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Abstract: This paper presents a critical review and comparison of the results of recently published
studies in the fields of human-machine interface and the use of sonomyography (SMG) for the control
of upper limb prothesis. For this review paper, a combination of the keywords “Human Machine
Interface”, “Sonomyography”, “Ultrasound”, “Upper Limb Prosthesis”, “Artificial Intelligence”, and
“Non-Invasive Sensors” was used to search for articles on Google Scholar and PubMed. Sixty-one
articles were found, of which fifty-nine were used in this review. For a comparison of the different ul-
trasound modes, feature extraction methods, and machine learning algorithms, 16 articles were used.
Various modes of ultrasound devices for prosthetic control, various machine learning algorithms for
classifying different hand gestures, and various feature extraction methods for increasing the accuracy
of artificial intelligence used in their controlling systems are reviewed in this article. The results of the
review article show that ultrasound sensing has the potential to be used as a viable human-machine
interface in order to control bionic hands with multiple degrees of freedom. Moreover, different hand
gestures can be classified by different machine learning algorithms trained with extracted features
from collected data with an accuracy of around 95%.

Keywords: controlling system; human-machine interface; machine learning; non-invasive sensor;
prosthesis; sonomyography

1. Introduction

Human-machine interfaces (HMlIs) and wearable technologies have sparked a great
deal of interest in recent decades because they can be used for a wide range of applica-
tions, including immersive games [1], rehabilitation engineering [2-5], the automotive
industry [6,7], tele-operation in space [8], and virtual reality [9]. Furthermore, an HMI
is frequently employed in the development of various control systems in prostheses and
exoskeletons. In contrast to the many advancements in mechanical design, there are still
significant challenges in regard to HMIs at higher levels of the control hierarchy to over-
come. There is a specific type of interface that may be utilized to predict patients” volitional
movement from their residual muscle contractions or neuroactivities [10,11]. However,
detecting a user’s motion intention fast enough to coordinate with devices is an important
issue that requires further study [12]. A range of sensing modalities have been used to
regulate human—machine interfaces. Sensing technologies for HMlIs have been developed
in order to provide accurate and trustworthy information to assist in the understanding of
movement intentions.

In order to control prostheses, the most often used approach is the use of biological
signals, which may be recorded by a variety of sensors and electrodes by interfacing with
either the peripheral nervous system (PNS) or the central nervous system (CNS) [13,14].
This technique is classified as either non-invasive, including surface electromyography
(sEMG), electroencephalography (EEG), forcemyography (FMG), mechanomyography
(MMG), magnetoencephalography (MEG), force sensitive resistance (FSR), and magne-
tomicrometry (MM), with the last one being presently developed in MIT [15], or invasive,
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including implanted electromyography iIEMG), myoelectric implantable recording arrays
(MIRAS), electroneurography (ENG), electrocorticography (ECoG), brain—chip interfaces
(BCHIs), and magnetomicrometry (MM) [16]. Among all of these techniques, sSEMG is
the most commonly used method for prosthesis control, which has been studied very
extensively [17-20].

Recently, there has been a concentrated attempt to non-invasively monitor user in-
tention and intuitively operate various degrees of freedom of cutting-edge prostheses.
This endeavor has been ongoing during the last decade. Non-invasive techniques include
placing electrodes on the skin of the scalp or skeletal muscles, and applying conductive gel
to the electrodes and skin surface in order to improve the contact area and conductivity
between the electrodes and skin surface [21]. However, in order to collect low-amplitude
electrical impulses from skeletal muscles, bipolar electrodes are put on the skeletal muscles
in order to record muscular activities. However, there is a difficulty with the non-invasive
technique in that the data obtained by sensors may be substantially influenced by a variety
of circumstances, including electrode placement and movement, perspiration, and even
noise caused by the electronic devices. Moreover, these methods have poor spatial resolu-
tion due to the interferences between the signals generated by neighboring or overlapping
muscles. Surface EMG is also unable to accurately record the activity of deep muscles, and
as a result, it is difficult to utilize this approach to control protheses with multiple degrees
of freedom [22]. Additionally, training users to control robots by using biological signals is
difficult and requires time, which is another drawback of these interface methods [23], as
the signals are often not linearly related to the muscle outputs, such as force or angle [22].

Biomaterials have been used for implants for a long time [24]. Implanted myoelectric
sensors, peripheral nerve implants, targeted muscle reinnervation, brain-computer inter-
faces [25], and implanted stimulators [26] are examples of new technologies and methods
that have the potential to provide significant improvements and new opportunities in
neurological research. Invasive techniques include the placing of neural implants deep into
the brain, on the nerves or the skeletal muscles [16]; and the recording of signals from the
cerebral cortex, part of the brain, or muscle activity. These implants are able to connect with
the brain, nerves, and muscles to collect electrical signals during nerve or muscle activation.
In addition, they give electrical impulses to neurons, as well as transmit electrical signals
between neurons and computers, or between computers and neurons through a chip [24,27].
While invasive approaches may increase the stability of biological signals, as well as give
more accurate information about the activities of the brain or muscles [28], these novel
interface methods raise a lot of concerns regarding the safety and efficacy of the operations,
which involve surgery or implanted devices [23]. Furthermore, these signals also have the
presence of noises, the same as non-invasive techniques.

Researchers have also made significant efforts in recent years to employ new technolo-
gies and propose novel techniques for controlling prosthetic hands, such as augmented-
reality (AR) glasses [29], inductive tongue control systems (ITCSs) [30], voice commands,
and inertial measurement units (IMUs) [31,32]. Some concepts have proved that even the
simplest techniques may have compelling results.

These techniques are often utilized for prostheses that only have a single degree of
freedom. Hence, the analysis or classification of biological signals necessitates the devel-
opment of intelligent characteristic algorithms that are capable of accurately classifying
the different signals gathered with the least number of errors [33]. Utilizing a variety
of machine learning methods, including deep learning, significant improvements in the
processing and classification of biological signals have been made in recent years. For exam-
ple, the use of machine learning has yielded good results and achieved high performance
accuracy across a wide variety of topics, including the rehabilitation and re-education of
physically handicapped human limbs [34]. In enhancing robot control, various algorithms,
such as K nearest neighbors (KNN), support vector machines (SVMs), principal component
analysis (PCA), linear discriminant analysis (LDA), artificial neural networks (ANNSs),
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convolutional neural networks (CNNs), and Bayes networks, can be used to classify signals
with an accuracy of approximately 90% [35].

