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Abstract: This paper investigates multimodal sensor architectures with deep learning for audio-visual
speech recognition, focusing on in-the-wild scenarios. The term “in the wild” is used to describe
AVSR for unconstrained natural-language audio streams and video-stream modalities. Audio-visual
speech recognition (AVSR) is a speech-recognition task that leverages both an audio input of a
human voice and an aligned visual input of lip motions. However, since in-the-wild scenarios
can include more noise, AVSR’s performance is affected. Here, we propose new improvements for
AVSR models by incorporating data-augmentation techniques to generate more data samples for
building the classification models. For the data-augmentation techniques, we utilized a combination
of conventional approaches (e.g., flips and rotations), as well as newer approaches, such as generative
adversarial networks (GANs). To validate the approaches, we used augmented data from well-
known datasets (LRS2—Lip Reading Sentences 2 and LRS3) in the training process and testing was
performed using the original data. The study and experimental results indicated that the proposed
AVSR model and framework, combined with the augmentation approach, enhanced the performance
of the AVSR framework in the wild for noisy datasets. Furthermore, in this study, we discuss the
domains of automatic speech recognition (ASR) architectures and audio-visual speech recognition
(AVSR) architectures and give a concise summary of the AVSR models that have been proposed.

Keywords: multimodal sensing; audio-visual speech recognition; deep learning

1. Introduction

Automatic speech recognition (ASR) by machine has been a field of research for more
than 60 years. It is robust against the full range of real-world noise and other acoustic
distorting conditions. However, reliably recognizing spoken words in realistic acoustic
environments is still a challenge. Audio-visual speech recognition (AVSR) is the task
of transcribing text from audio and visual streams, which has recently attracted a lot of
research attention due to its robustness against noise. Since the visual stream is not affected
by the presence of noise, an audio-visual model can lead to improved performance over an
audio-only model as the level of noise increases.

Previous works and studies in sensor-input architectures for automatic speech recog-
nition (ASR) applications can be characterized by two approaches: (1) shallow-structured
learning approaches for network training and classification; and (2) the utilization of singu-
lar modalities, such as speech signals, for training network architectures. Artificial neural
network (ANN) architectures, such as the multilayer perceptron (MLP), radial basis func-
tion (RBF) networks and support vector machines (SVMs), are shallow-structured learning
architectures which have been frequently used for ASR (Haton 1999 [1]; Phillips, Tosuner
and Robertson, 1995 [2]) and other multimedia applications, such as face recognition
(Lim et al., 2009 [3]).
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Shallow-structured learning architectures are simple network structures that typically
only have a single hidden layer for nonlinear feature transformations. Other examples of
shallow-structured learning architectures that have been used for ASR are hidden Markov
models (HMMs; Kinjo and Funaki, 2006 [4]), conditional random fields (CRFs; Zweig and
Nguyen, 2009 [5]) and Gaussian mixture models (GMMs) (Fujimoto and Riki, 2004 [6]). In
2016, Deng [7] commented that “shallow architectures have been shown effective in solving
many simple or well-constrained problems, but their limited modeling and representational
power can cause difficulties when dealing with more complicated real-world applications
involving natural signals such as human speech, natural sound and language, and natural
image and visual scenes”.

The first set of advancements in ASR was achieved by using deep neural network
(DNN) architectures and learning approaches. Compared to shallow-structured learn-
ing approaches, deep learning architectures have the characteristics of utilizing several
(hundreds to thousands) layers of nonlinear computational stages that are organized in a
hierarchical structure to enable the end-to-end learning of complex systems. These DNN
architectures have been shown to overcome the local optimization issues that are typically
encountered in shallow-structured learning-neural-network architectures. Deng [7] and
Nassif et al. [8]) present surveys of deep-learning architectures for ASR applications. The
second set of advancements in ASR was achieved by using multimodal sensor inputs for
the architectures. Compared to single-modality ASR-sensor architectures and approaches,
multimodal sensor architectures have the characteristics of utilizing multiple input modali-
ties (e.g., speech, image, biosignals, etc.) to enable higher classification performance and
robustness against noise.

