Technology Co. Ltd., Shenzhen, China) carrying
various types of aerial sensors outlined in Table 2. The first UAV platform was integrated
with a Headwall Photonics Nano-Hyperspec sensor (Headwall Photonics Inc., Fitchburg,
MA, USA), FLIR Vue Pro R 640 (FLIR Systems, Wilsonville, OR, USA) thermal sensor,
and Applanix APX-15 (Applanix Corporation, OR, Canada) global positioning system
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(GPS)/inertial measurement unit (IMU). The stability of the three equipment elements was
warranted by a DJI Ronin MX three-axis gimbal. The second platform was hard-attached
with a Velodyne HDL-32 (Phoenix LiDAR Systems, Los Angeles, CA, USA) LiDAR sensor
and a Sony A7R II (Sony Corporation, Tokyo, Japan) RGB camera. It should be noted that
the LiDAR sensor operates at a wavelength of 905 nm, categorized as the class 1 laser
that is human-eye safe and sensitive to the same types of canopy elements. The third
platform consisted of an ICI 8640 P-series (Infrared Cameras Inc., Beaumont, TX, USA)
thermal camera, Sony (Sony Corporation, Japan) RGB RX10 camera, and a Micasense Altum
(Micasense In., Seattle, WA, USA) multispectral camera. A Gremsy T3 (Gremsy, HCMC,
Vietnam) gimbal was connected to the UAV system to frame the ICI 8640 thermal (Infrared
Cameras Inc., Beaumont, TX, USA) and RGB RX10 camera (Sony Corporation, Tokyo,
Japan) and adjust movements thereof, while the Micasense Altum was individually held
by a custom payload tray 3D-printed using ABS plastic filament. Specifications of sensors
will be discussed in the section UAV data preprocessing. In addition, each M600 Pro was
equipped with a DJI 3A Pro Flight Controller (DJI Corporation, Shenzhen, China), inertial
measurement unit (IMU), and real-time kinematics (RTK) Global Navigation Satellite
System (GNSS) receivers, which offer a positional accuracy of 2 to 3 cm as claimed by
the manufacturer.
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Table 1. Descriptions of maize phenotypic traits and their measurements.

Phenotypic Traits Unit Calculation Measuring Description

Cob Biomass kg/ha [Cob Biomass (g/plant) × Standing
Plants]/Plot Size (hectare)

Average of five plants from the center of
row sampled at R6 growth stage.

Dry Grain Yield kg/ha
[Dry Grain Biomass
(g/plant) × Standing Plants]/Plot
Size (hectare)

Average of five corn ears from the center of
row sampled at R6 growth stage.
Normalized moisture content of dry grain
biomass was 15.5%.

Dry Stalk Biomass kg/ha [Stalk Biomass (g/plant) × Standing
Plants]/Plot Size (hectare)

Average of five plants from the center of
row cut at ground level at R6 growth stage,
weighed, shredded, subsample weighed
fresh and dry.

Harvest Index /

Dry Grain Biomass (g/plant)/[Dry
Stalk Biomass (g/plant) + Cob Biomass
(g/plant) + Dry Grain
Biomass (g/plant)]

/

Grain Density / /

Measured with a near-infrared (NIR)
spectroscopy Perten DA7200 analyzer
(Perten Instruments, Springfield, IL, USA)
on kernels sampled five ears each plot.

Grain Nitrogen Content kg/ha [Grain Protein (%)/6.25] × Dry Grain
Biomass (g/plant)]/Plot Size (hectare) /

Grain Nitrogen
Utilization Efficiency
(Grain NutE)

/

Dry Grain Biomass (g/plant)/[Stalk N
(%) × Stalk Biomass (g/plant) + [Grain
Protein (%)/6.25] × Dry Grain
Biomass (g/plant)]

Describe how the plant uses the nitrogen it
acquires to produce grain. It is the ratio
between dry grain biomass over the total
Nitrogen content of the plant.

Plant Nitrogen Content kg/ha

[Stalk N (%) × Stalk Biomass
(g/plant) + [Grain Protein
(%)/6.25] × Dry Grain Biomass
(g/plant)]/Plot Size (hectare)

The amount of nitrogen of all standing
plants normalized to their plot area. The
total amount of nitrogen of each plant was
the addition of the amount in stalk and in
grain. The stalk nitrogen content was
measured by a combustion analysis of dry
stover. Grain protein percent was
determined by a lab-based NIR
spectrometer, which is converted to grain
nitrogen content at the Jones factor of 6.25
in maize [52].

Prior to flights, a calibration tarp with a known dimension at 3 × 3 m and three reflec-
tive panels at 56, 30, and 11% reflectance was placed within the data collection window
under a UAV flight swath to be imaged for correcting geometry and reflectance of the
hyperspectral cubes. Identifiable ground control points (GCPs) painted with black and
white were distributed evenly at the field’s corners and alleys to act as reference points
for georeferencing multiple datasets. All UAV in-flight deployments were programmed
with pre-set parameters based on the collecting specifications of a designated sensor to
automatically operate and collect remotely sensed data without the pilot’s involvement.
The flight mission for the hyperspectral system was planned by using UgCS v.4.1 (SPH
Engineering SIA, Latvia) software. In exchange for 3 cm Ground Sampling Distance (GSD)
(i.e., the projected pixel size on the ground) and with the sensor lens settings, the pho-
togrammetry tool of the software determined the average flight attitude at 48 m. We set a
40% side overlap between flight swaths for ortho-mosaicking multiple cubes. Owing to
the line scanning mechanism, it is not necessary to have high forward overlap; instead, we
took the minimum value of 1% and set the frame per cubes at 10,000, which is equivalent
to the maximum 640 × 10,000 pixels for each raw cube. In addition, we created an area of
interest (AOI) that determines the field data collection window, and whenever the UAV
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enters the AOI, the GPS recognizes and triggers the sensor to start capturing data or to stop
if exiting the AOI. The optimal flight speed was determined at 3 m/s, which is an output of
the illumination intensity, the integration time, the focal length of the sensor lens, and the
preset flight attitude. A dark reference of 1000 frames per 1 cube, which will be used for
radiometric calibration, was snapped with the lens cap covering on the sensor.

Table 2. A summary of UAV platforms with multiple aerial remote sensors and properties.

UAV Platform Data Format Sensor Stabilizer Recorded
Information

Spectral
Properties GSD

DJI M600 Pro
hexacopter (DJI
Corporation, Shenzhen,
China),

Hyperspectral
Imagery

Headwall
Nano-Hyperspec

DJI Ronin
MX gimbal

270 VNIR spectral
bands

400–1000 nm with
FWHM of 6 nm 3 cm

FLIR Thermal
Imagery FLIR Vue Pro R 640 / / /

GPS/IMU Applanix APX-15

DJI M600 Pro
hexacopter (DJI
Corporation, Shenzhen,
China),

LiDAR point
cloud Velodyne HDL-32

Hard mount

LiDAR point cloud
and attributes / 900 pts/m2

RGB Imagery Sony A7R II Blue, Green, Red
bands 2.4 cm

DJI M600 Pro
hexacopter (DJI
Corporation, Shenzhen,
China),

ICI Thermal
Imagery ICI 8640 P-series Gremsy T3

gimbal
1 thermal IR band 7–14 µm 8 cm

RGB Imagery Sony RX10

Multispectral
Imagery Micasense Altum Hard mount

5 spectral bands:
Blue, Green, Red,
Red-edge, NIR

Similarly, the flight mission designed for the hyperspectral system above was reused
for the ICI thermal and multispectral data collection system except upscaling the forward
overlap to 40% between captures. For the LiDAR data collection mission, we designed
the flight paths by using Phoenix LiDAR FlightPlanner (Phoenix LiDAR Systems, Los
Angeles, CA, USA) software which is proprietarily developed by the vendor. This is
among only a few kinds of flight planning software that can harmoniously accommodate
flight parameters for both photogrammetry (image-based) and LiDAR specifications. The
vendor reported the locational accuracy (RMSE) of a point at a range of 3.5–5.5 cm within
a 50 m flying height, and the point density, which was of our most interest, was jointly
influenced by flight altitude, forward velocity (speed), and lateral (side) overlap. The
LiDAR point density was estimated at 1600 points/m2 on average from the software after
considering a LiDAR field of view at 90◦, a flying altitude at 50 m, a speed of 3 m/s, and
a side overlap of 70%. It is recommended for mapping mission types to design the last
flight path perpendicular to the along-track flight paths, thereby enhancing point cloud
co-registration [53]. The GSD estimate of the RGB camera paired with the LiDAR sensor
was less than 1 cm. During point cloud colorization processing later, the point clouds can
be overlaid with the RGB color information from this camera.

2.3. Post-Collection Hyperspectral Imagery Processing

The Headwall Nano-Hyperspec is a push-broom scanner that collects reflectance
through an image split perpendicular to the flight direction. The image split is a linear
array of pixels (640 spatial pixels for the sensor) with each pixel containing full spectral
wavelengths, and the number of image slits increases as the UAV motion occurs. The sensor
has a 12 mm lens and a horizontal field of view (FOV) of 21.1◦, which gathers radiometric
data in the 400–1000 nm visual and near-infrared (VNIR) region across 270 bands at a
sampling interval of 2.2 nm and a FWHM of 6 nm. In addition to three GNSS antennas
mounted on the upper of the UAV, there is one antenna for high-performance GPS/IMU
APX-15 paired with the hyperspectral camera to monitor roll, pitch, and yaw motions.
The GPS/IMU was run through a post-processing kinematics (PPK) program to improve
the data quality. The accuracy of the inertial measurement unit (IMU) data from the
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PPK is ± 0.025◦ in roll and pitch, and 0.08◦ in yaw or heading. The total payload of the
M600 was 3.65 kg, which constrains the flight time to approximately 20 min.

