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Abstract

:

The rapidly growing requirement for data has put forward Compressed Sensing (CS) to realize low-ratio sampling and to reconstruct complete signals. With the intensive development of Deep Neural Network (DNN) methods, performance in image reconstruction from CS measurements is constantly increasing. Currently, many network structures pay less attention to the relevance of before- and after-stage results and fail to make full use of relevant information in the compressed domain to achieve interblock information fusion and a great receptive field. Additionally, due to multiple resamplings and several forced compressions of information flow, information loss and network structure redundancy inevitably result. Therefore, an Information Enhancement and Fusion Network for CS reconstruction (IEF-CSNET) is proposed in this work, and a Compressed Information Extension (CIE) module is designed to fuse the compressed information in the compressed domain and greatly expand the receptive field. The Error Comprehensive Consideration Enhancement (ECCE) module enhances the error image by incorporating the previous recovered error so that the interlink among the iterations can be utilized for better recovery. In addition, an Iterative Information Flow Enhancement (IIFE) module is further proposed to complete the progressive recovery with loss-less information transmission during the iteration. In summary, the proposed method achieves the best effect, exhibits high robustness at this stage, with the peak signal-to-noise ratio (PSNR) improved by 0.59 dB on average under all test sets and sampling rates, and presents a greatly improved speed compared with the best algorithm.
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1. Introduction


At present, the acquisition, transmission, and processing of information are proliferating, which brings great challenges to data storage and transmission. Meanwhile, the amount of sampled data is greatly restricted due to limitations in power, bandwidth, or sampling time in some extreme cases. Fortunately, the Compressed Sensing (CS) [1] theory has partially broken through the limitations of the traditional Nyquist sampling theory [2]. A reduced sampling rate can achieve low-cost and efficient data compression and is beneficial for decreasing the burden of storage and transmission.



In recent years, a tremendous number of algorithms have been proposed to address CS reconstruction, including two main categories: traditional methods and Deep Learning (DL) methods.



Traditional methods are usually based on theoretical guarantees to solve undetermined equations and obtain optimal results through gradual iteration, so they inevitably suffer from the high computational cost dictated by interactive calculations [3] and are hard to execute by parallel computing.



Different from traditional methods, DL methods have been applied to solve image CS reconstruction problems. They can map from compressed data to original signals by training a larger number of parameters in Deep Neural Networks (DNNs) with superior inference time and reconstruction quality. Of course, they are subject to some defects.



First, few methods, such as AMPNet [4], can make ultimate use of information in the compressed domain. However, the current region of compressed information will be applied to reconstruct the corresponding image blocks only, leading to a small receptive field [3]. Second, the intermediate features of previous iterations are completely ignored during reconstruction, although they can guide the recovery of the following iterations effectively. Last but not least, most relevant works inevitably suffer from a large amount of information loss caused by resampling and channel compression. The intermediate results should be compressed and resampled to obtain error information for supplementing the iterative reconstruction.



In view of the previous studies and limitations mentioned above, an IEF-CSNET is proposed here. The main contributions of this work are listed as follows:




	
Based on the Compressed Information Extension (CIE) module, information in the compressed domain is fully utilized for high-dimensional fusion, greatly expanding the receptive field of DNN methods.



	
In consideration of the initial image and the error enhancement image recovered by previous iterations, the Error Comprehensive Consideration Enhancement (ECCE) module can incorporate the enhancement information into the output flow more efficiently.



	
To solve the information compression due to obtaining errors, an Iterative Information Flow Enhancement (IIFE) module is proposed to complete iterative and progressive recovery during loss-less information transmission.



	
Combined with CIE, ECCE, and IIFE, the IEF-CSNET is proposed. On this basis, several experiments and visual analyses of its effectiveness are performed. Under all test sets and sampling rates, the average increase is approximately 0.59 dB, and the operating speed is improved by orders of magnitude from the state-of-the-art (SOTA) method.








The rest of this paper is organized as follows. In Section 2, the CS and some related works are introduced and analyzed. The proposed IEF-CSNET is elaborated on in Section 3. The settings and substantial results of the experiments are provided in Section 4. Finally, the conclusion is summarized in Section 5.




2. Related Works


In this section, a brief review of CS and some benchmark works are provided, which can be generally divided into traditional methods and DL methods.