When both the speech and image modalities are utilized for ASR tasks, the problem
is often termed audio-visual speech recognition (AVSR). Dupont and Luettin [9] discuss
a typical structure for an AVSR multimodal-sensor architecture. Their AVSR architecture
consists of three components: (1) an acoustic or audio module to extract noise-robust
features from the speech signal; (2) an image or visual module to extract lip-contour
information and color information on the mouth area; and (3) a fusion module using
HMMs for the combined modeling of the audio- and visual-feature streams. Note that the
usage of audio and visual modalities is a broad research area and has been proposed for
several applications, such as biometrics (Aleksic and Katsaggelos [10]), human-emotion
recognition (Seng and Ang [11]) and event localization (Tian et al. [12]).

Although several advancements have been made in terms of the deep-learning struc-
tures and usage of multiple modalities for AVSR architectures, several challenges remain to
be resolved for AVSR applications in the wild. The term “in the wild” is used to describe
AVSR for unconstrained natural-language audio streams and video-stream modalities (Son
Chung et al. [13]). Compared to datasets taken under fixed laboratory conditions, in the
wild represents a different range of individuals, poses, expressions, lighting conditions and
time frames in real environments. Some representative works using AVSR applications
in the wild include those of Yu et al. [14]; Afouras et al., 2018 [15]). The next section will
present further discussions on these and other related works for ASR and AVSR research
and multimodal sensor architectures for speech recognition in the wild environment.

The aim of this paper is to contribute towards AVSR research from different perspec-
tives. First, we discuss the domains of automatic speech recognition (ASR) and audio-visual
speech recognition (AVSR) and give a concise summary of the AVSR models that have
been proposed. Second, we propose new improvements for AVSR models by incorporat-
ing data-augmentation techniques to generate additional data samples for constructing
classification models. For the data-augmentation techniques, we utilized a combination
of conventional approaches (e.g., flips and rotations), as well as newer approaches, such
as generative adversarial networks (GANs), to demonstrate the potential of these ap-
proaches. GANs are algorithmic architectures that use two neural networks, pitting one
against the other in order to generate new, synthetic instances of data that can pass for
real data. Shoumy et al. [16]) proposed the utilization of data-augmentation approaches
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for improving speech-emotion-classification tasks. In our work, we propose to incor-
porate data-augmentation techniques into AVSR models and frameworks for improved
performance, targeting in-the-wild scenarios.

This paper is organized according to the following structure. Section 2 discusses some
related works on multimodal-sensor architectures for audio-visual speech recognition for
wild and not-wild environments. Section 3 describes the methodology, SR architecture by
speech modality, SR architecture by facial modality and fusion-based AVSR approaches
used for the investigation. Section 4 discusses the results. Section 5 presents some conclud-
ing remarks.

2. Related Works on Multimodal-Sensor Architectures for Speech Recognition in
Wild Environments

This section provides some background information before we discuss our proposed
approach for multimodal-sensor architectures for audiovisual speech recognition in the
wild environment. Although speech recognition and visual recognition are mature research
areas, comparatively few authors have proposed techniques to deal with ASR and AVSR
tasks for in-the-wild scenarios. Table 1 shows a summary of some representative works
for ASR, AVSR and other applications for in-the-wild scenarios. We provide examples for
four categories or domains: (1) research works on ASR (audio-only, singular modality)
in the wild; (2) research works on AVSR (audio-visual, multiple modalities) in the wild;
(3) research works for emotion recognition in the wild; and (4) research works on other
in-the-wild applications. The purpose of the work proposed in this paper is to contribute
towards research for multiple-modality AVSR with a focus on in-the-wild environments.