Push-broom sensors are known with hardware-induced spatial noise across-track and
along-track. The across-track noise or vertical striping is small differences among 640 pixels
in an individual linear array caused by collecting data simultaneously and independently.
The along-track noise is differences among linear arrays in each hyperspectral cube due to
temporal variations when collecting sequentially [54]. Spatial pixel measurements should
be homogeneous for the same feature, and temporal variations between the first array and
last array should be minimal to affect the signal significantly. To minimize the noise, we
conducted the flights at noon under minimal cloud conditions. Further, [55] indicated that
if the UAV flies within 30 min, the variation increment is insignificant at less than 2% across
spatial pixels and spectral bands.

A series of steps were carried out to preprocess hyperspectral cubes, including radio-
metric calibration, ortho-rectification (i.e., geometric correction), and ortho-mosaicking.
Due to the proximity of UAV data collection to the ground, the atmospheric correction
was assumed to be far less influenced by atmospheric effects [56]. Assisted by Headwall
SpectralView software, radiometric calibration was first performed to convert raw data in
12-bit digital number (DN) format to radiance values. The cube of 1000 frames as a dark
reference collected prior to the flight was subtracted from the raw DN imagery, since they
are a residual current, or more precisely, randomly generated electrons, flowing through
the photon-sensible lens [55]. We then converted the at-sensor radiance to the at-surface
reflectance that is the standard unit for a comparison of different datasets collected from
multiple areas and multiple times. An empirical line method (ELM) was performed on
all imagery cubes based on the near-Lambertian tarp with three known reflectance values
of 56, 32, and 11%. The orthorectification step is required to geometrically correct data
cubes by using their frame indices and associated GPS timestamps obtained from the high-
performance Applanix APX-15 system. The GPS time is used to look up and interpolate to
the system motions (roll, pitch, yaw, latitude, longitude, flight altitude, and digital elevation
model (DEM)) at the time the frame was taken. The motion offsets were parameterized via
PostPac UAV 8.2.1 (Applanix Corporation, Richmond Hill, ON, Canada) to generate the
post-processed smoothed best estimate of trajectory (SBET) file. SpectralView software used
this enhanced GPS to ortho-rectify each pixel frame by replacing them where they were at
the time of the flight (the accuracy depends on the enhanced GPS claimed by Applanix).
All the radiometrically and geometrically corrected data cubes were stitched together to
create one single orthoimage of the field, which is known as ortho-mosaicking.

2.4. Post-Collection LiDAR Point Cloud Processing

During LiDAR field scanning, the Real-Time Kinematic (RTK) operation mode was
initiated relying on an on-board GPS receiver (tracking x, y, z point coordinates) and IMU
(tracking the sensor motions and orientation). A linear quadratic estimation (LQE) operates
to integrate GPS and IMU signals to produce a statistically optimal estimate of the sensor’s
position at any point in time. This mode allows generation of the LiDAR data in the point-
cloud format and visualization of them in real-time in Phoenix SpatialExplorer software.
With RTK, the data can be derived in centimeter-level precision, and thus, Post-Processing
Kinematic (PPK) is necessary to enhance the data precision. We deployed the PPK on a
web-based LiDARMill version 2 (Phoenix LiDAR Systems, Los Angeles, CA, USA), which
consists of a sequence of 2 pipelines: NavLab and Spatial Fuser. The NavLab pipeline
requires input data from the onboard GNSS/IMU and the base station to correct the flight
trajectory in forward and reverse directions several times using Loosely Coupled (LC) and
Tightly Coupled (TC) solutions [57]. LC is a naïve computation to fuse GNSS-derived
position and velocity with IMU, which is infeasible with fewer than four satellites’ signals
or in blocked areas, while TC overcomes the shortfall of interrupted signals by directly
using GNSS static raw observations [58]. The Spatial Fuser pipeline in LiDARMill fuses
the corrected NavLab trajectory data with the raw LiDAR data to generate a point cloud
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and further colorize the point cloud if the RGB images are inputted. LiDARMill eventually
delivers a classified (ground/non-ground) point cloud and its attributes such as intensity,
RGB values, number of returns in the LAS (LASer) format.

The LAS file was then used to generate raster data representing canopy height and
intensity. Canopy height is a normalized surface that is the difference between the digital
surface model (DSM) and digital terrain model (DTM). We created the DSM raster by
first filtering the points to only non-ground and removing outlier points that lie alone in
low-density regions whose the nearest neighbors are too far away. We voxelized the point
cloud to a bin of small cells (voxels) at a size of 3 cm that was consistent with the pixel size
of the hyperspectral image. The DSM was formed from the highest elevation cells, inside
of which we selected the maximum point. The creation of DTM raster began with, first,
filtering ground points and then, voxelizing of the point cloud. The triangular irregular
networks (TIN) method was performed to interpolate voids found on the earth’s surface.
The construction of the canopy intensity raster was similar to making the DSM except for
the data type as point intensity.

To assure the confidence that our remote sensing data correctly captured the crop’s
features, we correlated the remote sensing data, especially LiDAR data, to the actual data
that were manually measured by our field management team. The ground truth height
recorded the average of every three plants in the middle of each plot in the R6 stage.
The remotely sensed LiDAR height was extracted from 90 percentile of the plot height
to preclude aerial dust at the very top of the plot canopy. The correlation between the
two showed a very strong and statistically significant degree at R2 = 0.9, p < 0.001 (Figure 2).
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2.5. Post-Collection Thermal Imagery Processing

An ICI thermal sensor recorded the data in DN values in a JPG imagery format, and
therefore, radiometric calibration for the thermal imagery is required to convert the at-
sensor data type to a physical meaning data type at the surface–canopy temperature in
Celsius degrees. This process was done in a batch through IR-Flash (Infrared Cameras
Inc., Beaumont, TX, USA) software with an internally installed factory calibration file.
Users are further allowed to optionally adjust environmental conditions, thermal emissivity,
transmission, and ambient temperature. The converting software outputted thermal images
in 32-bit TIFF format with geo-tags. The batch of radiometrically corrected images was
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loaded in a photogrammetric software Pix4D mapper (Pix4D SA, Prilly, Switzerland) for
ortho-rectifying and mosaicking to create a single image of a captured field. A Pix4D
mapper utilizes a suite of photogrammetry and computer vision techniques for extracting
image key points in each image, matching the key points, stitching images together, and
blending overlapping areas in the stitched ortho-mosaic.

2.6. Image Co-Registration

Image co-registration is the process of geometrically aligning two or more images
to integrate or fuse corresponding pixels that represent the same objects or locations on
the ground [59]. Although all hyperspectral images, canopy height and intensity images,
and thermal images were correctly georeferenced at the same projection, they were still
misaligned, typically at a centimeter level with the UAV scale. Co-registration occurred by
obtaining the geometric relationship between a base image and warped images through a
number of tie points. The UAV hyperspectral ortho-image served as the base image, and the
LIDAR canopy height, intensity, and thermal images were warped to be closely re-aligned.
A minimum of 20 tie points was manually selected, including GCP reference panels and
distinct features that were evenly distributed across the field. The tie point selection was
edited on the geometric correction module of ENVI 5.5 software (Harris Geospatial, Boulder,
CO, USA). The software module then required users to choose warping and resampling
values. A second-order polynomial was used for the warping transformation, whereas
cubic convolution was used for resampling warped images, especially thermal images from
10 cm to 3 cm.

3. Methods

The methodology was graphically illustrated in Figure 3, an overall workflow. The
methods could be partitioned into four main areas: data collection, post-collection process-
ing, feature engineering, and modeling. The UAV aerial data collection and post-collection
data processing were fully discussed in the Section 2 above. The next sections described
feature engineering, both manually and automatically, and modeling methods. The pre-
dicted results were geo-located on a spatial map for a residual randomness testing (i.e.,
spatial autocorrelation) and eventually, for visualization.

3.1. Ground-Truth Data Exploration

Table 3 summarizes descriptive statistics of maize phenotypes harvested at the end of
the growing season. It is discernible that all three phenotypes, dry grain yield (kg/ha), grain
nitrogen content (kg/ha), and plant nitrogen content (kg/ha), rendered a high coefficient
of variation (46, 53.9, and 51,7%). Rather than a bell-shaped curve, the data distribution
exhibited a bimodal curve, which is a direct response to the nitrogen experiment. The low
values were sampled from low N plots (i.e., no supplemental nitrogen), and high values
corresponded to high N plots (i.e., 225 kg/ha nitrogen fertilizer treatment). The other five
target variables had various levels of extreme instances, which skewed their distribution
and would possibly negate predicting performance. This matter becomes the most obvious
in a left-skewed distribution of grain density, in addition to a very narrow data range
(1.02–1.35 units) and small coefficient of variation (3%).

It is necessary to understand the correlation degree for each pair of phenotypes
collected (scatter plot matrices in Appendix A). The correlation pairs of dry stalk biomass,
cob biomass, dry grain yield, grain nitrogen content, and plant nitrogen content presented
a linear positive relationship, interpreted as, for example, the higher the stalk biomass is,
the more likely the cob has a higher biomass. It becomes plainly visible between grain
nitrogen and plant nitrogen content. Data points of harvest index and grain density were
found to be dispersed when cross-plotted with other phenotypes. It is worth mentioning
that grain nitrogen utilization efficiency persistently segmented its data into two high- and
low-value clusters, which correspond to high and low nitrogen treatment. Given such
negated features of the phenotype variables, it is advisable to implement transforming
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and standardizing them prior to a formal process. It is also important to project all values
into a comparable scale for later multi-task deep learning and the loss function of the
model, which was discussed in detail in the data transformation section below. Figure 4
therefore showed the standardized form of ground-truth data of eight maize phenotypes
after rescaling the distribution values.
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Table 3. A summary of descriptive statistics of each maize phenotype collected at the end of grow-
ing season.