2.1. Compressed Sensing and Traditional Methods


CS can sample and compress the signals simultaneously, breaking through the limitation of the Shannon Nyquist sampling theorem [1]. Mathematically, CS reconstruction aims to infer the original signal   X ∈  R  N × 1     from the CS measurements   Y ∈  R  M × 1    .  Measurement  Y  can be obtained by a nonadaptive linear projection   Y = Φ X , Φ ∈  R  M × N    , whereby the CS sampling ratio is defined as   R = M / N  . However, if there are sparse representations   Ψ X   of  X  in domain  Ψ , the typical ill-posed problems can be solved by measurement  Y  correctly with high probability because it can be transformed into the following expression, which is an optimization:


   min X    Ψ X  p  ,   s . t .   Y = Φ X  



(1)




where    ∥ ∗ ∥  p   means the p norm of vector * to characterize the sparsity of the vector. Thanks to CS theory, the loads of data acquisition, transmission, and storage can be greatly reduced.



Many traditional works have been performed to design the sampling matrix [5] and reconstruct  X  from the CS measurement  Y . Convex optimization methods achieve accurate and robust recovery results by translating the nonconvex constraint into a convex constraint [6]. Greedy algorithms, such as Matching Pursuit (MP) [7], Orthogonal MP (OMP) [8], and stagewise OMP [9], generally obtain results based on the iterative residual, achieving lower reconstruction quality but sharing low computational complexity [10]. Refs. [11,12,13,14] take the source at Projected Landweber [15] and reconstruct by successively projecting and thresholding. The Total Variation (TV) [16] establishes more sophisticated models and focuses more on image priors. Nevertheless, details could be lost due to the too-smooth constraint.



Although some traditional methods have been widely applied practically, such as wireless sensor network [17], hyperspectral imaging [18], Magnetic Resonance Imaging (MRI) [19,20], underwater sensors [21], and aerospace [22], they usually suffer from too slow a running speed, due to the inevitable large numbers of iterations and heavy matrix operations, which must be executed in a nonparallel way in each iteration. In addition, it is difficult to draw enough prior knowledge from big data, causing performance bottlenecks.




2.2. Deep Learning Methods


By exploiting massive paralleled Graphic Processing Unit (GPU) processing architectures and large amounts of training data, DL methods are mainly composed of various high-density parallel computing processes and can achieve superior reconstruction quality and computational complexity when compared to traditional methods. ReconNet  [23], the first DL method, presents a noniterative and extremely fast algorithm to reconstruct images from CS measurements. Block Compressed Sensing (BCS) is suitable for image sampling and compression in resource-constrained applications [24]. However, some methods are prone to suffering from blocking artifacts due to the independent recovery among blocks, so it is necessary to cascade a time-consuming filter, BM3D. Instead of the fixed sampling matrix, DR2-Net [25], CSNET [10], and CSNET+ [26] implement the learnable fully connected layer and convolution layers for sampling. They all improve the reconstruction quality by stacking several residual learning blocks. NLR-CSNET [27] and DPA-Net [28] introduce a 3D encoder/decoder and a dual-path network based on the attention mechanism for better reconstruction quality. The encoder and decoder in [27] with channel attention motivate the effective skip links. However, these straightforward methods are largely unprincipled black boxes that are difficult to train and often-times specific to a single measurement matrix [29].



Deep unfolding methods incorporate traditional iterative reconstruction and DNNs, and they can map each iteration into a series of network layers that preserve interpretability and performance. Learned Denoising-based Approximate Message Passing (LDAMP) [29] combines the Denoising-Based Approximate Message Passing (D-AMP) algorithm and neural network and runs over 50 times faster than BM3D-AMP. Inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA), ISTA-Net+ [30], and ISTA-Net++ [31] design deep networks,  all parameters are learned end-to-end rather than hand-crafted. The difference is that ISTA-Net++ uses a cross-block learnable sampling strategy and achieves multi-ratio sampling and reconstruction in one model but leads to a low robustness of all compression ratios. Moreover, OPINE-Net [32] is a variant of ISTA-Net+ and adopts end-to-end training and learning to explore adaptive sampling and reconstruction. An unfolded LSTM network is utilized in video compression sensing, deeply fusing the intra- and interframe spatial–temporal information [33]. Finally, AMPNet [4] unfolds the iterative denoising of the AMP algorithm and shows a better reconstruction accuracy with high reconstruction speed.