Recently, it has been proven that replacing biological signals with ultrasound (US)
imaging that may provide real-time dynamic images of interior tissue movements linked
with physical and physiological activity enables better discernment between discrete mo-
tions or categorization of full finger flexion [36]. Muscle architectural changes can be
detected by putting an ultrasound probe on the residual limb and by classifying different
hand gestures based on muscle movement and activities for controlling a prosthesis [37].

Biosensing approaches and novel wearable devices, such as the sonomyography (SMG)
technique for the implementation of control for upper limb prostheses, as well as machine
learning algorithms for hand gesture recognition, are reviewed in this paper. The objective
of this paper is to provide information about SMG systems for controlling upper limb
prostheses based on the sensing of architectural changes in a subject’s muscles during
contraction. Section 2 describes, in detail, the history of the SMG approach for controlling
prostheses throughout the years, different modes of US, feature extraction for increasing
the accuracy of classification, artificial intelligence (Al), and innovative decoding methods
for hand movement classification.

2. Methodology

Available articles on upper limb prostheses and different controlling and HMI meth-
ods, especially controlling robots using SMG, published between 2004 and 2022 were
reviewed using Google Scholar and PubMed resources in English. For this review paper,
the combination of the keywords “Human Machine Interface”, “Sonomyography”, “Ultra-
sound”, “Upper Limb Prosthesis”, “Artificial Intelligence”, and “Non-Invasive Sensors”
was used to search for articles. Sixty-one articles were found, of which fifty-nine were used
in this review, and the two discarded articles were found to not be relevant (Figure 1).

Schematic of the
systematic overview

Searching papers published between
2004 and 2022 using Goggle Scholar
and PubMed resources

Papers=89
Abstract
reading
1 Papers=75
Full paper
reading
l Papers=61
Quality
assessment
Papers=59
Final selection

Figure 1. An illustration in schematic form of the overall systematic overview.

For the first time in 2006, the SMG method as a novel HMI technique was presented.
In the past 16 years, different groups have tried to study the potential of US to be utilized in
controlling upper limb prostheses. To review the different feature extraction methods and
machine learning algorithms to control a robotic hand by using three distinct US modes and
evaluate the progression of accuracy and reliability of SMG as a HMI method, 16 articles
published by different groups were utilized.
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The original research publications, as well as review articles published in English
between the years 2004 and 2022, were considered for inclusion in this article. However,
case reports, editorials, and commentaries were among the types of publications that did
not meet the requirements to be reviewed in this article.

3. Sonomyography (SMG)

The use of ultrasonic technology in sensor implementation for identifying finger
motions in prosthetic applications has been researched over the last ten years. A ground-
breaking study by Zheng et al. investigated whether ultrasound imaging of the forearm
might be used to control a powered prosthesis, and the term “sonomyography” (SMG)
was coined by the group [38]. Ultrasound signals have recently garnered the interest of re-
searchers in the area of HMIs because they can collect information from both superficial and
deep muscles and so provide more comprehensive information than other techniques [39].
Due to the great spatiotemporal resolution and specificity of ultrasound measurements of
muscle deformation, researchers have been able to infer fine volitional motor activities, such
as finger motions and the dexterous control of robotic hands [40,41]. To retain performance,
a prosthesis that responds to the user’s physiological signals must be fast to respond. EEG,
sEMG, and other intuitive interfaces are capable of detecting neuromuscular signals prior
to the beginning of motion; therefore, they are predicted to appear before the motion it-
self [42-44]. However, ultrasound imaging can detect skeletal muscle kinematic and kinetic
characteristics [45], which indicate the continued creation of cross bridges during motor
unit recruitment and prior to the generation of muscular force [43,46], and these changes
occur during sarcomere shortening, when muscle force exceeds segment inertial forces,
and before the beginning of joint motion [43]. It is important to note that the changes in
kinetic and kinematic ultrasonography properties of muscles occur prior to joint motion.
As a result, prosthetic hands will be able to respond more quickly in the present and future.

3.1. Ultrasound Modes Used in SMG

Real-time dynamic images of muscle activities can be provided by US imaging systems.
There are five different types of ultrasound modes, and each of them generates different
information, but only some of them are applicable for use in controlling artificial robotic
hands. The most popular ultrasound modes utilized in prosthesis control are A-mode,
B-mode, and M-mode.

(1) A-mode SMG: One of the most basic types of US is A-mode, which offers data in
one dimension in the form of a graph in which the y-axis indicates information about echo
amplitude and the x-axis represents time, similar to the way that EMG signals indicate
muscle activity.

In 2008, Guo et al. [47] introduced a novel HMI method called one-dimensional
sonomyography (1D SMG) as a viable alternative to EMG for assessing the muscle activities
and controlling protheses. In this study, nine healthy volunteers were asked to perform
different types of hand and wrist movements. During these experiments, different data
were collected, such as joint angles, EMG signals of forearm muscles, and muscle activities
collected from A-mode Ultrasound. The results of their study showed that the 1D SMG
technique can be reliable and has the potential to be used for controlling one-degree-of-
freedom bionic hands.

A study by Guo et al. [48] was carried out in order to assess and compare the per-
formance of one-dimensional A-mode SMG and sEMG signals while following guided
patterns of wrist extension. They also looked at the possibility of using the 1D SMG to
control bionic hands. They invited 16 healthy right-handed participants to conduct a variety
of wrist motions with a variety of guided waveforms at a variety of movement speeds
for their experiment. During wrist motions, a 1D SMG transducer with a sEMG electrode
was connected to the forearm of participants, making it possible for them to record and
capture the activity of the participants’” forearm muscle groups. Root mean squares (RMSs)
were computed from the extensor carpi radialis after normalizing the signals obtained from
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the SMG and sEMG after they had been collected and normalized, respectively. When
comparing the abilities of SMG and sEMG to follow guiding waveform patterns, the paired
t-test was utilized to make the comparison. In addition, one-way analysis of variance
(ANOVA) was utilized to determine the differences in SMG performance at different move-
ment speeds. For sinusoidal, square, and triangular guiding waveforms, the mean RMS
tracking errors of SMG were found to be between 13.6% and 21.5%, whereas sEMG was
found to be between 24% and 30.7%. The results of a paired t-test experiment revealed that
the RMS errors of SMG tracking were much lower than those of sEMG tracking.

When Guo and her colleagues [49] successfully tested the A-mode US on healthy
participants, they used the same procedure on an amputee (Figure 2A). Participants in the
study were instructed to extend their phantom wrist in order to control the prosthetic hand.
Her research found a correlation between muscle thickness and wrist extension angle with
a correlation coefficient of 0.94. Furthermore, the relationship between wrist angle and
muscle thickness was studied, and they calculated the mean ratio of angle deformation,
which was around 0.13%.