Phenotypes Count Mean Std * cv (%)
** Min 25% 50% 75% Max

Dry Stalk Biomass (kg/ha) 369 6510.82 2153.74 33.1 1477 5033 6315 7756 22,035
Cob Biomass (kg/ha) 369 1470.71 498.90 33.9 415 1091 1432 1822 3853
Dry Grain Yield (kg/ha) 369 7176.92 3300.98 46 425 4282 7038 9848 17,450
Harvest Index 369 0.45 0.09 19.4 0.03 0.40 0.46 0.52 0.75
Grain NutE 369 55.92 11.10 19.9 5 50 57 63 77
Grain N (kg/ha) 369 91.70 49.48 53.9 9 44 90 136 218
Total Plant N (kg/ha) 369 135.88 70.18 51.7 26 68 141 198 314
Grain Density 369 1.27 0.038 3 1.02 1.25 1.27 1.3 1.35

* standard of deviation, ** coefficient of variation.
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Figure 4. Standardized form of ground-truth data of eight maize phenotypes collected during the
growing season. The means of all phenotypes after rescaling the distribution values were 0 and
standard deviations were 1. Dry grain yield, grain nitrogen content, total plant nitrogen content
displayed a binomial data distribution with no extreme instances. The other distributions looked
normal but contained extreme values in their datasets.

3.2. Plot-Level Chip Image Segmentation and Feature Scaling

The remotely sensed data in this study consisted of hyperspectral imagery, LiDAR
point cloud, and thermal imagery. Plot level chip images of each data type extracted from
the ortho-mosaic raster of the whole field using vector data of plot boundaries (Figure 1d).
It would matter if the plot images contain not only areas of interest (AOIs) maize pixels
but also a various degree of confounding objects such as soil, residuals, shadow, etc. The
non-AOIs were also affirmed by visually crosschecking in all data modalities: for example,
the non-AOI shadow pixels valued at 0 in the LiDAR height and intensity or thermal chip
images. To alleviate the matter and elevate prediction accuracy, it is suggested to segment
out these confounding pixels. As the segmentation task runs on the entire spectrum, a
simple method such as threshold proves to be insufficient to detect AOIs, especially mixed
pixels and shaded canopy region, as studied by [60]. Instead, a unsupervised k-means++
clustering [61] was chosen as it receives the most popularity in both academia and industry
because of an easy implementation and a high computational efficiency even with high
dimensional data [62]. Only one drawback of the k-means clustering refers to the arbitrary
user input for an a priori k number of clusters. This was not our case when each plot
essentially had two classes, vegetation and non-vegetation (Figure 5). The multimodal
data also existed in different measurement scales: reflectance spectra were in the range of 0
and 1, LiDAR-derived canopy height in meters, LiDAR intensity unitless, and thermal in
Celsius degrees. After removing non-AOIs pixels, standardization (a.k.a. feature scaling)
is a crucial step to ensure all features on the same scale before feeding them into machine
learning algorithms.
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Figure 5. The segmentation results of 5 random plots using k-means clustering to extract pure
vegetation pixels (Areas of interest, AOIs) from non-vegetation pixels (soil, crop residuals, heavy
shadow, etc.). The segmentation was done on weed-free sample plots instead of the ortho-mosaic
image of the entire field that possibly contained weeds. The hyperspectral profiles of pure vegetation
were again verified and affirmed with LiDAR height and intensity, and thermal.
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3.3. An Extended Normalized Difference Spectral Indices (NDSIs) as a Simple Fusion

Normalized difference spectral indices (NDSI) involves statistically normalizing two
spectral bands in hyperspectral data that could be best sensitive to plant’s phenotypes. Re-
cent studies demonstrated that a NDSI correlation map is useful for identifying the optimal
normalized indices to predict biochemical, biophysical, and structural properties [63,64].
We extended the conventional NDSI and applied it to other types of our data including
LiDAR canopy height band, LiDAR intensity band, and thermal band. The extended NDSI
served as a naïve fusion method to combine and normalize not only two spectral bands
but also each spectral band with LiDAR height, intensity, and thermal data by following
Equation (1):

NDSI (i, j) =
Mi −Mj

Mi + Mj
(1)

where Mi, Mj are plot-wise mean values of raster band i and raster band j. All possible
combinations (i, j) of 269 available spectral bands, 1 canopy height band, 1 canopy intensity
band, and 1 thermal band were used for NDSI calculations for each phenotypic trait.

3.4. Feature Engineering and Traditional Machine Learning

Feature engineering is an essential step that applies hardcoded transformations to raw
data, which makes the data more amenable to machine learning algorithms. It especially
matters if the input data are high-dimensional, such as hyperspectral images, wherein the
number of features is substantially higher than the number of samples. If not being properly
engineered, unrelated pixels in the spatial domain and multicollinear spectral bands in the
spectral domain could possibly add more noise and diminish the model generalization.
Establishing vegetation indices (VIs) from high-dimensional data is a common technique
in vegetation remote sensing research. A set of 34 VIs representing maize phenotypic
expressions (biochemical, biophysical, physiological, etc.) was extracted from plot-wise
hyperspectral cubes, conventionally used in previous studies [18,25]. A similar index
formation on LiDAR and thermal data [65,66] generated 30 VIs from the height statistics,
30 VIs from the intensity characteristics, and 1 thermal-derived VI. Table 4 enumerated all
VIs notions and their meanings.

A machine learning pipeline was then constructed with two regressors: Support
vector machine for regression (SVR) [67] and Random forest regression (RFR) [68]. Both
are versatile and widely accepted methods in the vegetation remote-sensing community.
SVR gives a flexibility to define how much error is acceptable through finding an optimal
error tube (the separating hyperplane or decision boundary in the classification problem).
To achieve a small error, we experimented on the SVR with a hyperparameter GridSearch
library. The first hyperparameter C controls the width of the margin, and when C is large,
the SVR tends to be overfitting, while when C is small, the SVR tends to be underfitting.
Second, the kernel function, which creates nonlinear combinations of the original features
to project them onto a higher-dimensional space via a mapping function, where the new
transformed data become linear. γ is the third hyperparameter to be optimized, controlling
the influence of the similarity distance. The smaller the values of γ, the larger the similarity
radius, whereas with high values of γ, the data examples must be closer to be affected.

RFR is ensemble learning that combines several base learners (i.e., decision trees)
into a meta-learner in order to achieve a better performance than each individual model
alone. A similar hyperparameter tuning was done in a 5-fold inner cross-validation, as [69]
recommended. The first hyperparameter was the number of decision trees (k). With fewer k,
the model variance tends to increase and the meta-learner is prone to overfitting, whereas
the model bias remains constant. The next hyperparameters were the maximum depth
that a tree can grow and the minimum number of samples at the leaf nodes. RFR also
measures the feature importance of a feature to the predicting power toward the target (i.e.,
maize traits). It is also known as the mean decrease impurity (MDI) and will be used to
assess the importance of each data modality towards the model’s predictive power later in
Section 5 discussion.
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Table 4. Selected vegetation indices (VIs) across data modalities.

No. Vegetation Index Acronym Equation References

Hyperspectral-derived metrics

1 Anthocyanin (Gitelson) AntGitelson AntGitelson = (1/R550 − 1/R700 ) × R780 [70]
2 Chlorophyll Index CI CI = (R750 − R 705 )/(R750 + R705) [71]

3 Optimized Soil-Adjusted
Vegetation Index OSAVI OSAVI = (1 + 0.16) × (R800 –R 670 )/(R800 + R670 + 0.16) [72]

4 Red Green Index RGI RGI = R690/R550 [73]
5 Structure Intensive Pigment Index SIPI SIPI = (R800 − R 450 )/(R800 + R650) [74]

6 Transformed Chlorophyll Absorption in
Reflectance Index TCARI TCARI = 3 × ((R700 − R 670)− 0.2 × R700− R 550)×

(R700/R670)) [75]

7 Nitrogen Reflectance Index (NRI) NRI NRI = (R570 − R670)/(R570 + R670) [76]

8 Modified Chlorophyll Absorption in
Reflectance Index mCARI mCARI = 1.2 × (2.5 × (R761 − R 651 )–1.3 × (R761 − R 581 )) [77]

9 Photochemical Reflectance Index PRI PRI = (R531 –R 570 )/(R531 + R570) [78]

10 Ratio Analysis of reflectance Spectral
Chlorophyll a RARSa RARSa = R675/R700 [79]

11 Ratio Analysis of reflectance Spectral
Chlorophyll b RARSb RARSb = R675/(R700 × R650) [79]

12 Ratio Analysis of reflectance Spectral RARSc RARSc = R760/R500 [79]
13 Pigment specific simple ratio PSSR PSSR = R800/R680 [80]
14 Plant Senescence Reflectance Index PSRI PSRI = (R660 − R 510)/R760 [81]

15 Normalized chlorophyll pigment
ratio index NCPI NCPI = (R670 − R 450)/(R670 + R450) [74]

16 Plant Pigment ratio PPR PPR = (R550 − R 450 )/(R550 + R450) [82]
17 Normalized Difference Vegetation Index NDVI NDVI = (R860 − R 670 )/(R860 + R670) [83]
18 Greenness Index GI GI = R554/R677 [73]
19 Green NDVI GNDVI GNDVI = (R750 − R 540 + R570)/(R750 + R540 − R 570 ) [84]
20 Simple Ratio SR SR = R900/R680 [85]
21 Red-edgeNDVI RNDVI RNDVI = (R750 − R705)/(R750 + R705) [86]
22 Modified Triangular Vegetation Index MTVI MTVI = 1.2 × (1.2 × (R800 – R550) − 2.5 × (R670 − R 550 )) [77]
23 Triangular Vegetation Index TVI TVI = 0.5 × (120 × (R761 − R 581 ) – 200(R651 − R 581 )) [87]
24 Fluorescence Ratio Index 1 FRI1 FRI1 = R690/R630 [88]
25 Fluorescence Ratio Index 2 FRI2 FRI2 = R750/R800 [89]
26 Fluorescence Ratio Index 3 FRI3 FRI3 = R690/R600 [90]
27 Fluorescence Ratio Index 4 FRI4 FRI4 = R740/R800 [90]
28 Fluorescence Curvature Index FCI FCI = R2