Generally, due to the memory limitation and compatibility with input size, the sampling matrix can not share the same size as the original image. Thus, almost all images are initially reconstructed based on blocks and then denoised, leading to insufficient information integration in the compressed domain and small receptive fields. Some valuable compressed information from the other adjacent blocks can be extracted to assist in the reconstruction of the current block. This is in line with the data-oriented training mechanism because DL methods are good at high-dimensional mapping and learning autonomous knowledge. The methods mentioned above employ the solution of iterative progressive reconstruction for better performance. In this case, the processed results of intermediate iterations are considered to contain a wealth of information. In the repeated process, the data reconstructed painstakingly will be forcibly compressed or discarded and are expected to be resampled to the same size as input  Y  to obtain the difference in the compressed domain. Meanwhile, it is inconsistent with the advantage of the parallel computing of DL methods. Moreover, the generous results underutilized may cause many network redundancies. In the meantime, it is frustrating that the results calculated in previous iterations are ignored in most methods, and the previous features are supposed to be better used to explore and analyze which modes of information are difficult to recover. In this way, they can effectively strengthen the subsequent reconstruction.





3. Methods


3.1. Overview of Proposed Method


This subsection introduces the overall structure and exhibits the whole prediction pipeline of the proposed method. Figure 1 shows how the submodules are closely combined with each other and organized into a more effective whole. The complete method is implemented by the following detailed submodules:




	
The CIE module expands and integrates the information elements in the compressed domain to output   CR 1   and the Compressed-domain Fusion Error Image   CFEI i  , which can take greater advantage of the measurements in each iteration and achieve a larger receptive field (Section 3.2).



	
The ECCE module outputs the Enhanced Error Image   EEI i   by taking   CR i  ,   CFEI i  , and   EEI  2 ∼ ( i − 1 )    of the previous iterations into consideration. In this way, the error and residual can be accurately predicted with high robustness to supplement the following reconstruction more efficiently (Section 3.3).



	
Based on the IIFE module, the Intermediate Features   IF i   and   EEI i   can be supplemented progressively and fused more smoothly under loss-less information transmission while the sampling is repeated in the iterative reconstruction process (Section 3.4).








Meanwhile, pseudo code matching with the structure diagram (Figure 1) is provided as follows (Algorithm 1) to explain the inference more intuitively.






	Algorithm 1 Prediction of IEF-CSNET.



	
	1:

	
PREDICT (Input:  SD  =   Φ ( X )  )




	2:

	
 for each   i ∈ [ 1 ,  N I  ]   do




	3:

	
  if   i = = 1   then




	4:

	
     CR 1   =   CIE 1  ( SD )




	5:

	
     IF 1   =   BCNN 1  (  CR 1  )




	6:

	
  else




	7:

	
     CR i   =   IRE i  (  IF  i − 1   )




	8:

	
     SSD i   =   S (  CR i  )  




	9:

	
     CFEI i   =   CIE i  (  SSD i  - SD )




	10:

	
     EEI i   =   ECCE i  (  CR i  ,  EEI  ( i − 1 ) ∼ 2   ,  CFEI i  )




	11:

	
     IF i ′   =   ES i  (   IF  i − 1   ,   IEE i  (  EEI i  ))




	12:

	
     IF i   =   BCNN i  (  IF i ′  )




	13:

	
  end if




	14:

	
 end for




	15:

	
 return   IF  N I   















3.2. Compressed Information Extension (CIE)


After analyzing and considering most of other related works, it is realized that the images are processed and divided into many blocks, which will be compressively sampled and independently reconstructed as the CR blocks. In this process, only measurements of the corresponding region block are employed for reconstruction, which are shown and represented by the red dotted boxes in Figure 2. Under these circumstances, the reconstruction of each block is competed independently. It can be summarized as follows:


   CR  ( i , j )   = P S  u p s a m p l i n g   SD  ( i , j )      



(2)




where   SD  ( i , j )    and   CR  ( i , j )    mean the sampled data and the coarse reconstruction of block   ( i , j )  , respectively. The   1 × 1   convolution or full connection layer is adopted for upsampling, and   P S ( · )   means the Pixelshuffle option [34].



Some methods cannot prevent reconstruction from blocking artifacts under a low sampling rate, such as [23]. Because the number of measurements in   SD  ( i , j )    is severely insufficient when extremely compressed, small disturbances of measurements from different blocks may cause overall offsets of each   CR  ( i , j )    after the reconstruction. Thus, the helpful information in the compressed domain should be drawn from related blocks and fused into the current block to obtain more valuable guidance for reconstruction.