As a continuous part of their research, Chen et al. [50] investigated whether it is
feasible to control a prosthetic hand with one degree of freedom by using muscle thickness
variations recorded by a one-degree-of-freedom SMG. With varying patterns and movement
speeds, nine right-handed healthy individuals were instructed to operate a prosthetic hand
with their wrist motions and match the visual input with the target track. The opening
position of the prosthesis was controlled by SMG signals from the subject’s extensor
carpi radialis muscle. A prosthesis opening position was measured using an electronic
goniometer in this investigation. The tracking error between the opening position of the
prosthetic hand and the target track was computed in order to evaluate the performance of
the controlling system. This study’s findings indicated that the SMG control’s mean RMS
tracking errors ranged from 9.6% to 19.4% while moving at various speeds.

electromagnetic

EMG and SMG
sensors

B sEMG
electrode

A-mode
ultrasound
sensor

Figure 2. (A) The placement of the electro goniometer and sensors on healthy volunteers. (B) Placing
A-mode small transducer (with a diameter of 7 mm) in between sEMG electrodes to collect both EMG
and SMG signals from extensor carpi radialis muscle, simultaneously [51]. (C) The original image of
the experimental setting, conducted by Guo and her colleagues in 2010. A-mode SMG setting for
collecting SMG and EMG signals from a residual forearm for controlling a prosthesis to compare their
performances, with the screen showing the A-mode ultrasound signal (lower half) and the guiding
signal for muscle contraction (upper half).
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In a study published in 2013, Guo et al. [51] further employed three different machine
learning approaches to estimate the angle of the wrist, using a one-dimensional A-mode
ultrasonic transducer, and the results were promising. During the experiment, nine healthy
volunteers were instructed to execute wrist extension exercises at speeds of 15, 22.5, and
30 cycles per minute, while an A-mode ultrasound transducer recorded data from the
participants” forearm muscles (Figure 2B,C).

Because of the ability of US transducers to detect morphological changes in deep
muscles and tendons, Yang et al. [52] presented a US-driven HMI as a viable alternative to
sEMG for dexterous motion identification. Four A-mode piezoelectric ceramic transduc-
ers were built for their study. A custom-made armband was constructed to fix the four
transducers while capturing the activity of the flexor digitorum superficialis (FDS), flexor
digitorum profundus (FDP), flexor pollicis longus (FPL), extensor digitorum communis
(EDC), and extensor pollicis longus (EPL), which all play a critical part in finger move-
ments, including flexion and combined finger motions. Participants were asked to make
11 different hand gestures and hold such gestures for 3 to 5 s throughout the offline trial.
Due to the fact that the raw echo signals obtained from the A-mode ultrasound transducer
are constantly distorted by scattering noises and attenuation in tissues, signal processing
was accomplished using temporal gain compensation (TGC), Gaussian filtering, Hilbert
transform, and log compression [53].

In 2020, Yang et al. [54] suggested subclass discriminant analysis (SDA) and principal
component analysis (PCA) to simultaneously predict wrist rotation (pronation/supination)
and finger motions while using wearable 1D SMG system. They carried out trials both
offline and online. In offline studies, eight tiny A-mode ultrasound transducers were
mounted onto the hands of eight healthy volunteers, and the forearm muscles were cap-
tured using the transducers. In their study, the wrist rotations and eight kinds of finger
motions (rest, fist, index point, fine pinch, tripod grasp, key grip, peace sign, and hang
loose) were investigated. However, in the online test, a customized graphical user interface
(GUI) was employed to conduct a tracking task in order to validate the simultaneous wrist
and hand control. The results of this study showed that it was possible to classify the
finger gestures and wrist rotation simultaneously while using the SDA machine learning
algorithm, with an accuracy of around 99.89% and 95.2%, respectively.

In 2020, Engdahl et al. [55] proposed a unique wearable low-power SMG system for
controlling a prosthetic hand. The proposed SMG system comprised four single-element
transducers that were driven by a 7.4 V battery and operated at a constant frequency. In
their investigation, a portable ultrasound transducer was fixed to the hands of five healthy
participants in order to obtain muscle activity data. The data collected from participants
were used to train an Al model in order to classify different finger movements. The results
of this study showed that, using their proposed method, it was possible to classify nine
different finger movements with an accuracy of around 95%.

(2) B-mode SMG: B-mode, or 2D mode, provides a cross-sectional image of tissues
or organs and is one of the most popular US modes used in a wide range of medical
applications. In B-mode US, organs and tissues show up as points of different brightness in
2D grayscale images made from the echoes. B-mode ultrasound can provide a real-time
image of muscles under contraction.

Zheng et al. [38], for the first time, studied the potential of a portable B-mode ul-
trasound scanner for evaluation of the dimensional change of muscles and control of
prosthetic hands. In their study, six healthy volunteers and three amputee participants were
asked to perform wrist flexion and extension in order to capture the activities of forearm
muscles (Figure 3). The morphological deformation of forearm muscles during activities
was effectively identified and linearly linked with wrist angle. The mean ratio of wrist
angle to percentage of forearm muscle contraction was evaluated in normal participants.
When the three amputee participants engaged their residual forearm muscles, the SMG
signals from their residual forearms were likewise recognized and recorded satisfactorily.
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They discovered that SMG may be used to regulate and monitor musculoskeletal disorders
as a consequence of their research.

-
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L38
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Figure 3. Collecting SMG signals from an amputee subject, using a B-mode SMG system [38]. (a) The
experimental setup. (b) A typical B-mode image of the residual limb. A study by Shi et al. [56]
analyzed the possibility of real-time control of a prosthetic hand with one degree of freedom, utilizing
muscle thickness fluctuations recorded by a US probe. They investigated the feasibility of controlling
a prosthetic hand, utilizing the extensor carpi radialis thickness deformation, and found that a 1-DOF
prosthetic hand can be controlled by only one muscle of the forearm, using the SMG technique.

Shi et al. [57] employed B-mode ultrasound imaging to capture muscle activity during
a finger’s flexion and extension. Artificial intelligence was then utilized to determine which
fingers had been bent in various directions. All of the information was handled offline. A
total of 750 sets of US pictures were obtained, with images from each group selected from
forearm muscles during finger flexion and extension.