683/(R675 × R691) [88]
29 Modified Red Edge Simple Ratio Index mRESR mRESR = (R750 − R 445 )/(R705 + R445) [91]
30 Normalized Phaeophytinization Index NPQI NPQI = (R415 − R 435 )/(R415 + R435) [92]
31 Red-Edge Vegetation Stress Index 1 RVS1 RVS1 =((R651 + R750)/2) − R733 [93]
32 Red-Edge Vegetation Stress Index 2 RVS2 RVS2 =((R651 + R750)/2) − R751 [93]
33 Water Index WI WI = R900/R970 [94]
34 Water Stress and Canopy Temperature WSCT WSCT = (R970 − R 850 )/(R970 + R850) [95]

LiDAR-derived canopy height metrics

1 Maximum of canopy height Hmax
2 Minimum of canopy height Hmin
3 Mean of canopy height Hmean
4 Mode of canopy height Hmode
5 Standard deviation of canopy height Hsd
6 Coefficient of variation of canopy height Hcv
7 Hmad Hmad = 1.4826 ×median (|height − Hmedian|)
8 Haad Haad = mean (|height − Hmean|)

9–20 Percentile of canopy height Hper H10, H20, H30, H40, H50, H60, H70, H80, H90, H95, H98,
H99

21 The Interquartile Range (iqr) of
canopy height Hiqr Hiqr = H75 − H25

22 Skewness of canopy height Hskn
23 Kurtosis of canopy height Hkurt

24–28 Canopy return density of height Hcrd
The proportion of points above the height quantiles (10th,
30th, 50th, 70th, and 90th) to the total number of points:
Hd10, Hd30, Hd50, Hd70, Hd90

29 Canopy relief ratio of height Hcrr (Hmean-Hmin)/(Hmax−Hmin)

30 Hcg The ratio of canopy returns of height and ground returns of
height
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Table 4. Cont.

No. Vegetation Index Acronym Equation References

LiDAR-derived canopy intensity metrics

1 Maximum of canopy intensity Imax
2 Minimum of canopy intensity Imin
3 Mean of canopy intensity Imean
4 Mode of canopy intensity Imode
5 Standard deviation of canopy intensity Isd

6 Coefficient of variation of
canopy intensity Icv

7 Imad Imad = 1.4826 ×median (|intensity − Imedian|)
8 Iaad Iaad = mean (|intensity−Imean|)
9–20 Percentile of canopy intensity Iper I10, I20, I30, I40, I50, I60, I70, I80, I90, I95, I98, I99

21 The Interquartile Range (iqr) of canopy
intensity Iiqr Iiqr = I75−I25

22 Skewness of canopy intensity Iskn
23 Kurtosis of canopy intensity Ikurt

24–28 Canopy return density of intensity Icrd
The proportion of points above the intensity quantiles (10th,
30th, 50th, 70th, and 90th) to the total number of points:
Id10, Id30, Id50, Id70, Id90

29 Canopy relief ratio of intensity Icrr (Imean–Imin)/(Imax−Imin)

30 Icg The ratio of canopy returns of intensity and ground returns
of intensity

Thermal-derived metric

1 Normalized relative canopy
temperature index Tir Tir = (Ti–Tmin)/(Ti–Tmax) [96]

3.5. Multimodal Fusion and Multi-Task Deep Learning
3.5.1. Deep Learning and the Need for Data Augmentation

Deep learning prediction performance could generally achieve its potential when
training on a sufficiently large dataset. This is valid partly due to its nature and capability
for searching relevant and salient features in the training data without any need for manual
feature engineering, which can only be done on the availability of a large amount of data.
Many have shown that data augmentation improves the generalization performance and
reduces overfitting on a small dataset [97,98]. We attained more data samples by iterating
random cropping on each plot boundary via a restricted ‘field of view’ (FOV). The FOV
was the actual plot size at 5.33 m × 0.76 m, equivalently, 176 pixels in length and 25 pixels
in width at 3 cm GSD, whereas the plot boundaries were fairly larger because the mature
plants traverse over the allies. The spatial 176 × 25 window randomly and iteratively
sliced 20 times on each plot to cover enough every corner of a plot but with not too
much overlapping among cropped images in the dataset. For each cropping iteration, a
random number generator was set the same across hyperspectral, LiDAR-derived, thermal
images to ensure the sliding window was cropping the same region within each plot. The
augmentation procedure was solely applied on the training set.

3.5.2. Convolutional Neural Network for Imagery Representation Learning

The convolutional neural network (CNN) has gained huge popularity in the applica-
tion of deep learning in the last decade due to its efficient and robust performance toward
learning salient representations or relevant features of the imagery data format [62]. This
study orchestrates a stack of 3D convolutional layers that can automate extracting jointly
spatial and spectral representations of a 3D hyperspectral cube, relying on a hypothesis
that crops exhibit their properties in both spatial and spectral domains. Particularly, we
assembled four 3D convolutional layers equipped with a kernel size of 3 × 3 × 7 (3 × 3 in
spatial dimension and 7 in spectral dimension) and stride of 1 pixel at a time. The number
of convolutional filters started with 8 at the first layer, raising a power of 2 to 16, 32, and
64 filters. Kernel weights of each convolutional layer were initialized by sampling from
Glorot uniform distribution [99]. The kernel bias was typically configured to initialize with
0. Rectified linear unit (ReLU) [100] served as activation functions due to its widespread
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popularity in tackling the vanishing gradient problem (gradient terms are close to or equal
0) as a network adds more layers and becomes deeper. Reducing the tensor volume by
subsampling layers is a recommended practice. We experimented on two pooling forms,
max pooling and mean pooling, and found that 3D max pooling layers with a size of
2 × 2 × 6 max pooling worked better because features tend to encode the spatial presence
of some pattern over the different tiles of the feature map, and obtaining the maximal
presence of different features became more informative. The second advantage of max
pooling refers to a local invariance that means small changes in a local neighborhood do not
change the result of max pooling. Similar to the 3D convolutional for volumetric learning
in hyperspectral imagery, a 2D convolutional version was constructed in two separate
network streams for LiDAR-derived and thermal imagery learning.

3.5.3. Multimodal Fusion and Multi-Task Prediction Block

Each of the three convolutional network streams ended up with 64 feature maps of
different tensor shapes that were then funneled to global average pooling layers. This
helped reduce trainable parameters and simplify the model capacity, thereby minimizing
the risk of overfitting. At the fusion node, we fused each of the 64 features together. Lastly,
a prediction block consisted of fully connected layers carrying 32 neuron units and ReLU
activation to map convolutional features to the output targets. Inserted between fully
connected layers was a dropout regularization technique [101] that involves the removal
of randomly selected neurons from the network’s hidden layers in each round of training.
By a random dropout, the model does not memorize or become over-reliant on certain
features of the data to reduce overfitting and generate a good prediction. The whole block
of multimodal fusion and multi-task deep learning was graphically illustrated in Figure 6.
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3.5.4. Loss Function

Selection of the proper loss function is critical for training an accurate model as it
measures how well the model did at predicting the outcome. Two common loss functions
for a regression modeling are Mean Squared Error (MSE) and Mean Absolute Error (MAE),
and each has certain properties. If outliers are present, the quadratic function of MSE
weights more largely on anomalous errors from outliers and significantly magnifies the
errors. MAE, however, behaves opposite to MSE, as it applies the absolute value to the
difference between the predictions and ground truth, thereby averaging it out across the
entire dataset. This property makes MAE ineffective in caring about outlier predictions
as the huge errors coming from the outliers end up being weighted the exact same as
lower errors. The fact is that extreme cases usually occur in plant phenotyping expressions
due to mutual interactions between internal and external variables such as genotypes and
environmental conditions. Huber loss function [102] offers the best of both worlds by
harmonizing MSE and MAE using the following piecewise Equation (2):

Lδ(y, f (x)) =

{
1
2 (y− f (x))2 f or |y− f (x)| ≤ δ

δ|y− f (x)| − 1
2 δ2 f or |y− f (x)| > δ

(2)

where y is the actual (true) value of the target data point, f (x) is the predicted value of the
data point. δ defines a threshold where the Huber loss function transitions from quadratic
to linear. δ is a hyperparameter to be tuned in which the Huber loss approaches MAE when
δ is asymptotic to 0 and MSE when δ becomes larger.

The deep learning architecture was implemented using TensorFlow (tensorflow.org)
and Keras (keras.io) Python libraries. The splitting ratio of 60–20–20% was used in training,
validation, and test samples. To assist the model to find the global minima and achieve
the lowest loss, we adopted several widely recommended techniques such as the Adam
(adaptive moment estimation) optimizer with a scheduled learning rate (started at 0.001
and exponentially decreased every 5 epochs).

3.6. Model Evaluation and Performance Metrics

To evaluate the performance across prediction models, the coefficients of determination
(R2), root mean square error (RMSE), and mean absolute errors (MAE) were computed and
contrasted, which can be expressed as follows:

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − yi)

2

RMSE =

√
∑n

i=1(ŷi − yi)
2

n− 1

MAE =
1
n

n

∑
j=1
|yi − ŷi|

where ŷi and yi are the measured and the predicted values, respectively, y is the mean of
the measured value, and n is the total number of samples in the testing set.