Meanwhile, it is found that only a few methods can achieve a relatively large receptive field while reconstructing. During upsampling, other methods [4,23,26,31,35] only focus on the corresponding measurements compressed from the target single block while reconstructing. Under normal conditions, a larger receptive field tends to bring better performance. For example, CSformer [3] integrates the characteristics of Transformer [36] to obtain a large receptive field in theory and obtain SOTA performance. However, an inference speed that is too low may be very fatal. It is even slower than some traditional algorithms, so the advantage of DL methods cannot be exhibited. Currently, GPU devices are good at parallel computing with high throughput, which makes the calculation of multichannel feature maps possible, promoting the feasibility of the methods introduced later.



For the reasons and analysis mentioned above, the CIE module is developed as a solution. It can take full advantage of measurements in the compressed domain and share a super large receptive field. In addition, it is suitable for GPU devices. To our knowledge, a similar design has not been used in relevant works at this stage. The pipeline is illustrated in Figure 3.



 EFSD  and   CR 1   at the 1st iteration can be calculated as follows:


    ESD    = SD ∗ Θ (  W  ( 3 × 3 )   , b )      EFSD    =  SD , ESD        CR 1     = P S  u p s a m p l i n g  EFSD       



(3)




where   ( · ) ∗ Θ ( W , b )   represents the convolution option through parameter groups  W  and  b .



In the related works, each block with   32 × 32   pixels is compressed into   1 × 1   pixels with   1024 × R   channels in the compressed domain. Thus, the receptive field may be limited to the current block. However, the fusion of  SD  and  ESD  can easily achieve three or even more times the effect of the receptive field from other methods. The CIE modules can ensure the information perception for at least   32 × 3   receptive fields at each iteration. In addition, the checking, judging, and consulting of the surrounding blocks can be realized in advance at the initial reconstruction of   CR 1   for better reconstruction of the current block.



Similar to Equation (3), when the iteration   i > = 2  , the   CFEI i   can be calculated by the CIE module from    SSD i  − SD  , as follows:


     ESD ′     =  (  SSD i  − SD )  ∗ Θ  (  W  ( 3 × 3 )   , b )        EFSD ′     =   (  SSD i  − SD )  ,  ESD ′         CFEI i     = P S  u p s a m p l i n g   EFSD ′        



(4)




where    SSD i  − SD   is noted as the error between  SD  and   SSD i  .   CFEI i   is the image of the residual error after more comprehensive consideration in the compression domain.



In this way,  EFSD  and   EFSD ′   can be obtained as more effective information in the compressed domain without damaging or impacting original measurements. In the meantime, CIE modules make larger receptive fields come true, tending to better reconstruction performance.




3.3. Error Comprehensive Consideration Enhancement (ECCE)


Most related works fail to make full use of the previous iteration results and may ignore the connections during progressive reconstruction to some extent. First, the task in each iteration is consistent during the entire process, and the errors between   CR i   and  X  can be predicted in each iteration. The residual error is gradually reduced during the iteration and shares the same target so that the previous residuals are valuable to guide the next stage of error prediction. Based on this, an ECCE module is proposed here to refine the reconstruction, the pipeline of which is shown in Figure 4.



The input of   ECCE i   of iteration i can be achieved as follows:


     Input i     =        CR 2  ,  CFEI 2   ,     i = 2         CR i  ,  EEI  2 ∼ ( i − 1 )   ,  CFEI i   ,     2 < i ≤  N I           



(5)




where   CFEI i   represents the output of   CIE i   (Equation (4)).   CFEI i   and   CR i   can be understood as the abstract summary and the prediction of target error in iteration i, respectively. The set of   EEI  2 ∼ ( i − 1 )    means that   ECCE i   considers the previous results of iteration   [ 2 , i − 1 ]  . They are all employed as the input of   ECCE i   to predict the   EEI i  .   ECCE i   makes the fusion of multiple pieces of information more sufficient by coding the input as follows:


     EEI i     = C N  N  32 − 1    C N  N  i − 32     Input i        



(6)




where   C N  N  i − j    ( · )    represents the   3 × 3   convolution option and one ReLU layer, with i input channels and j output channels.



The ECCE module has the following advantages. First, based on   EEI  2 ∼ ( i − 1 )    from previous stages, the proposed module predicts the   EEI i   more accurately and realizes more adaptive reconstruction. Under the training of a large amount of data, the network can remember and even judge which information mode is difficult to reconstruct. Because of paying more attention to the connection of previous results, some components are always maintained throughout the whole process, and then the network will focus more on these stubborn questions to strengthen the final output. Second, different from other methods, ECCE receives the   CR i   and   CFEI i   as parts of the input at each iteration (as illustrated in Figure 4 and Equation (5)). In addition, it aims to combine the intermediate results with errors to analyze the targeted shortcomings in   CR i   in the current situation to better integrate the errors later. Finally, two-layer CNN is employed for dimension expansion and compression to achieve a similar effect as the autoencoder for deeper information fusion.