Ortenzi et al. [21] reported the use of ultrasound as a hand prosthesis HMI. Using a
portable ultrasonic scanner equipped with a linear transducer, US pictures were captured
and processed in the B-mode (2D imaging) in order to show the transverse section of the
forearm underneath the transducer as a grayscale image. In the testing, the US transducer
remained in position on the wrist thanks to an elastic band attached to a special plastic
cradle. Specifically, this was performed in order to limit the amount of motion artefacts
that would arise. Specifically, the goal of this research was to evaluate the categorization of
ten various hand postures and grab forces.

Employing a computationally efficient approach to distinguish between complicated
hand movements, Akhlaghi and colleagues [58] presented a real-time controlling system
in relation to stroke rehabilitation and performed basic research into motor control biome-
chanics and artificial robotic limb control to analyze the feasibility of using 2D-mode US
as a robust muscle computer interface and evaluate the possible therapeutic applications.
They used a B-mode ultrasound transducer to evaluate the possibility of the classification
of complex hand gestures and dexterous finger movements. In their study, dynamic ultra-
sound pictures of six healthy volunteers’ forearm muscles were provided, and these data
were evaluated to map muscle activity based on the muscle deformation during diverse
hand movements.

In 2017, McIntosh et al. [59] looked at how suitable different forearm mounting posi-
tions (transverse, longitudinal, diagonal, wrist, and posterior) were for a wearable ultra-
sound device. This is because the location of a device has a big impact on how comfortable
it is and how well it works. In their study, in order to fix the B-mode US transducer on
the participants” arms, they designed a fixture manufactured by a 3D printer and strap.
The gloves also had flexible sensors sewn into them so that they could measure the precise
angle of each finger’s flexion.

In a 2019 study, Akhlaghi et al. [60] evaluated the impact of employing a sparse set
of ultrasound scanlines in order to find the best location on the forearm for capturing the
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maximal deformation of the primary forearm muscles during finger motions, as well as
classifying different types of hand gestures and finger movements. Five subjects were
asked to make four different hand movements in order to see how the FDS, FDP, and FPL
muscles worked.

In 2021, Fernandes et al. [61] developed a wearable HMI that made use of 2D ultrasonic
sensors and non-focused ultrasound. The ultrasound radiofrequency (RF) signals were
captured by using a B-mode linear array ultrasound probe while five healthy volunteers
performed individual finger flexions. To intentionally diminish the lateral resolution of the
ultrasound data, RF waves were averaged into fewer lateral columns. For full resolution,
the first and third quartiles of classification accuracy were found to be between 80% and 92%.
Using the suggested feature extraction approach with discrete wavelet transform, averaging
into four RF signals might obtain a median classification accuracy of 87%. According to the
results of their study, the authors mentioned that low-resolution images can have the same
level of accuracy as high-resolution images.

(3) M-mode SMG: An M-mode scan, also known as a motion mode scan, uses a series
of A-mode scan signals, normally by selecting one line in B-mode imaging, to depict tissue
motion over time. Using the M-mode, it is possible to estimate the velocity of individual
organ structures. In comparison to the B-mode and A-mode, the motion mode US scans at
a greater frequency and provides more comprehensive information about the tissue.

Li et al. [39] conducted a study to determine the possibility of using M-mode ul-
trasound to detect wrist and finger movements. They compared M-mode and B-mode
ultrasonography performance in the classification of 13 wrist and finger movements. A
total of 13 movements were performed on eight healthy participants. Stable ultrasound
data were collected by placing an ultrasound probe on an arm with a custom-made trans-
ducer holder. In order to cover the muscles of the forearm that are responsible for finger
flexion and extension, the transducer was positioned at about halfway along the forearm'’s
length. During the same procedure, to ensure that the comparison was fair, the M-mode
and B-mode ultrasound signals were both collected from the forearm. As a consequence
of their investigation, M-mode SMG transducers were shown to be as accurate as B-mode
SMG signals in detecting wrist and finger movements, as well as distinguishing between
diverse hand gestures, and they may be employed in HMIs.

3.2. Muscle Location and Probe Fixation

It is vital to note that the position and location of the probe are critical in order to have
greater control over robotic hands. The main muscles which perform different types of
finger flexion are the FDS, FDP, and FPL muscles. However, to perform different wrist
movements, the pronator teres, flexor carpi radialis, flexor carpi ulnaris, palmaris longus,
and pronater quadratus are involved (Figure 4).

Hence, the placing of sensors to collect these muscle activities with better and more
reliable control over the robot is important. After collecting data from healthy volunteers,
Akhlaghi et al. [60] discovered that muscular distortion was significant in 30-50% of the
forearm length from the elbow and that this region is the best place to record muscle
movements for controlling robots. However, after testing various locations and fixing
positions on a range of healthy individuals, McIntosh et al. [59] discovered that the wrist
region is the most effective place for classifying discrete motions. Furthermore, they
observed that the diagonal position is the most effective position for collecting data for
identifying discrete gestures, whereas the diagonal and transverse positions are the most
effective for predicting finger angles (Figure 5).
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A: Superficial muscle group
1. Pronator teres

2. Flexor carpi radialis

3. Palmaris longus

4. Flexor carpi ulnaris

5. Flexor digitorum superficialis

B: Deep muscle group

1. Flexor digitorum profundus
2. Flexor pollicis longus

3. Pronater quadratus

Figure 4. Illustration of fiber tractography and textbook anatomical structure of main forearm flexor
muscles [62]. (A) Superficial muscle groups of a forearm. (B) Deep muscle group of a forearm.

Figure 5. (a-e) A comparison of the ultrasound probe’s various hand mounting positions, along with

the related picture [59].

3.3. Feature Extraction Algorithm

To classify the finger movements and different hand gestures, it is important to use
different types of algorithms to extract features from signals or images captured by US
transducers because machine learning algorithms cannot process all the information. It is
worth mentioning that using a machine learning algorithm without extracting features can
classify different hand gestures, but the accuracy would be significantly less.
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Shi et al. [57] captured the forearm muscle activities and controlled a hand prosthesis
with B-mode ultrasound, and Al was used to classify the finger movements. Before using
collected data to train their Al, a deformation field was constructed to extract features
from the data after registering the ultrasound image pair with the demons registration
algorithm for each group. Valerio Ortenzi [21] used the SMG technique as a valid HMI
method to control a robotic hand. In order to classify ten different hand gestures and grasp
forces, visual characteristics such as regions-of-interest gradients and histogram of oriented
gradient (HOG) features were extracted from the collected images, and these features were
used to train three machine learning algorithms.