2.1. Research Works for ASR in the Wild

Some examples of representative works for ASR in the wild are those of Stafylakis and
Tzimiropoulos [17], Han et al. [18] and Ali et al. [19]. Stafylakis and Tzimiropoulos [17]
proposed an approach for visual speech recognition for in-the-wild scenarios. Their ap-
proach used an end-to-end zero-shot learning architecture for visual-only keyword spotting
(KWS) tasks and had three components: (1) a visual-feature extractor using spatiotem-
poral residual networks; (2) a grapheme-to-phoneme encoder–decoder model utilizing
sequence-to-sequence neural networks; and (3) recurrent neural networks for visual-feature
correlation. Their experimental results on the LRS2 dataset showed that their proposed
architecture offers a promising level of performance for visual-only KWS tasks on the
LRS2 dataset.

Han et al. [18] proposed an approach to telephony-speech recognition for in-the-
wild tasks utilizing deep-learning techniques. Their work evaluated three deep-learning
architectures: (1) time-delay neural network (TDNN); (2) bidirectional long short-term
memory (BLSTM); and (3) convolutional neural network BLSTM (CNN–BLSTM)). Their
experimental results utilized the Switchboard and CallHome datasets and showed that
the CNN–BLSTM deep -earning architecture outperformed the other two models and
demonstrated good performance for the in-the-wild and real-world telephony datasets.

Ali, Vogel and Renals [19] offer another approach to ASR research in the wild. Their
work describes their attempt to apply ASR in the Arabic language. They term this the
Arabic MGB-3 Challenge. The dataset used for this challenge contains a challenging
mixture collected from YouTube videos from seven genres (comedy, cooking, family/kids,
fashion, drama, sports and science), consisting of 16 h of videos. The authors received
submissions from 13 teams for the challenge. Their work showed that the best submission
using a combined approach of GANs and lexical information could achieve a performance
accuracy of 80% across five classes.



Sensors 2023, 23, 1834 4 of 12

Table 1. Some representative works on multimodal-sensor architectures for ASR, AVSR and other
applications in wild scenarios.

Category/Domain
Area Year Main Contributions Datasets Reference

Research works on
ASR in the wild

2022
Visual speech recognition in the wild—proposed
zero-shot learning architecture for visual-only
keyword spotting (KWS) tasks

LRS2 dataset
Stafylakis and
Tzimiropoulos,
2018 [17]

2021

Conversational-telephony speech recognition in the
wild—evaluated three deep-learning architectures
(time-delay neural network (TDNN), bidirectional
long short-term memory (BLSTM), convolutional
neural network BLSTM (CNN–BLSTM))

Switchboard and
CallHome datasets Han et al. [18]

2018

In-the-wild ASR for Arabic language—submissions
from 13 teams, best performance, with 80% accuracy,
obtained using a combined approach of GANs and
lexical information

Arabic MGB-3
Challenge dataset

Ali, Vogel and
Renals [19]

Research works on
AVSR in the wild

2020

In-the-wild AVSR for speech with overlapped speech
(interfering speakers)—proposed time-delay neural
networks (TDNNs) with lattice-free MMI (LF-MMI
TDNN system), outperformed audio-only ASR
baseline by 29% WER

LRS2 dataset Yu et al. [14]

2018

An AVSR deep-learning transformer
models—proposed two transformer (TM) models
and architectures for AVSR: (1)
encoder–decoder-attention-structure TM architecture;
and (2) self-attention TM stack architecture
(TM–CTC)

LRS2-BBC dataset Afouras et al. [15]

2017
An AVSR watch, listen, attend and Spell (WLAS)
network model with the ability to transcribe speech
into characters

LRS and GRID
datasets

Son Chung et al.
[13]

Research works on
emotion recognition
in the wild

2019
Bimodal fusion approach for emotion recognition in
the wild from video—experimental results from
EmotiW2019 dataset gave a performance of 63%

EmotiW2019
dataset Li et al. [20]

2018
Spatiotemporal-feature fusion (MSFF)
architecture—experimental results from
EmotionW2018 dataset gave a performance of 60%

EmotionW2018
dataset Lu et al. [21]

2021

Dataset for multimodal emotion recognition in the
wild (HEU Emotion)—videos from 19,004 video clips
and 9,951 people with ten emotions and multiple
modalities (facial expression, body posture and
emo-tional speech)

HEU dataset Chen et al. [22]