Further, a spatial variability of the prediction results was statistically evaluated, partic-
ularly by Global Moran’s I (GMI). The GMI measures the spatial autocorrelation contingent
on the maize plot locations and the model’s regression errors over the study area [5,103].
The errors were residuals between the measured and predicted phenotypes of each maize
plot. The GMI’s null hypothesis states that the phenotypes’ predicted errors are complete
spatial randomness or randomly distributed.
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4. Results
4.1. Results of a Naïve Fusion NDSI Method

The extended NDSI method was a fast and naïve approach for fusing all 269 spectral
bands, LiDAR canopy height and intensity, and thermal data. Figure 7 discloses the
correlation degree between the established NDSIs and maize phenotypic traits through
R2 heatmaps with a same scale of 0–1 (dark blue to dark red). The figure glimpsed that
NDSI heatmaps formed solely from spectra (Figure 7a) had regions having a higher degree
of correlations than those in the heatmaps formed from spectra, thermal, LiDAR height,
and intensity (Figure 7b). All eight highest R2 (lime cross sign) were found in Figure 5a’s
heatmaps. Equivalently, dry stalk biomass received the highest R2 = 35.7% when correlated
with the NDSI[534, 868]. Cob biomass correlated with the NDSI[715, 855] at R2 = 38.4%. The
R2 of dry grain yield reached up to 74.6% by the NDSI[715, 917]. Harvest index peaked at
R2 = 45.1% by the NDSI[504, 700]. The correlation of grain nitrogen utilization efficiency
(Grain NutE) with the NDSI[749, 866] made the highest R2 = 27.1%. The R2 for grain nitrogen
content equaled 79.6% at the NDSI[751, 769], and the total plant nitrogen content R2 was 80%
by the NDSI[751, 778]. The R2 of grain density achieved 27.6% as the highest value at the
NDSI[751, 789].

The common theme running through all heatmaps was the contributory significance
of green bands (530–560 nm) and red-edge bands (700–720 nm) in the spectra. Those bands
pairing with NIR bands (750–1000 nm) to create NDSIs correlated best with dry grain yield,
grain nitrogen content, and total plant nitrogen content. It is noted that the simple data
fusion NDSI by combining and normalizing spectral bands, LiDAR canopy height, LiDAR
canopy intensity, and thermal features correlated with eight maize phenotypic traits at a
minimal degree. This clues a necessity for a complication of extracting explanatory features
from each data source and fusing them effectively.

4.2. Machine Learning and Deep Learning Performance on Multisensory Fused Data

Figure 8 demonstrates the mean and standard deviation of coefficient R2 performed
on a 5-time bootstrap using four different regressors and a variety of multi-sensory data
fusions. The following common points can be noticed from Figure 6, and more details
(R2, RMSE, MAE of both train and test sets) can be accessed in Appendix B. First, the
prediction success highly varied from phenotype to phenotype, possibly dividing into
a limited (R2 < 0.5), moderate (0.5 < R2 < 0.8), and high level (R2 > 0.8). Predictions of
dry grain yield (R2 = 0.78), grain nitrogen content (R2 = 0.85), and total plant nitrogen
content (R2 = 0.85) were reported as the highest degree of success. Although different
studies employed different methods and data available, this study’s results were somewhat
better to recent studies of maize yield prediction (R2 varied 0.3–0.8 depending on growing
stages) [104–106], total Nitrogen content (R2 = 0.76) [107].

Predicting dry stalk biomass (R2 = 0.53), cob biomass (R2 = 0.47), harvest index
(R2 = 0.56), and grain NutE (R2 = 0.49) came in second at a moderate success. There is no
direct comparison, but recent studies of maize above ground biomass (AGB) predicted
more accurately than our results at R2 = 0.86 [108] and R2 = 0.87 [109]. Prediction results
of grain density (R2 = 0.34) showed a limited success. The varying prediction success can
also be seen through the error bars of each model; for example, models predicting dry stalk
biomass (Figure 8c) had smaller deviations when shuffling the dataset, while the deviation
of model predicting grain density was considerably wider. This proved that grain NutE
and grain density contained extreme values in the dataset, and when being shuffled and
randomly split, the train sets and test sets did not warrant an equivalence. The substantial
disparity between the MAE and RMSE (Appendix B) also suggested the existence of a very
wide and inconsistent data range of the two maize traits. This matter could be typically
dissolved by collecting more samples, which is recommended to future studies.
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Figure 7. Extended NDSI correlation heatmaps. Each NDSI was established by combining and
normalizing two 269 singular spectral bands (398 nm–1000 nm) (a), and fused features from spectra,
LiDAR canopy height, LiDAR canopy intensity, and canopy thermal data (b). The lime-colored cross
signs indicated the best R2 for each maize trait. In detail, Dry Stalk Biomass achieved a maximum
R2 = 0.357 with NDSI[534, 868]. Cob Biomass optimally gained R2 = 0.384 at NDSI[715, 855]. Dry Grain
Yield had the highest R2 = 0.746 at NDSI[715, 917]. Harvest Index received the highest R2 = 0.451 at
NDSI[504, 700]. Grain Nitrogen Utilization Efficiency (NutE) attained R2 = 0.271 at NDSI[749, 866]. Grain
Nitrogen Content (Grain N) reached R2 = 0.796 at NDSI[751, 769]. Total Plant Nitrogen Content (Total
Plant N) had the peak of R2 = 0.80 at NDSI[751, 778]. Grain Density ran into R2 = 0.276 at NDSI[751, 789].

Second, the prediction success highly varied from data type to data type. Models
deploying with data types of either hyperspectral singularity or hyperspectral fusion can
produce a sustainably better estimate for maize phenotypes in comparison to models using
thermal and LiDAR canopy intensity. On the other hand, models without the inclusion of
hyperspectral data, which are thermal, LiDAR intensity, and LiDAR height, presented a
limited success in predicting all maize traits. The variation of those models on shuffled
data being represented by the error bars in Figure 6a–h was also larger than the variation
of models with the presence of hyperspectral features.
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Figure 8. Prediction performance of eight maize phenotypes (a–h) represented by R2 across differ-
ent feature types and regressors. Feature types included thermal = canopy thermal, inten = LiDAR
canopy intensity, dsm = LiDAR canopy height, hyper = hyperspectral images. Feature fusions included
hyper + dsm = a fusion of hyperspectral and LiDAR canopy height, hyper + dsm + inten = a fusion
of hyperspectral, LiDAR canopy height, and LiDAR canopy intensity, and hyper + dsm + thermal = a
fusion of hyperspectral, LiDAR canopy height, LiDAR canopy intensity, and thermal.

Third, machine learning and multi-task deep learning methods performed the re-
gression comparably with a little disparity of R2, MAE, and RMSE. The RFR regressor
occasionally proved to be a slightly more accurate estimation (higher R2, Figure 8d,e), but
the multi-task learning method occurred as more stable by a narrower deviation (error bars,
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Figure 8f,g). Noticeably, if considering models with only thermal and LiDAR intensity for
all eight maize traits (Figure 8a–h), traditional machine learning can do the task minimally,
while a much higher prediction accuracy was observed in deep learning regressors. This
reflected that the SVR and RFR heavily relied on handcrafted features in which only a single
thermal index was manually extracted and deployed, while the deep learning regressors
perhaps grasped many informative features from the raw thermal images.

4.3. Spatial Distribution Maps of Predicted Results

Figure 9 projected the predicted values of dry grain yield and total plant nitrogen
content at a plot level on spatial maps. The two maps were results from the multi-task
learning model performing the prediction on the fusion of hyperspectral and LiDAR
canopy height imagery data. It is necessary to notice that only these two results were
graphically displayed on the maps due to a page limit of an article, and interested readers
are encouraged to contact the authors and request a complete copy of the digital maps.
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Figure 9. Spatial distribution maps of predicted dry grain yield (kg/ha) and total plant nitrogen
content (kg/ha) which were the results of the multimodal and multi-task deep learning model.

From the maps, it is visually detected that the distribution of predicted values clustered
into plot blocks of low and high values of both grain yield and plant nitrogen content traits.
These low- and high-value blocks were consistently aligned with the blocks annotated
with the nitrogen experiment. It means that low-value plot blocks corresponded to the
control blocks without nitrogen addition, whereas high-value plot blocks paired with the
experiment blocks with 225 (kg/ha) nitrogen fertilizer per each plot. Further, the models
returned the predicted values spanning within a narrower range of 2700 to 12,000 (kg/ha)
for grain yield and 41 to 240 (kg/ha) for plant nitrogen content, compared to the actual
values of 425 to 17,450 (kg/ha) and 26 to 314 (kg/ha), respectively (Table 3, statistics of
ground truth data). This matter occurred due to the possibility of the Huber effect set as
the loss of the models. Too extreme values in both ends were constrained by the Huber
loss, as such, making the regression errors smaller.

5. Discussion
5.1. Remote Sensing Data for High-Throughput Maize Phenotyping

The results in the preceding section promoted a varying success of maize phenotype
predictions with a use of multi-sensors UAV at very low altitude and high resolution. It
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is strongly desired to have an innovative tool for high-throughput maize phenotyping
by estimating all traits at a time; however, the fact is that each crop phenotype has its
own mechanism that dissimilarly reacts to the nitrogen experiment, not to mention the
environmental conditions at different times in a day [110,111]. Eight maize plant trait in
this study belongs to different categories: biophysical (stalk biomass, cob biomass, harvest
index) biochemical (plant nitrogen content), and maize grain traits (grain yield, grain
nitrogen content, and grain density).

The significance of optical remote sensing, especially the NIR spectra (750–1000 nm)
in all eight maize estimations was demonstrated. The wavelengths most important for
predictions are detailed in an ascending order: 749 nm, 751 nm, 769 nm, 778 nm, 789 nm,
855 nm, 866 nm, 869 nm, and 917 nm (Figure 7). More concretely, the mean decrease
impurity (MDI) feature importance analysis (Figure 10) unfolded the two most critical VIs
for predictions, namely, Fluorescence Ratio Index 2 and 4 FRI2[750, 800] and FRI4[740, 800] in
the form of NIR wavelengths (740 nm, 750 nm, and 800 nm). It has become obvious that the
near-end NIR simulates molecular motion of compounds residing in internal leaves that
induces a strong reflection of downwelling radiance [112–116]. The NIR spectral pattern is
also primarily influenced by internal scatterings in the cell structure and air-filled space,
and the interaction of irradiance with starch, oil, proteins, and further compartments inside
the cells, cell walls and membranes [117,118]. It is worth mentioning that the water content
of leaves and plants can be characterized in the far-end wavelengths (greater than 900 nm)
in the NIR region [119]. Being able to remotely sense the above-stated compositions from
the aerial level greatly benefited estimating not only canopy and plant phenotypes but
also grain-related traits since the elements are transported from stems to the corn ears and
eventually ended up at kernels.