The activity pattern was generated using an image-processing method developed by
Akhlaghi et al. [58]. MATLAB (MathWorks, Natick, MA, USA) was used to extract the activ-
ity patterns for each kind of hand movement from the B-mode ultrasound picture frames.
Pixel-wise differences were determined and then averaged across a time span to identify
the spatial distribution of intensity variations that corresponded to the muscle activity in
each sequential frame of each series (raw activity pattern). A hand motion was mapped to
a single activity pattern by using this method. On the basis of the global thresholding level
and decimal block size, the raw activity pattern was then transformed into a binary image.
This database was then used to train the nearest neighbor classification algorithm.

MclIntosh et al. [59] collected data from the forearm muscles of subjects in order to
evaluate the effect of probe position on the control of a hand prosthesis. They utilized
a B-mode US transducer to capture the muscle activities of volunteers. Before using the
collected data to train their Al, the optical flow between the first frame of the new session
and the base frame of the training set was estimated. The flow was then averaged to
generate a 2D translation and to reduce mistakes caused by US displacement, which might
result in differing anatomical characteristics. Following that, modification was made to the
current video in order to better match the training and sample characteristics.

In a study conducted by Yang et al. [52], before using the collected data to train the
machine learning model, the feature extraction process was carried out using segmentation
and linear fitting to increase the accuracy of classification. Inspired by Castellini and
colleagues [63,64], first-order spatial features were used to guide the feature extraction
procedure. After selecting an evenly spaced grid of interest spots in the ultrasound picture,
plane fitting was used to identify the spatial first-order features. Nevertheless, in their
technique, the plane fitting was turned into linear fitting [65]. It was because of this change
that the approach could be used for one-dimensional ultrasonic data.

In 2020, Yang et al. [54] classified and detected simultaneous wrist and finger move-
ments, using SDA and PCA algorithms. To train their AI model, the characteristics of
the data collected from participants were extracted using the Tree Bagger function, and
the Random Forest method was used to evaluate the significance of characteristics. After
that, two kinds of statistically significant characteristics were concatenated together for
further analysis.

Fernandes et al. [61] used the LDA method to classify finger movements by using
B-mode SMG. To make the classification more reliable and accurate, the authors used two
different methodologies to extract characteristics from the data collected from volunteers.
First, using the discrete wavelet transform (DWT) approach, the average RF signals were
preprocessed prior to being used in the second method. In the next step, the mean ab-
sorption value (MAV) of the detail coefficient at various levels, as determined by the DWT
approach, was determined. The second technique involves calculating a linear function
over segmented portions of the envelope along the depth by using linear regression (LR). It
was decided to utilize the slopes and intercepts of the predicted linear function as spatial
characteristics in this study.

Li et al. [39] compared the productivity of B- and M-mode ultrasound transducers in
relation to controlling an artificial robotic hand. In their study, they collected data from
participants, and then the features from signals collected from an M-mode probe were
extracted using a linear fitting approach, while the features from pictures captured with a



Sensors 2023, 23, 1885

11 of 19

B-mode transducer were extracted using a static ultrasound image method. These features
were used for training the SVM algorithm.

3.4. Artificial Intelligence in Classification

To have dexterous and precise control over prostheses, different deep learning and
machine learning algorithms have been developed to classify different hand gestures and
intended movements, using SMG with high accuracy.

To control a prosthetic device in real time, Shi et al. [56] looked at the sum of absolute
differences (SAD), the two-dimensional logarithmic search (TDL), the cross-correlation
(CC) method, and algorithms such as SAD and TDL in conjunction with streaming single-
instruction multiple-data extensions (SSEs). They utilized a block-matching method to
measure the muscle deformation during contraction. To compare TDL with and without
SSE, the findings revealed good execution efficiency, with a mean correlation coefficient of
about 0.99, a mean standard root-mean-square error of less than 0.75, and a mean relative
root-mean-square error of less than 8.0%. Tests have shown that a prosthetic hand can be
controlled by only one muscle position, which allows for proprioception of muscle tension.
They mentioned that SMG is good at controlling prosthetic hands, allowing them to open
and close proportionally and quickly.

In order to capture muscle activity in a finger’s flexion and extension and evaluate the
potential of using an ultrasound device in HMI, Shi et al. [57] employed B-mode ultrasound
imaging. The deformation field was used to extract features, which were then inputted
into the SVM classifier for the identification of finger movements. The experimental results
revealed that the overall mean recognition accuracy was around 94%, indicating that this
method has high accuracy and reliability. They assert that the suggested approach might
be utilized in place of surface electromyography for determining which fingers move in
distinct ways.

Guo and her colleagues [51] conducted a study and asked nine healthy volunteers
to perform different wrist extensions; meanwhile, an A-mode portable probe was used to
capture the activities of the extensor carpi radialis muscle. An SVM, a radial basis function
artificial neural network (RBFANN), and a backpropagation artificial neural network (BP-
ANN) were trained by data collected from extension exercises at 22.5 cycles per minute,
and the rest of the data were used for cross-validation. For the purpose of evaluating the
accuracy of the predictions made by the Al models utilized in their research, correlation
coefficients and relative root-mean-square error (RMSE) were calculated. The findings
revealed that the SVM method is the most accurate in predicting the wrist angle, with an
RMSE of 13% and a correlation coefficient of 0.975%.

In 2015, Ortenzi et al. [21] proposed an advanced HMI method for using US devices. In
their study, data were collected from three healthy participants, using B-mode ultrasound,
in order to train a machine learning algorithm to classify different hand gestures. The
first dataset included US pictures of six hand postures and four functional grasps, each
with just one degree of grip force. The second dataset was used to evaluate the capacity to
recognize various degrees of force for each kind of grip. In order to classify photos from the
five datasets, an LDA classifier, a Naive Bayes classifier, and a decision tree classifier were
used, among other methods. The LDA classifier trained with features extracted by HOGs
outperformed the others and achieved 80% success in categorizing 10 postures/grasps
and 60% success in classifying functional grasps with varied degrees of grip force in an
experiment involving three intact human volunteers.

In order to classify complex hand gestures and dexterous finger movements,
Akhlaghi et al. [58] collected the forearm muscle activities in different hand gestures
in conjunction with wrist pronation. Using the activity patterns collected during the train-
ing phase, a database of potential hand movements was created, and the nearest neighbor
classifier was used to categorize the various activity patterns using the database. The fea-
ture vectors in closest neighbor classification were created using two-dimensional activity
pattern pictures, and the distance metric in a classification algorithm was determined by
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the cross-correlation coefficient between two patterns. For each participant, a database of
activity patterns corresponding to various hand gestures was created during the training
portion of the study. It was discovered that, during the testing phase, unique activity
patterns were categorized using the database, with an average classification accuracy of
91%. A virtual hand could be controlled in real time by using an image-based control
system that had an accuracy of 92% on average.