Research works on
other in-the-wild
applications

2021

Speaker recognition in the wild—Siamese network
architecture using capsules and dynamic routing,
experimental results gave an error rate (EER) of
3.14%

VoxCeleb dataset Hajavi and Etemad
[23]

2017

Animal recognition in the wild—convolutional
neural networks (CNNs) to monitor animals in their
natural environments. Experimental results gave a
classification performance of around 90% in
identifying three common animals in Australia

Wildlife Spotter
datasets Nguyen et al. [24]

2.2. Research Works for AVSR in the Wild

Some examples of representative works for AVSR in the wild include those of
Yu et al. [14], Afouras et al. [15] and Son Chung et al. [13]). Yu et al. [14] proposed an
approach to AVSR in the wild for overlapped speech with interfering speakers. Their
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approach used time-delay neural networks (TDNNs) with a lattice-free MMI (LF–MMI)
discriminative criterion (termed as LF–MMI TDNN system). The authors proposed two
architectures for AVSR: (1) a hybrid AVSR architecture and (2) an end-to-end AVSR architec-
ture. Their experiments using the LRS2 dataset showed that the hybrid AVSR architecture
gave a better performance than the end-to-end AVSR architecture. The authors showed that
their proposed AVSR architecture can outperform an audio-only baseline ASR architecture
by around 29% in terms of the WER (word-error rate).

Afouras et al. [15] proposed an approach for AVSR in the wild utilizing deep-learning
techniques and transformer-based models. The authors proposed two transformer (TM)
models and architectures for AVSR: (1) an encoder–decoder-attention-structure TM archi-
tecture and (2) a self-attention TM-stack architecture. The self-attention transformer stack
architecture was termed TM–CTC and consisted of multiple stacks of self-attention and
feedforward layers, which generated the posterior probabilities for connectionist temporal
classification (CTC) loss. The experimental results on the LRS2-BBC dataset showed that
the proposed TM AVSR architectures could give a reduced WER of 8.2% compared with an
audio-only baseline AVSR architecture, which gave a WER of 10.1%.

Son Chung et al. [13]) offer another approach to AVSR research in the wild. This
work describes the authors’ AVSR architecture, termed the watch, listen, attend and spell
(WLAS) network model, which has the ability to transcribe speech into characters. Their
WLAS architecture can be configured to utilize attention models for visual input (VO)
only, audio input (AO) only and audio-visual (AV) input. Their experimental results on
the Lip-Reading in the Wild (LRW) and GRID datasets showed that their proposed AVSR
architecture gave a reduced WER of 23.8% and 3.0% for the LRW and GRID datasets,
respectively, compared with other approaches.

2.3. Research Works on Emotion Recognition in the Wild

Some examples of representative works on emotion recognition in the wild include
those by Li et al. [20], Lu et al. [21] and Chen et al. [22]). The authors in Li et al. [20] proposed
a bimodality fusion approach for emotion recognition in the wild from video images. Their
experimental results on the EmotiW2019 dataset gave a classification performance of
around 63%. Lu et al. [21] proposed to utilize a spatiotemporal-feature fusion (MSFF)
architecture for handling various feature characteristics for emotion recognition in the wild.
Their proposed MSFF architecture was tested on the EmotionW2018 dataset and gave a
classification performance of around 60%.

Chen et al. [22] offer another approach for emotion recognition research in the wild.
This work describes the authors’ development of a large-scale and comprehensive dataset
(termed HEU Emotion) for multimodal emotion recognition in the wild. Their HEU
Emotion dataset contains videos from 19,004 video clips and 9951 subjects with ten emotions
and multiple modalities (facial expressions, speech emotions and body postures). The
authors performed some evaluations on the HEU dataset using conventional machine-
learning and deep-learning approaches.