Stalk biomass was found to be estimated the most accurately by fusing data modalities.
In addition to the valuable contribution of the NIR spectra discussed above, canopy and
plant structural descriptions derived from LiDAR data such as canopy height and intensity
served as critical sources of information to predict stalk biomass. More obviously, Figure 8a
informed the dominance of the crop’s structural features when 8 out of 10 of the most
important features were descents from the LiDAR canopy height. Many studies came
to a consensus that vegetation spectra alone are insufficient to access a high accuracy of
stalk biomass prediction due to a vegetation saturation effect. [112,120] explained that this
effect likely occurs when the crops canopy outstretches and reaches to a 100% cover in
the mid-vegetative period, while most crops’ biomass continues accumulating under the
cover. In this context, the absorbed and reflected amount of downwelling radiation remains
virtually unchanged, but the stalk biomass is more likely to increase, making it harder to
predict. Our study reinforced that the effect was substantially lessened by taking structural
descriptions such as LiDAR derivatives into the model.

5.2. Contribution of Different Data Modalities for Phenotyping Predictions

At the time, this study utilized and encompassed all of the state-of-the-art sensors
tailored to a small UAV for phenotyping scouting. In this section, the potential of each data
type was explored on the basis of both individual and joint contribution toward a variety
of maize phenotyping predictions. First, relying on the results from Figure 8 above, the
hyperspectral data were the modality, whether existing in a form of indices or imagery or in
a type of singularity or fusion, being able to substantially boost the regression performance.
Further analyses, including MDI feature importance (Figure 10) and a sensitivity analysis
of imagery augmentation (Figure 11), disclosed that hyperspectral data in both indices and
imagery format stood up as the most contributory predictor. Many of the previous studies
have acknowledged the great value and applicability of UAV-borne hyperspectral imaging
(HSI) on the basis of a better performance profiling vegetation properties and respective
endmembers by a contiguous spectra record and storage [16,18,60].
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In spite of the proven value of the hyperspectral, there was an exception with respect
to predicting maize stalk biomass when the LiDAR-derived canopy height became a more
predictive power than the hyperspectral (Figure 10a and 11a). In consistency with previous
studies [112,114], crop canopy height was highly correlated with biomass, and the inclusion
of crop height with spectral indices improved the accuracy of the biomass prediction. In
addition to the finding of LiDAR data aforementioned, this study unfolded the significance
of representations of 50 and higher percentiles of the canopy height, as their indices were
all displayed as the most important features, particularly for stalk biomass prediction. This
implied that the upper half of the canopy structure such as stems, leave angle, tassels
contains enriched materials essential for phenotyping scouting. Stalk biomass was the only
trait in this study showcasing the value of LiDAR canopy height weighed over the other
data types value (Figure 11a).

The third data modality investigated in this study was LiDAR-derived intensity at
the canopy level. LiDAR intensity indices noticed a weak significance in predicting grain-
affiliated traits (Figure 10e,h) with a standout of the Imax index (the maximum value of
LiDAR canopy intensity points). The canopy roughness and scattering intensity have little
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quantitative meaning in remote sensing for crop monitoring; instead, LiDAR intensity could
be used for qualitative analyses of the points [121]. Thermal data had the least influence on
all predictive models of maize traits in this study irrespective of machine learning or deep
learning regressors and of singularity data or fusion data. Graphically explained by the MDI
feature importance analysis in Figure 10, the thermal index in machine learning models was
completely irrelevant in maize predictions, and similarly, a negligible contribution towards
the predictive power was also found in deep learning models with thermal imagery data
alone (Figure 11). Previous studies showed that thermal infrared (8000–14,000 nm) remote
sensing lends itself to modeling water-induced stress in crops by recognizing the plant
responses, including stomatal closure, decreased transpiration, or simply leaf and canopy
water content [39]. It was not the same case in this study when water was adequately
supplied to all plots in the entire growing season.
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Figure 11. The effect of data augmentation on the prediction performance of multi-task deep learning
with different data modality and fusions. Data types included thermal = canopy thermal images,
inten = LiDAR canopy intensity images, dsm = LiDAR canopy height images, hyper = hyperspectral
images. Feature fusions included hyper + dsm = a fusion of hyperspectral and LiDAR canopy height
images, hyper + dsm + inten = a fusion of hyperspectral, LiDAR canopy height, and LiDAR canopy
intensity images, and hyper + dsm + thermal = a fusion of hyperspectral, LiDAR canopy height,
LiDAR canopy intensity, and thermal images.
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Multimodal data fusion was the focal interest in this study that performed a sounder
prediction than individual data modality models. It is plausible that, in as many char-
acteristics of maize as being sensed, each of these details, itself and jointly, supplements
to predicting the crop’s status. The hyperspectral provides ample information about ni-
trogen [122], chlorophyll and anthocyanin absorption [123], leaf cellular scattering [124],
senescence [125]. LiDAR derivatives communicate plant structures and metabolism [126],
whereas thermal discloses canopy temperature and water content ([127]. A 3 to 10% more
accurate prediction by a fusion of multiple aerial data modalities is also found in a few
articles relative to soybean yield estimation [5] and urban tree classification [128]. We
examined four fusion models in this study, and the prediction performed by the fusion
between hyperspectral imagery and LiDAR canopy height was most accurate.

5.3. Feature- and Imagery-Based Prediction Comparison

The results from Figure 6 illuminated a comparable predictive performance between
feature-wise and image-wise methods with a few minor exceptions. When predicting the
harvest index and grain nitrogen utilization (Figure 6d,e), the RFR performance with hand-
crafted features proved to be discernible relying largely on the significance of PPR[450, 550]
and FRI2[750, 800]. Comparing the CNNs deep learning assembled by multiple filters and
slicing 3D kernels (3 × 3 × 6) casts doubt on whether the models experienced undesired
information loss of the relationship between the above-indicated bands of 450 nm and
550 nm, and between 750 nm and 800 nm for the predictions. It was perhaps due to the
3D kernels neglecting ratios of faraway bands in the spectral dimension [129,130]. It could
hardly be adjusted because the study attempted to construct a single model for multiple
outputs, and future studies may want to fine tune these hyperparameters and tailor them
for individual predictions of harvest index and grain nitrogen utilization.

Image-wise deep learning models’ performance discernibly beat the indices-wise
machine learning models in all of the predictions if either thermal imagery and LiDAR
canopy intensity imagery were inputs (Figure 8). In the same figure, given the 5-time dataset
shuffling and bootstrapping, the smaller error bars of deep learning models proceeding
with thermal and LiDAR canopy intensity concretely showed that image-wise models
remained more stable and steadier than the indices-wise models. This result demonstrated
the high quality of excellence of CNN family architectures when processing images and
extracting learnable details from them [131,132]. It becomes clear that the vegetation indices
can only derive a few numbers to a dozen of attributes such as the temperature mean of
each whole plot, but by an operational difference, the convolutional layers can slide through
all pixels of the plots’ thermal images to attain enriched and complex attractions for the
predictions. Furthermore, the stability of image-wise deep learning methods could again
be observed in Appendix B (a summary table of training and testing results) citing no
clue of overfitting between training and testing metrics (R2, MAE, RMSE). The overfitting
magnitude of indices-wise machine learning models was substantially higher, particularly
when looping through shuffled datasets.

5.4. Mono-Task and Multi-Task Learning Comparison

In a comparison between mono-task and multi-task deep learning models, it is neces-
sary to inform that mono-task models learned and inferred independently for each of the
eight maize traits, which makes them different from multi-task models that simultaneously
accomplished eight phenotypic predictions. Given the same feature fetching approach
(i.e., data singularity or fusion), the results of mono-task and multi-task methods from
Figure 8 were identical, but to mention that the multi-task slightly outperformed in models
predicting harvest index, grain nitrogen utilization efficiency (Grain NutE), and grain
density. This finding was very supportive as it was aligned with the results of [133] in that
the author articulated that multi-task learning could exploit latent relatedness of crop traits
during the process of optimizing weights and biases of each node in the network.
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Further, the multi-task models appeared to be noticeable when inputs are an imagery
fusion of hyperspectral, LiDAR, and thermal. The high performance of the multi-task even
sustained throughout all fused models, while the performance of the mono-task saturated,
if not slightly decreased, when adding LiDAR canopy intensity and thermal to the fused
models (Figure 8). It is obvious that while LiDAR canopy intensity or thermal became
noisy and corrupt data for a particular maize trait, it could be predictive data for another
trait. The sharing protocol can be achieved only by the multi-task, where it leveraged the
convolutional layers to extract shared information from the data fusion and allocate them
to each task, if needed, to minimize the preset loss. The last and most visible advantage
of the multi-task over the mono-task rested in chipping down required computational re-
sources to a fraction and concurrently accelerating high-throughput phenotyping. Because
calculating resource savings from multi-task learning was not a focus of this study, we did
not document these figures, and interested readers can refer to this matter in [134,135].

5.5. Impacts of Data Augmentation on Deep Learning Regression

With a limited number of samples collected, it becomes difficult for any deep learning
methods to be convergent during the training process and to infer a reliable result. The
imbalance effect of small labeled samples and the high dimensionality of remotely sensed
data is an intrinsic limitation in the remote sensing research, which is known as the Hughes
phenomenon [23]. This study is not an exception when there were only 369 field plots
manually measured and annotated for analyses. To address the limitation, we augmented
imagery data by iterating 20 cycles of randomly slicing a spatial window over plots only
on training sets. Figure 10 unveiled a boost in the R2 metric when the augmented models
inferred against the test sets. With respect to the impact of the augmentation method on
the models with a singularity of data types, the R2 metrics steeply ascended after a few
augmentation iterations, and it continued even after 20 iterations. It bears noting that the
hyperspectral images did not benefit from the augmentation cycles as much as the LiDAR
canopy height when the R2 of LiDAR height-inputted models took off and overshadowed
the hyperspectral model’s R2 (Figure 10a).