MclIntosh et al. [59] collected data from participants’ forearm muscles in order to
classify 10 different hand gestures, using US. In order to identify the finger positions or
estimate finger angles, two machine learning algorithms were used. However, because
machine learning algorithms cannot process all of the information, an optical flow was
used to classify discrete gestures, and a first-order surface was used to detect finger angle.
SVM and MLP algorithms were used to classify the different gestures and finger flexing
in different joints. The results of this study showed that finger flexion and extension
for performing 10 different hand gestures were classified after using image processing
and neural networks with an accuracy of above 98%. They also found out that the MLP
algorithm had a slight advantage over the SVM method in every location. After analyzing
the data collected from finger flexion and extension in different joints, they mentioned that
it is possible to classify the flexion and extension of each finger in different joints with an
accuracy of 97.4%.

In an experiment reported by Yang et al. [52], in order to classify and identify the finger
movements from using a wearable 1D SMG system, the muscle activity of participants
during the performance of 11 different hand gestures was collected. Then the data were
used to train LDA and SVM algorithms to classify hand movements. It was decided to use a
five-fold cross-validation method. All the information was gathered in one database, which
was then separated into five sections randomly and evenly distributed among them. One of
the five components was designated as a testing set, while the other four were designated
as training sets. The trial findings indicated that the accuracy of offline recognition was up
to 98.83 £ 0.79%. The completion percentage of real-time motions was 95.4 £ 8.7%, and
the time required to choose an online move was 0.243 £ 0.127 s.

In order to classify the finger movements, Akhlaghi et al. [60] used a B-mode ultra-
sound probe to capture the main forearm muscles’ activities. In addition, three different
scanline reductions were used to limit the scanlines of the US. The data, after being collected
and limited, were used to train a nearest neighbor algorithm to classify different finger
movements and different hand gestures. Using the complete 128 scanline picture, the clas-
sification accuracy was 94.6%, while using four equally spaced scanlines, the classification
accuracy averaged 94.5%. On the other hand, there was no significant difference in the
ability to categorize items when the best scanlines were selected using fisher criteria (FC)
and mutual information (MI). They also suggested that, instead of using the whole imaging
array, a select subset of ultrasonic scanlines may be employed, which would not result in a
reduction in classification accuracy for multiple degrees of freedom. Wearable sonomyo-
graphy muscle-computer interfaces (MCls) may also benefit from selecting a restricted
number of transducer parts to decrease computation, instrumentation, and battery use.

To detect finger movements and wrist rotation simultaneously, Yang et al. [54] collected
data from muscle activities during different finger movements with wrist rotation. Before
using the collected data in the training of machine learning algorithms, different techniques
were used to extract the features. The simultaneous wrist rotation and finger motions
were predicted using an SDA technique and a PCA approach. The results indicated that
SDA is capable of accurately classifying both finger movements and wrist rotations in the
presence of dynamic wrist rotations. Using three subclasses to categorize wrist rotations, it
is possible to properly classify around 99% of finger movements and 93% of wrist rotations.
They also discovered that the wrist rotation angle is linearly related to the first principal
component (PC1) of the chosen ultrasonography characteristics, independent of the finger
motions being used. With just two minutes of user training, it was possible to achieve wrist
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tracking precision (R2) of 0.954 and finger-gesture categorization accuracy (96.5%) with
the PC1.

Fernandes et al. [61] developed a wearable SMG technology to classify and categorize
finger flexion and extension. In their study, 2D-mode US was used to collect five subjects’
muscle activities during finger movements. Before the LDA method was employed to
categorize the finger motions, a feature selection process was carried out. The number
of spatial and temporal characteristics that were extracted was reduced as a result of this
procedure. This aids in the differentiation of various forms of finger flexion. An accuracy
of 80-92% (full resolution) was achieved in the first and third quarters of 10 separate arm
trials. Using the suggested feature extraction approach in conjunction with discrete wavelet
transform, they demonstrated that classification accuracy may be improved by as much as
87% by averaging four radio frequency signals. According to the findings of their research,
reduced resolutions may achieve high accuracy levels that are comparable to those of
full resolution. Furthermore, they carried out pilot research employing a multichannel
single-element ultrasound system, using flexible wearable ultrasonic sensors (WUSs) that
utilize non-focused ultrasound. Three WUSs were connected to one subject’s forearm, and
ultrasonic RF signals were recorded while the person flexed his or her fingers individually.
Using WUS sensors, the researchers discovered that they could accurately categorize finger
movement with an accuracy of about 98%, with F1 scores ranging between 95% and 98%.

Li et al. [39] collected the muscle activities of participants by using M-mode ultrasound.
The data acquired were utilized to train SVM and BP ANNs, which were then used to
categorize the movements of the wrist and hands. The SVM classifier had an average
classification accuracy (CA) of 98.83% for M-mode and 98.77% for B-mode across the eight
subjects” 13 movements. Regarding the BP classifier, the average CA of M-mode and
B-mode was around 98.7 £ 0.99% and 98.76 + 0.91%, respectively, according to the results.
CAs did not vary between M-mode and B-mode (p > 0.05). Aside from that, M-mode
seems to have potential dominance in feature analysis. Their findings indicate that M-mode
ultrasonography may be used to detect wrist and finger motions, in addition to other
applications. The results of their study also show that M-mode ultrasound can be used in
HMI

Table 1 presents a summary of the different machine learning algorithms, feature
extraction methods, and modes of ultrasound devices used to classify different types of
finger movements and hand gestures since 2006.

Table 1. Summary of the methods and results of the SMG controlling system used in the past 16 years.

Authors Year

Ultrasound

ode

Extraction
Method

Machine
Learning
Algorithm

Probe
Mounting
Position

Feature Fixation

Methods

Targeted

Location Muzcles

Subjects Results

Zheng et al.
28] 2006

B-Mode

The normal participants
had a ratio of 7.2 + 3.7%
between wrist angle and
forearm-muscle percentage
distortion. This ratio
exhibited an intraclass
correlation coefficient (ICC)
of 0.868 between the three
times it was tested.