2.4. Other Research Works on In-The-Wild Scenarios

Other research works on in-the-wild scenarios include those of Hajavi &and
Etemad [23] on speaker-recognition tasks and Nguyen et al. [24] for animal-recognition
tasks. Hajavi and Etemad 2021 [23] proposed a Siamese network architecture using capsules
and dynamic routing for speaker verification in the wild. Their experimental results on
the VoxCeleb dataset gave an error rate (EER) of 3.14%. Nguyen et al. [24] proposed an
approach utilizing deep learning and convolutional neural networks (CNNs) to monitor
animals in their natural environments. Their experimental results on the Wildlife Spotter
datasets gave a classification performance of around 90% in identifying three common
animals in Australia (bird, rat and bandicoot).
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3. Methodology
Proposed Multimodal Sensor-Input Architecture with Deep Learning for AVSR in the Wild

This section discusses the proposed multimodal sensor-input architecture with deep
learning for AVSR in the wild. The first part of the section gives details on the multi-
modal sensor-input architecture and some of the implementation settings for each of the
components in the different models. The latter part of the section gives details on the
data-augmentation process to be incorporated into the AVSR architecture for improved
performance. Some details on preprocessing are also discussed in this section. Figure 1
shows the proposed architecture for AVSR in the wild. The proposed architecture utilizes
deep-learning approaches and self-attention modules based on the transformer model
trained with CTC loss (TM–CTC; Afouras et al. [15]).
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As shown in Figure 1, the model architecture for audiovisual speech recognition can be
conceptually separated into three component models: (1) audio-only (AO); (2) video-only
(VO); and (3) audiovisual. The top half (left side) of Figure 1 shows the video-only (VO)
architecture, in which we used ResNet to process a sequence of visual images. We applied
three-dimensional (3D) convolution and two-dimensional (2D) ResNet to the input image
in order to match the audio frames. This allowed the sequence of input images to decrease
in spatial size with depth and ensured that each input video frame was generated with a
512-dimension feature vector.

The bottom half (left side) of Figure 1 shows the audio-only (AO) architecture com-
ponent. We obtained a spectrogram by using the short time Fourier transform (STFT) to
process the audio signals for extracting audio features. The audio features took raw audio
waves at 16 kHz as input and generated a vector representation every ten ms. The video
clips had a frame rate of 25 fps and each video-input frame corresponded to four frames of
the audio features.

The right half of Figure 1 shows the audio-visual (AV) architecture. We used the
TM–CTC model for fusion of the audio and video data. The results were propagated
through the self-attention and feedforward modules. The network generated the CTC
posterior probability of each input frame and the entire stack architecture was trained
to minimize the CTC losses. For preprocessing, in each video, we cropped a 112 × 112
patch to cover the area around the mouth. The cropped image patches were converted to
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grayscale and normalized based on the mean and variance of the training set. Similarly,
the audio waveforms were normalized by subtracting their mean and dividing by the
standard deviation.

Figure 2 shows the proposed data-augmentation architecture using GANs for AVSR
in the wild. These GANs form a neural network with both generative and adversarial
aspects. The GAN network used for the experiments consisted of a generator and two
discriminators. We processed the dataset through the GANs before it entered the TM–CTC
architecture. In the GANs, the data first entered the generator, which consisted of two
encoders and a decoder. The face encoder in the generator received video frames and
generated intermediate features; the audio encoder in the generator received audio signals
and generated audio intermediate features; the obtained face intermediate features and
audio intermediate features were concatenated and sent to the face decoder for decoding.
The final output was lip-shaped with audio-synchronized image frames (generated frames).
The generated frames were fed into a discriminator, which determined whether the lip
image and audio were synchronized and the quality of the lip video. After the GANs were
processed, the new dataset was generated and then trained in the TM–CTC architecture.
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In our experiments, we also used conventional approaches for the data augmentation.
In the VO and AV architectures, we applied a horizontal flip to the image with a probability
of 0.5 and removed random frames from the image sequence after the 112 × 112 random
crop for data augmentation. In the audio-only and audio-visual architectures, we added
clutter to each audio waveform with a 5-decibel signal-to-noise ratio and a probability
of pn = 0.25 for the audio stream. The clutter was mixed from LRS2 with 20 different
audio samples.