With respect to the impact of the augmentation on data fusion models, the results also
soared up after the first three iterations and reached saturation in the 20 iterations in the
models of predicting cob biomass and total plant nitrogen content. The positive impact
of data augmentation was credited to slicing a fixed-size spatial window through every
pixel of a plot in which details of every plant in that plot were fully captured. Adding
new augmented images to deep learning models equally meant forcing the models to
learn all useful details of the crop’s plots, and also meant lessening the possibility that
convolutional nodes fondly remember and heavily rely on certain details, which often leads
to an overfitting effect.

5.6. Performance of Different Methods over Space

The residuals between actual and predicted values as results of seven data sources
and four different regressors were evaluated in terms of spatial randomness by GMI
statistical test. Figure 12 represented Moran’s I coefficient in vertical bars colored by
four methods followed by the asterisks implying a statistical significance (p < 0.001) of
spatial auto-correlation between data points (plot prediction errors). It became obvious
that regression residuals resulting from deep learning, especially multi-task learning, were
insignificantly spatially correlated and remained independent from other residuals in
surrounding plots. The spatial randomness was more solidly secured in deep learning
models carrying hyperspectral alone and data fusion. The small and spatially random
regression errors suggested an impressive prediction capability of multi-task deep learning
models that could extensively apprehend complex and underlying nonlinear abstracts of
imagery data of each crop plot, compared to a handcrafting establishment of vegetation
indices [103]. The SVR and RFR appeared to be less reliable as their regression residuals
were spatially statistically insignificant in some cases but also significant in predictions
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of harvest index (Figure 12d) and grain nitrogen content (Figure 12f). Additionally, the
GMI test reported a significance of the regression errors from cob biomass predictions
across all models and data sources (Figure 12b). The positive sign of Moran’s I coefficients
noticed a clustering over the space of cob biomass prediction’s residuals. Inspecting these
residuals over a map, the clusters of residuals originated from maize growing along aisles
exposed the most to weather conditions. It is possible that the UAVs failed to sense certain
confounding variables that could help to explain the corn cob variation, inclusive of, but
not limited to, photosynthesis under the influence of sunlight intensity and metabolism
with air and soil temperature progressive over time. This suggested future UAV remote
sensing research to survey crops in a temporal dimension and document and incorporate
field metadata into analyses.
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Figure 12. Comparison of Moran’s I values of different data types and fusions, and different regressors.
The asterisk ‘*’ on the top of bars implies the Moran’s I is statistically significant at 0.001 p-value level.
Feature types included thermal = canopy thermal, inten = LiDAR canopy intensity, dsm = LiDAR
canopy height, hyper = hyperspectral images. Feature fusions included hyper + dsm = a fusion of
hyperspectral and LiDAR canopy height, hyper + dsm + inten = a fusion of hyperspectral, LiDAR
canopy height, and LiDAR canopy intensity, and hyper + dsm + thermal = a fusion of hyperspectral,
LiDAR canopy height, LiDAR canopy intensity, and thermal.
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6. Conclusions

With the proven success of UAV in recent digital agriculture, this study was an
extended investigation of the UAV versatility for high-throughput maize phenotyping. The
UAV aerial remote sensing was instrumental for scouting and estimating a full suite of
eight different phenotypes in a corn field by blending geospatial and artificial intelligence
(AI) competence, which is also known as GeoAI. The novelty entitling the study to be
highly significant in both theoretical and practical exercises rested in the deployment of
UAV airborne multisensory data fusion within a single multi-task deep learning model.
Considering the results and discussions presented in the aforementioned, we concluded
the following:

1. The success level of UAV multisensory data for high-throughput maize phenotyp-
ing varies from trait to trait because each trait is responsive to the experiment and
environmental conditions in different mechanisms. Grain density prediction was the
least successful (R2 = 0.34) in contrast with very high predictable traits: plant total
nitrogen content and grain nitrogen content (R2 = 0.85). The resulting RMSE and MAE
were congruent in high R2 models and became discrepant in low R2 models, which
signifies extreme values in the ground dataset. Expanding observations and collecting
more data are highly recommended, particularly for grain density, grain NutE, and
harvest index in future research.

2. There is a varying contribution of each data modality (hyperspectral, thermal, LiDAR
canopy height, LiDAR canopy intensity) individually and their fusion for phenotyping
predictions. Hyperspectral data were the most primarily contributory to virtually all
eight estimations, especially dry grain yield, and nitrogen content in plants and grains.
LiDAR canopy height enjoyed its merit in predicting stalk biomass more accurately
than any other modality. The superiority of multisensory data fusion in all phenotype
predictions was evident in the study because the fusion can help to exceed limitations
of single data modality, for example, the vegetation saturation effect occurring in
optical remote sensing.

3. Feature- and imagery-based prediction are comparable if the latter is not superior to
the former. Image-based deep learning within a framework of convolutional neural
networks (CNNs) demonstrated an automation of the feature extraction, neither
relying on human expertise nor being prone to human errors. This is concretely
evidenced by the outperformance of image-based deep learning when thermal or
LiDAR intensity data were funneled to the CNNs across maize trait predictions.
The image-based deep learning remained stable as indicated by a smaller deviation
through dataset shuffling.

4. Mono-task and multi-task learning are comparable if the latter is not superior to the
former. Multi-task deep learning leverages latent relatedness among maize traits
during optimizing cycles of weights and biases of each network node. The shar-
ing protocol of multi-task models can reach its full potential when interacting with
multisensory data fusion, which becomes multi-input multi-output models. It is
also evident that executing multi-task learning models only requires a fraction of
the computational resources and time needed for mono-task learning models, while
accelerating high throughput phenotyping by simultaneous predictions.

5. Data augmentation for deep learning in the context of regression succeeds to elevate
the intrinsic issue of a small sample size in remote sensing research (i.e., the Hughes
effect). Augmented data also help to build up the rigidity and reliability of deep
learning models by faster convergence and less overfitting.

6. A randomness over space of the prediction residuals from the Global Morans’ I
analysis implies that there were no confounding variables implicitly veering the
predictive performance of maize traits. A small and random regression error also
reinforces the versatility of UAV airborne multisensory data fusion in the framework
of multi-task deep learning. Cob biomass is the only trait showing a clustering
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pattern of prediction errors in all models, which needs to be investigated further in
future research.
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Appendix B

Table A1. Results of maize phenotypic prediction performed by different data sources and regressors.

Datasets Metrics

Stalk Biomass (kg/ha) Cob Biomass (kg/ha) Dry Grain Yield (kg/ha)

Hand-Crafted
Features-Based Imagery-Based Hand-Crafted

Features-Based Imagery-Based Hand-Crafted
Features-Based Imagery-Based

SVR RFR Mono-Task Multi-Task SVR RFR Mono-Task Multi-Task SVR RFR Mono-Task Multi-Task

Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

Thermal

R2 0.06 0 0.1 0.02 0.15 0.12 0.15 0.11 0.05 0 0.08 0 0.22 0.22 0.2 0.2 0.07 0.02 0.13 0.05 0.28 0.26 0.28 0.26

MAE 1522 1518 1519 1486 1419 1403 1422 1404 377 401 377 393 336 335 339 337 2672 2784 2603 2743 2272 2351 2273 2326

RMSE 2120 1969 2088 1943 2015 1844 2016 1855 485 507 474 498 438 443 444 448 3170 3252 3081 3211 2786 2833 2795 2830

LiDAR Intensity

R2 0.2 0.09 0.16 0.04 0.15 0.16 0.14 0.13 0.3 0.09 0.16 0.03 0.19 0.22 0.18 0.21 0.37 0.04 0.17 0 0.14 0.17 0.13 0.15

MAE 1394 1440 1463 1502 1454 1355 1473 1360 316 363 362 383 352 341 356 346 2108 2615 2560 2807 2484 2462 2510 2493

RMSE 1961 1867 2003 1926 2019 1805 2034 1824 416 474 454 492 446 443 449 446 2603 3209 2993 3311 3047 3008 3065 3023

LiDAR Height

R2 0.55 0.48 0.58 0.45 0.37 0.38 0.31 0.31 0.37 0.27 0.45 0.33 0.28 0.3 0.29 0.30 0.47 0.33 0.41 0.37 0.25 0.25 0.26 0.26

MAE 996 1040 1052 1108 1254 1191 1326 1266 276 307 274 300 325 313 323 313 1698 1886 1925 1956 2269 2249 2254 2250

RMSE 1472 1414 1419 1464 1744 1550 1823 1632 393 423 369 410 422 419 419 418 2390 2668 2526 2611 2857 2851 2843 2840

Hyper
spectral

R2 0.54 0.5 0.48 0.36 0.43 0.36 0.4 0.32 0.57 0.5 0.56 0.46 0.45 0.37 0.45 0.39 0.81 0.77 0.81 0.78 0.76 0.72 0.76 0.73
MAE 953 1000 1076 1146 1131 1167 1145 1171 223 244 238 262 270 291 268 284 1061 1206 1082 1175 1225 1323 1218 1276

RMSE 1488 1392 1582 1576 1651 1568 1703 1613 324 353 329 368 369 398 368 390 1430 1578 1438 1554 1602 1722 1616 1688

Hyper + LiDAR
Height

R2 0.6 0.53 0.64 0.47 0.5 0.46 0.4 0.37 0.54 0.43 0.58 0.47 0.47 0.4 0.44 0.41 0.84 0.73 0.81 0.78 0.76 0.73 0.73 0.72
MAE 911 1008 989 1068 1069 1096 1164 1156 221 265 233 259 264 281 271 279 914 1297 1083 1176 1223 1287 1274 1312