6 healthy
and 3
amputee
volunteers

N/A N/A Forearm ECR Posterior N/A

Guo etal.
[47] 2008

A-Mode

A mean correlation value
of r = 0.91 for nine
individuals was found
based on the findings of a
linear regression study
linking muscle
deformation to wrist
extension angle. A
correlation between wrist
angle and muscle
distortion was also
investigated. The total
mean ratio of deformation
to angle was 0.130%/°.

Custom-
Forearm ECR NA maid
holder

9 healthy

N/A N/A participants
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Table 1. Cont.

Authors

Year

Ultrasound
Mode

Machine
Learning
Algorithm

Feature
Extraction
Method

Subjects

Location

Targeted
Muscles

Probe
Mounting
Position

Fixation
Methods

Results

Guo et al.
[48]

2009

A-Mode

N/A N/A

16 healthy
right-
handed
participants

Forearm

ECR

NA

Custom-
designed
holder

The root-mean-square
tracking errors between
SMG and EMG were
measured, and the results
showed that the SMG had a
lower error in comparison
with EMG. The mean RMS
tracking error of SMG and
EMG under three different
waveform patterns ranged
between 17 and 18.9 and
between 24.7 and
30.3, respectively.

Chen et al.
[50]

2010

A-Mode

N/A N/A

9 right-

handed

healthy
individuals

Forearm

ECR

NA

Custom-
designed
holder

SMG control’s mean RMS
tracking errors were 12.8%
and 3.2%, and 14.8% and
4.6% for sinusoid and
square tracks, respectively,
at various
movement speeds.

Shi et al.
[56]

2010

B-Mode

N/A N/A

7 healthy
participants

Forearm

ECR

NA

bracket

There was excellent
execution efficiency for the
TDL algorithm, with and
without streaming
single-instruction
multiple-data extensions,
with a mean correlation
coefficient of about 0.99. In
this technique, the mean
standard root-mean-square
error was less than 0.75%,
and the mean relative root
mean square was less than
8.0% when compared to
the cross-correlation
algorithm baseline.

Shi et al.

[571

2012

B-Mode

Deformation
field
generated
by the
demons
algorithm

SVM

6 healthy
volunteers

Forearm

ECU,
EDM, ED,
and EPL

Posterior

Custom-
maid
holder

A mean F value of
0.94 £ 0.02 indicates a high
degree of accuracy and
dependability for the
proposed approach, which
classifies finger flexion
movements with an
average accuracy of
roughly 94%, with the best
accuracy for the thumb
(97%) and the lowest
accuracy for the ring
finger (92%).

Guo etal.

[51]

2013

A-Mode

SVM,
RBFANN
and BP
ANN

N/A

9 healthy
volunteers

Forearm

ECR

NA

N/A

The SVM algorithm, with a
CC of around 0.98 and an
RMSE of around 13%, had

excellent potential in the
prediction of wrist angle in
comparison with the
RBFANN and BP ANN.

Ortenzi
etal. [21]

2015

B-Mode

LDA, Naive
Regions of Bayes
Interest classifier
gradients and
and HOG Decision
Trees

3 able
bodied
volunteers

Forearm

Extrinsic
forearm
muscles

Transverse

Custom-
made
plastic
cradle

The LDA classifier had the
highest accuracy and could
categorize 10
postures/grasps with 80%
success. It could also
classify the functional
grasps with varied degrees
of grip force with an
accuracy of 60%.

Akhlaghi
et al. [58]

2015

B-Mode

Customized
image
processing

Nearest
Neighbor

6 healthy
volunteers

Forearm

FDS, FDP,
and FPL

Transverse

Custom-
designed
cuff

In offline classification, 15
different hand motions
with an accuracy of around
91.2% were categorized.
However, in real-time
control of a virtual
prosthetic hand, the
accuracy of classification
was 92%.

McIntosh
etal. [59]

2017

B-Mode

MLP and

Optical flow SVM

2 healthy
volunteers

Wrist and
Forearm

FCR,
FDS, FPL,
FDP, and

FCU

Transverse,
longitudi-
nal, and
diagonal
wrist and
posterior

3D-
printed
fixture

Both machine learning
algorithms could classify
10 discrete hand gestures
with an accuracy of more

than 98%. In contrast to
SVM, MLP had a
minor advantage.
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Table 1. Cont.
Feature Machine Probe s ats
Authors Year Ul’t;/;[isgund Extraction Learning Subjects Location 'll;zrgetled Mounting lf/;x?}?oc? Results
ode Method Algorithm uscles Position ethods
FDP, FPL,
EDC,
Segmentation Eight EPL, and Custom- Finger movements were
Yal}%;jt al 2018 A-Mode and linear LDSI\%/I\aAnd healthy Forearm flexor NA made classified with an accuracy
2 fitting participants digito- armband of around 98%.
rum
sublimis
The 5 different hand
Akhlaghi Nearest 5 FDS, FDP, Custom: ae;;u;isafce;fa?yteﬁ(gizse%
_ € ] i 4 ” desi d X
etal. [60] 2019 B-Mode N/A Neighbor ab;ig;géit;ed Forearm and FPL Transverse esclffrf\e with 128 scanlines and
94.5% with 4 scanlines that
were evenly spaced.
F The finger motions and
Random F RCIFJbP wrist rotation
Forest FCDSl FPL. simultaneously using the
technique i 4 i . H
Yang etal. 2020 A-Mode with the SDA and 8 healthy Forearm APL, NA Customized SDA machine learn}qg
[54] help of the PCA volunteers EPL, EPB, armband algorithm were classified
Treep Bagger , with an accuracy of around
function ECR, and 99.89% and
ECD 95.2%, respectively.
Enedat] S health Cusfgm- Nine different lfi]r:ger
ngda ~ ealthy made movements with an
etal. [55] 2020 A-Mode N/A N/A participants Forearm NA NA wearable accuracy of around 95%
band were classified.
Classification accuracy
ranged from 80% to 92% at
full resolution. However, at
low resolution, the
accuracy improved to an
Fernandes g DWT and 5 healthy . average of 87% after using
etal. [61] 2021 B-Mode LR LDA participants Forearm NA Wrist N/A the proposed feature
extraction method with
discrete wavelet transform,
which was considered
good enough for
classification purposes.
The accuracy of the SVM
classifier to classify 13
i .83 + 1.03%
ECR Custom- motions was 98.83
; , d 98.77 + 1.02% for
Linear FDS, FPL made an
. M-Mode s SVM and 8 health 4 4 M-mode and B-mode,
Lietal [39] 2022 _ “B'Miode flttmgh BP ANN participalzlts Forearm 11531])35, fx?ci Transverse gsgssr- respectively. However, the
approac ECU holder accuracy of the BP ANN

classifier was 98.70 & 0.99%
for M-mode and
98.76 + 0.91% for B-mode.