We used the Wave2Lip model proposed by Prajwal et al. [25] for the GAN data
augmentation. The generator takes two parts of the model input, a sequence of video
frames and an audio (melspectrogram segment) and fuses the features and generates
frames that synchronize the lips with the audio. The architecture used two discriminators:
(1) a discriminator to determine whether the generated lip image was synchronized with
the audio; and (2) a discriminator to receive the lip image generated by the generator and
the lip image synchronized with the audio to determine its authenticity and to produce
better lip quality.
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4. Experiment and Results

In this section, we first describe the details of the datasets and our experimental setup.
This is followed by our experimental results, analysis and discussion.

4.1. Description of Datasets

This section gives a description of the datasets that were used in our experiments.
We used the large-scale publicly available audio-visual dataset, Lip Reading Sentences 2
(LRS2) [26], as our main dataset for training and testing. The LRS2 dataset is known for its
challenging scenarios, which feature substantial variations in head positions and lighting
conditions. The LRS2 dataset contains over 224 h of data, consisting of 144,482 video clips
extracted from BBC videos. The dataset is divided into training and validation/test sets.
There are 96,318 video clips for pre-training, 45,839 video clips for training, 1082 video clips
for validation and 1243 video clips for testing. The training data contain a vocabulary of
over 40,000 words.

In our experiments, we also used the LRS3–TED dataset. The LRS3 dataset [27]
contains video clips collected from TED and TEDx talks. The LRS3 dataset contains over
438 h of data, consisting of 151,819 video clips extracted from TED and TEDx videos. There
are 118,516 video clips for pre-training, 31,982 video clips for training/validation and
1321 video clips for testing. In our experiments, we also used datasets for training external
language models. The language models were trained using a text corpus that contains the
subtitles for the video clips. The corpus data contain a vocabulary of 26 million words.
Figures 3 and 4 show some example data from the LRS2 and LRS3 datasets, respectively.
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4.2. Results and Discussion

In this sub-section, we first present and discuss the experimental results for the
proposed architecture and the various settings of each of our components in the different
models. Next, we show the results for the audio-only (AO), visual-only (VO and audio-
visual (AV) settings. In addition, we analyze the relative contribution of each component
(audio-only, visual-only and audio-visual settings) and compare and discuss the results of
the different models.

For all experiments, we report the word-error rate (WER). In datasets LRS2 and LRS3,
the smallest unit of the sentence is the word and the WER can measure the effectiveness of
the system more accurately through words than other metrics. The WER can be calculated as

WER =
S + D + I

N
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where S, D, I and N denote the number of substitutions, number of deletions, number of
insertions and number of words in the reference, respectively. For the TM–CTC decoding,
we used a beam search with a width of 100 (these values are determined on the LRS2
reserved-validation set) and a greedy search. We used character-level predictions with an
output size of 40, including 26 alphabet characters and ten digits.

Our implementation was based on the Pytorch library and was trained on a NVIDIA
A100 GPU with 80 GB of memory. The network models were trained using the ADAM
optimizer. For all models, we used dropout and label smoothing.

Tables 2 and 3 show the experimental results that were obtained for audio-only (AO),
visual-only (VO) and audio-visual (AV) results of word-error rate (WER) tested on the LRS2
and LRS3 datasets, respectively. The experimental results are shown for both clean inputs
and added noise. The tables also show the results for the proposed AVSR architectures and
their components with and without the GAN data augmentation.

Table 2. Audio-only (AO), visual-only (VO) and audio-visual (AV) results of word-error rate (WER)
tested on LRS2 dataset.

AVSR Architecture Greedy Search Beam Search (+LM)

Clean Input

TM–CTC+Wav2Lip GANs AO 11.30% 8.70%

TM–CTC+Wav2Lip GANs VO 73.00% 61.50%

TM–CTC+Wav2Lip GANs AV 11.90% 8.40%

TM–CTC AO 11.70% 8.90%

TM–CTC VO 61.60% 55.00%

TM–CTC AV 10.80% 7.10%

Added Noise

TM–CTC+Wav2Lip Gans AO 60.20% 52%

TM–CTC+Wav2Lip Gans AV 35.70% 27.90%

TM–CTC AO 65.60% 56.10%

TM–CTC AV 32.20% 23.70%

Table 3. Audio-only (AO), visual-only (VO) and audio-visual (AV) results of word-error rate (WER)
tested on LRS3 dataset.