RMSE 1375 1343 1321 1428 1545 1443 1694 1549 335 376 322 364 363 387 372 384 1301 1682 1437 1555 1609 1691 1708 1718

Hyper + LiDAR
Height + LiDAR

Intensity

R2 0.57 0.49 0.64 0.47 0.47 0.47 0.42 0.39 0.48 0.41 0.57 0.47 0.44 0.41 0.45 0.41 0.86 0.72 0.81 0.77 0.73 0.72 0.74 0.72

MAE 946 1028 990 1069 1116 1088 1147 1135 248 271 236 261 272 281 267 279 833 1380 1082 1179 1282 1323 1268 1315

RMSE 1437 1393 1321 1430 1594 1430 1674 1530 357 383 326 365 372 386 368 384 1197 1748 1436 1558 1705 1730 1692 1723

Hyper + LiDAR
Height + LiDAR

Intensity+ Thermal

R2 0.57 0.49 0.64 0.47 0.47 0.46 0.45 0.43 0.48 0.41 0.57 0.46 0.44 0.40 0.46 0.43 0.85 0.72 0.81 0.77 0.74 0.72 0.73 0.71

MAE 939 1038 989 1070 1113 1083 1107 1108 248 271 237 263 269 284 262 274 923 1361 1082 1179 1277 1338 1267 1321

RMSE 1432 1402 1321 1430 1599 1448 1623 1478 357 383 326 367 370 388 365 380 1228 1734 1436 1558 1696 1752 1701 1747
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Table A2. Results of maize phenotypic prediction performed by different data sources and regressors (cont.).

Datasets Metrics

Harvest Index Grain Nitrogen Utilization Efficiency (Grain NutE) Grain Nitrogen Content (kg/ha)

Hand-Crafted
Features-Based Imagery-Based Hand-Crafted

Features-Based Imagery-Based Hand-Crafted
Features-Based Imagery-Based

SVR RFR Mono-Task Multi-Task SVR RFR Mono-Task Multi-Task SVR RFR Mono-Task Multi-Task

Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

Thermal

R2 0.02 0 0.07 0 0.14 0.13 0.13 0.13 0 0 0.04 0 0.12 0.1 0.11 0.09 0.03 0 0.12 0.03 0.33 0.3 0.33 0.31

MAE 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 8.3 7.97 8.42 8.17 7.78 7.41 7.78 7.43 41.08 43.28 40.6 43.28 33.41 34.7 33.22 34.66

RMSE 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 11.14 10.89 10.94 10.76 10.49 10.15 10.53 10.24 48.44 50.67 46.29 48.97 40.25 41.34 40.33 41.30

LiDAR Intensity

R2 0.12 0 0.1 0 0.04 0.04 0.02 0.02 0.14 0.08 0.17 0.02 0.11 0.11 0.09 0.09 0.38 0.05 0.2 0.02 0.19 0.2 0.17 0.18

MAE 0.06 0.07 0.07 0.07 0.07 0.06 0.07 0.07 7.76 7.58 7.81 7.91 7.89 7.64 8.08 7.66 31.29 39.66 39.14 43.55 37.98 38.0 38.94 39.1

RMSE 0.08 0.09 0.08 0.09 0.09 0.09 0.09 0.09 10.36 10.27 10.15 10.60 10.52 10.14 10.69 10.22 38.58 48.06 44.09 49.09 44.39 44.26 44.99 45.04

LiDAR Height

R2 0.23 0.02 0.28 0.12 0.05 0.04 0.04 0.03 0.33 0.2 0.35 0.26 0.18 0.17 0.17 0.19 0.54 0.36 0.47 0.42 0.3 0.3 0.3 0.3

MAE 0.05 0.06 0.06 0.06 0.07 0.06 0.07 0.06 6.48 6.96 6.81 6.96 7.52 7.37 7.63 7.41 23.24 27.93 27.35 28.63 33.98 34.33 34.26 34.53

RMSE 0.08 0.09 0.08 0.08 0.09 0.09 0.09 0.09 9.15 9.59 9.03 9.24 10.12 9.74 10.16 9.65 33.27 39.52 35.74 37.60 41.1 41.55 41.31 41.57

Hyper
spectral

R2 0.53 0.49 0.53 0.42 0.45 0.41 0.45 0.41 0.39 0.29 0.44 0.3 0.36 0.29 0.33 0.27 0.87 0.82 0.88 0.85 0.85 0.81 0.84 0.81
MAE 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 5.57 5.85 5.86 6.01 6.13 6.05 6.23 6.15 12.79 15.87 12.67 13.97 14.66 16.13 14.69 16.33

RMSE 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 8.75 9.05 8.35 8.97 8.92 9.04 9.13 9.18 17.66 20.95 17.22 19.24 19.26 21.37 19.63 21.56

Hyper + LiDAR
Height

R2 0.55 0.48 0.6 0.56 0.47 0.41 0.42 0.43 0.42 0.32 0.55 0.49 0.38 0.3 0.27 0.25 0.87 0.81 0.88 0.85 0.84 0.81 0.81 0.79
MAE 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 5.36 5.90 5.51 5.55 6.01 6.12 6.74 6.51 12.69 16.62 12.67 13.99 14.63 16.21 16.03 16.77

RMSE 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.07 8.48 8.82 7.48 7.62 8.79 8.97 9.54 9.27 17.77 21.76 17.22 19.27 19.58 21.73 21.42 22.43

Hyper + LiDAR
Height + LiDAR

Intensity

R2 0.56 0.47 0.6 0.55 0.46 0.42 0.42 0.43 0.44 0.33 0.56 0.48 0.26 0.24 0.27 0.27 0.85 0.79 0.88 0.85 0.81 0.79 0.81 0.79

MAE 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 5.37 6.02 5.55 5.57 6.86 6.67 6.71 6.44 14.4 16.71 12.66 14.00 15.99 16.96 15.86 16.89

RMSE 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.07 8.34 8.77 7.43 7.70 9.62 9.37 9.53 9.17 19.33 22.36 17.21 19.27 21.25 22.62 21.22 22.65

Hyper + LiDAR
Height + LiDAR

Intensity + Thermal

R2 0.55 0.46 0.6 0.55 0.45 0.42 0.44 0.45 0.45 0.31 0.56 0.48 0.29 0.23 0.29 0.29 0.86 0.8 0.88 0.85 0.81 0.78 0.82 0.79

MAE 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 5.21 6.08 5.55 5.57 6.71 6.65 6.61 6.36 13.47 16.65 12.66 14.00 16.24 17.01 15.51 16.7

RMSE 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.07 8.24 8.90 7.43 7.69 9.44 9.39 9.39 9.02 18.57 22.20 17.21 19.28 21.66 23.10 21.15 22.50
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Table A3. Results of maize phenotypic prediction performed by different data sources and regressors (cont.).

Datasets Metrics

Total Plant N (kg/ha) Grain Density

Hand-Crafted Features-Based Imagery-Based Hand-Crafted Features-Based Imagery-Based

SVR RFR Mono-Task Multi-Task SVR RFR Mono-Task Multi-Task

Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

Thermal

R2 0.03 0 0.13 0.05 0.34 0.32 0.32 0.29 0.01 0 0.03 0 0.14 0.09 0.12 0.11

MAE 58.2 60.79 57.97 60.30 46.8 47.91 48.32 49.19 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03

RMSE 68.96 71.64 65.48 68.07 56.93 57.49 57.74 58.52 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03

LiDAR Intensity

R2 0.42 0.04 0.21 0.04 0.21 0.23 0.18 0.19 0.11 0.05 0.13 0.03 0.1 0.12 0.1 0.13

MAE 43.12 54.85 55.63 61.01 52.5 51.9 55.19 54.67 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03

RMSE 53.19 67.95 62.47 68.23 62.17 60.97 63.65 62.65 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.03

LiDAR Height

R2 0.58 0.44 0.52 0.47 0.36 0.36 0.34 0.34 0.29 0.15 0.28 0.19 0.14 0.13 0.15 0.14

MAE 32.49 37.95 37.19 39.17 46.26 46.61 46.77 47.39 0.02 0.03 0.02 0.02 0.03 0.03 0.03 0.03

RMSE 45.58 51.94 48.53 50.80 56.26 55.94 56.86 56.57 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.03

Hyperspectral

R2 0.88 0.85 0.88 0.86 0.87 0.85 0.85 0.83 0.4 0.29 0.38 0.28 0.34 0.32 0.33 0.32

MAE 17.37 20.39 17.31 18.98 18.97 20.25 20.01 21.56 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

RMSE 24.51 26.91 24.24 26.16 25.45 27.06 27.18 28.74 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Hyper +
LiDAR Height

R2 0.88 0.85 0.88 0.85 0.86 0.84 0.82 0.82 0.47 0.34 0.44 0.34 0.34 0.32 0.31 0.31
MAE 17.27 20.38 17.41 19.16 19.68 20.83 22.25 22.62 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

RMSE 24.3 27.22 24.15 26.64 26.25 27.43 29.53 29.40 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Hyper +
LiDAR Height +
LiDAR Intensity

R2 0.87 0.83 0.88 0.85 0.84 0.83 0.83 0.82 0.38 0.31 0.46 0.35 0.3 0.28 0.3 0.3

MAE 17.9 21.82 17.39 19.22 21.37 22.24 21.98 22.5 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.02

RMSE 24.86 28.31 24.11 26.74 28.4 28.68 29.17 29.37 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Hyper +
LiDAR Height +
LiDAR Intensity

+ Thermal

R2 0.88 0.83 0.88 0.85 0.83 0.83 0.83 0.82 0.38 0.32 0.46 0.35 0.29 0.25 0.31 0.29

MAE 17.12 21.93 17.39 19.23 21.63 21.85 21.65 22.65 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02

RMSE 23.95 28.54 24.11 26.75 28.76 28.39 28.94 29.40 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
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