Abbreviations: Not available (N/A); histogram of oriented gradients (HOG); discrete wavelet transform (DWT);
linear regression (LR); support vector machine (SVM); radial basis function artificial neural network (RBFANN);
back propagation artificial neural network (BP ANN); linear discriminant analysis (LDA); multilayer perceptron
(MLP); subclass discriminant analysis (SDA); principal component analysis (PCA); correlation coefficients (CC);
root-mean-square error (RMSE); root mean square (RMS); sonomyography (SMG); electromyography (EMG);
two-dimensional logarithmic (TDL); extensor carpi radialis (ECR); extensor carpi ulnaris (ECU); extensor digiti
minimi (EDM); extensor digitorum (ED); extensor pollicis longus (EPL); flexor digitorum superficialis (FDS);
flexor digitorum profundus (FDP); flexor pollicis longus (FPL); extensor digitorum communis (EDC); extensor
pollicis longus (EPL); abductor pollicis longus (APL); extensor pollicis brevis (EPB).

4. Discussion

This In this paper, we conducted a review of the research works that used sonomyog-
raphy (SMQG) for controlling upper limb prostheses during the last 16 years, since it was
first proposed in 2006 [64]. In this technique, different hand gestures can be classified based
on the images or signals captured by the US probe to control the prosthesis with multiple
degrees of freedom. Because ultrasound imaging can provide information about both
superficial and deep muscle activities, this HMI method has a lot of potential for controlling
prostheses with more degrees of freedom. To classify hand gestures for controlling robots,
various machine learning algorithms and deep learning methods are needed. However,
machine learning algorithms are not able to process all the information collected from US
transducers. Hence, different transfer learning models have been proposed to extract the
characteristics of the collected data and use these features to train the model. The results of
this review showed that the most popular algorithms used to categorize the different hand
gestures with an accuracy of about 95% from the data collected by US devices are SVM,
RBFANN, BP ANN, LDA, K-NN, MLP, SDA, and PCA.
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To control a prosthesis using SMG, three different US imaging modes are utilized,
namely A-mode, B-mode, and M-mode. The result of this review paper shows that the ac-
curacy of the SMG method with three modes can be good enough to be used for controlling
prostheses. The A-mode US system uses very tiny transducers; thus, it can make the system
very compact, and US transducers can be integrated with EMG electrodes. However, be-
cause the detailed activities of neighboring muscles can be detected in B-mode ultrasound,
the reliability of using this US mode may be higher than others. Moreover, the precision
can be increased by utilizing different machine learning algorithms in combination with
distinct feature extraction methods.

Despite the fact that recent studies have demonstrated the feasibility of using US
transducers to control robotic hands, this method has some limitations. Because this method
can detect residual muscle activity, it is only appropriate for prostheses in people with a
transradial hand amputation level or lower. Moreover, current ultrasound imaging systems
are bulky and power-hungry, thus making the prosthesis large and heavy. Furthermore,
ultrasound gels or gel pads were used in the published studies for acoustic coupling; thus,
the subject’s skin was exposed to moisture for a long period of time, which may have the
potential to cause skin problems.

According to this review, the following areas should be further explored and devel-
oped for a wider application of SMG for both prothesis control and functional muscle
assessment [66]. Firstly, it is necessary to develop a wearable ultrasound imaging system
that can be worn by the subject or installed together with their prothesis with dimensions
that are sufficiently compact. Recently, a wearable ultrasound data-collection device for
muscle functional assessment was demonstrated [63]. Therefore, research works can be
focused on further reducing the dimension of the ultrasound system, the footprint of the
transducer, and the power consumption of the system, with the battery lasting long enough
for the subject’s daily living activities. Wang et al., for example, recently developed a
small, lightweight, wireless, and wearable bioadhesive ultrasound (BAUS) device that
provides images from organs for 48 h [67]. Secondly, it is very important to solve the
acoustic coupling between the skin and ultrasound transducer for practical application of
SMG for prothesis control, as the subject may wear their prosthesis for a long time every
day. The traditional ultrasound gel or gel pad, which is designed for a short period of use,
may not be suitable for this application. In addition, the gel or gel pad coupling may be
affected by motion artifacts, thus affecting the performance of SMG control. Recently, it has
been demonstrated that some biocompatible materials can serve as a coupling medium for
long-term ultrasound imaging of the human body [67]. Similar materials can be used for
the future study of SMG prothesis control. Thirdly, all the research works published so far
have used a computer to process the ultrasound signal, some in real time and some offline.
While it has been demonstrated that real-time signal or image processing, which is required
for real-time prosthesis control, is feasible, it requires a high-end computer. For practical
use of SMG control for protheses, such signal or image processing must be integrated
into a compact and low-power-consuming microprocessor, which should be ultimately
installed into the prosthesis for daily activity. Thus, the improvement of efficiency and
speed of signal or image-processing algorithm should be an important future direction.
Last but not least, SMG provides information about different muscles, and with multiple
transducers arranged at various locations, we are able to collect images of muscles involved
in complicated hand actions. Thus, it is possible to provide more degrees of freedom
for prosthesis control, using more advanced algorithms, such as various deep learning
methods. Additionally, SMG control can be combined with the SEMG technique in order to
classify more complicated hand gestures with high accuracy, using their complementary
features. For instance, the finger movements can be classified using the B-mode SMG
signals; meanwhile, to detect the intended wrist movement, including rotation, flexion, and
extension, the sEMG signals can be combined.
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5. Conclusions

According to the review of SMG conducted in this paper, we conclude that SMG has
great potential as a novel HMI method for controlling prostheses. It has been clearly demon-
strated that SMG signals collected in A-mode, B-mode, and M-mode ultrasound imaging
can be used for controlling prostheses effectively. Various machine learning methods have
been successfully used to extract control signals from SMG to control prostheses with
multiple degrees of freedom by classifying different hand gestures and finger movements.
SMG for prosthesis control is becoming a more mature technique since it was first proposed
in 2006. Since ultrasound can inherently detect both deep and superficial muscle move-
ments, as well as neighboring muscle activities, SMG has great potential for controlling
advanced prostheses with multiple degrees of freedom. With the further improvement of
SMG systems by reducing the dimension and cost and increasing the accuracy and battery
life, and solving the acoustic coupling issue, SMG has the potential to become a popular
HMI method in the future.
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