AVSR Architecture Greedy Search Beam Search (+LM)

Clean Input

TM–CTC+Wav2Lip GANs AO 11.80% 9.80%

TM–CTC+Wav2Lip GANs VO 88.00% 74.00%

TM–CTC+Wav2Lip GANs AV 13.80% 12.60%

TM–CTC AO 12.20% 10.50%

TM–CTC VO 76.80% 67%

TM–CTC AV 12.50% 11.30%

Added Noise

TM–CTC+Wav2Lip Gans AO 56.00% 51.50%

TM–CTC+Wav2Lip Gans AV 39.20% 31.90%

TM–CTC AO 61.90% 55.40%

TM–CTC AV 35.60% 27.70%
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In the video-only (VO) modality, the best result for the WER was 55%, both with clean
input and with added noise. This indicates that explicit linguistic consistency was not
achieved in the VO modality. In the AO modality, trained with a clean audio input, the
WER was able to achieve 8.7% when the external language model was added to the beam
search. This indicates that the AO modality performed much better than the VO modality
in the single-modality case. In the TM–CTC decoding, the beam search added an external
language model and increased performance efficiency. We observed that the WER results
were improved by up to 9.5%.

We used noisy audio for both the AO and the AV experiments. These noises were
synthesized by adding babble noise to the raw audio. The recognition of speech in noisy
environments is very challenging and this was reflected in the performance of our AO
model, i.e., the WER was similar to the WER in the VO and the reduction in performance
compared to the clean performance was over 49%. However, combining the two approaches
caused significant improvements, with the WERs dropping by up to 33%. Furthermore, the
AV model performed much better than the VO or AO models when the background sound
was loud.

The performance improvements when the GAN component was used in the AVSR
architecture can also be seen in the tables. When the speech signal contained substantial
noise, the lip movements provided useful clues for speech recognition. For example, the
WER was reduced from 52% to 27.9% for AO when using the audio-visual TM–CTC model.
Furthermore, performance can be improved even when the audio signal does not contain
noise (i.e., when it is clean). Compared to the AO model, similar results were obtained
when using AV Wav2Lip+TM–CTC. The results show that the model can significantly
improve the WER when using beam-search decoding with an external language model.
Moreover, in noisy environments, the Wav2Lip+TM–CTC improves by 5.5% with the AO
model. This indicates that the Wav2Lip+TM–CTC model has significant noise-rejection
advantages over TM–CTC.

Without the audio input, the TM–CTC model is much better at lip reading for WERs.
However, the Wav2Lip+TM–CTC model can process background noise better. Under large
babble noise, the AO Wav2Lip+TM–CTC model performs significantly better than the
TM–CTC model in both situations. This indicates that using Wav2Lip to synchronize the
generated video character mouthing with the input speech can improve performance in au-
dio language modeling. The results show that compared to greedy-search decoding, adding
an external language model (+LM) to the beam search resulted in a better performance for
both models.

For the large audio-visual datasets, LRS2 and LRS3, we found similarities in the
results. The model-performance results that were good with LRS2 continued to be good
and, sometimes, even better, with LRS3, despite their different data contents.

5. Conclusions

This paper investigated and contributed towards multimodal sensor-input AVSR
architectures and research particularly for in-the-wild scenarios. This paper discussed the
domains of ASR and AVSR research and proposed new improvements by incorporating
data-augmentation techniques (conventional and GAN-based) into AVSR architectures in
the wild. The experimental results using established large-scale LRS2 and LRS3 datasets
validated the proposed architecture and showed that the proposed AVSR-architecture
model and its various components, combined with the augmentation approach, enhanced
the performance of the AVSR frameworks in the wild, making them particularly applicable
to noisy datasets. Our future work will investigate this AVSR approach in combination
with different GAN models for both audio and visual modalities.
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