3.4. Iterative Information Flow Enhancement Module (IIFE)


The existing hardware system performs poorly in accelerating the large kernel convolution, so images or feature maps are no longer sampled by convolution options with a large kernel size. Instead, the sampling module is completed by multichannel parallel multiplication due to no overlap among different blocks during sampling. It is noted as   S ( · )   and shown in Figure 5.



First, the image is divided into many blocks by   B = 32  .


     I  ( i , j )      = I [ ( i − 1 ) ∗ B : i ∗ B , ( j − 1 ) ∗ B : j ∗ B ]       I B     = B  ( I )  =          I  ( 1 , 1 )   ,         I  ( 1 , 2 )   ,       ⋯       I  ( 1 , w )            I  ( 2 , 1 )   ,         I  ( 2 , 2 )   ,       ⋯       I  ( 2 , w )          ⋮      ⋮      ⋯      ⋮          I  ( h , 1 )   ,         I  ( h , 2 )   ,       ⋯       I  ( h , w )           



(7)




where   w =  W B    and   h =  H B    represent the numbers of blocks in width and height, respectively. Then the blocks are concatenated as a whole feature map at dimension C.


     I C     = C  (  I B  )  =   I  ( 1 , 1 )   , ⋯  I  ( h , w )        



(8)




where   C ( · )   represents the option of concatenating. In this way,    I C  ∈  R  32 ∗ 32 ∗ ( w h )     becomes the set of blocks being sampled, and the    SSD i  ∈  R  w ∗ h ∗ ( 1024 ∗ R )     in iteration i can be achieved as follows:


     SSD i     = S  (  CR i  )  = r e s h a p e  ( C  ( B  (  CR i  )  )  · Φ )      



(9)




where   r e s h a p e ( · )   represents the reverse operation of   B ( · )  , which aims to organize    C ( B  (  CR i  )  ) · Φ  ∈  R  ( w ∗ h ) ∗ ( 1024 ∗ R )     into   R  w ∗ h ∗ ( 1024 ∗ R )    (Figure 5). It is noted that   S ( · )   should be executed repeatedly with the same sampling matrix  Φ  in each IIFE.



In other related methods,   IF i   is normally compressed into one-channel   CR i   by   C  E i    and sampled to achieve the error in the compressed domain, as shown in Figure 6. The residual error is upsampled into another error image   EI i   with the same size as  X . Then,   EI i   is added to the main branch directly. Following that, the one-channel feature   CR i   is augmented in the channel dimension to generate   IF  i + 1    for the next step. In such a way, most intermediate results will be lost during the forced compression, which is indicated by the lighter and smaller green arrows in Figure 6. This is a large bottleneck of the network performance.



Within this work, the IIFE module is proposed to make full use of   IF i  , which is shown in Figure 7. Based on    SSD i  − SD   in the compressed domain, a relatively complete   EI i   can be predicted by upsampling. Meanwhile, the   EI i   can be expanded to enrich information   EF i   by the IEE and to adjust the main branch features in all channels. In this case, the fusion of   EF i   and   IF i   can be smoother without any information being lost. Therefore,   IF i   with diverse information in different channels can be corrected in parallel to avoid wasting hard-earned data from previous heavy channel recovery.



The IIFE can be calculated by the following equations:


     CR i     =  IRE i    IF  i − 1          SSD i     = S (  CR i  )       EF i     =  IEE i   ( u p s a m p l i n g  ( SD −  SSD i  )  )        IF i     =  ES i   (  IF  i − 1   ,  EF i  )      



(10)




where   IRE i   is realized by two   3 × 3   convolution and ReLU layers to extract a one-channel   CR i  . Then,   SSD i   can be achieved by module   S ( · )   defined in Equation (9).   IEE i   also consists of two   3 × 3   convolution and ReLU layers to augment   EI i   into   EF i   that contains more helpful information. Then,   IF i   is completely revised as a whole through   ES i  , by incorporating   EF i   and   IF  i − 1   .



Therefore, it is believed that information flow in the main branch is protected and enhanced. To perfectly use the   IF i   continuously produced by the previous network, IIFE shows great advantages in the resampling process of each iteration. It is emphasized that there are no steps of forced channel compression that will cause information loss. Under these circumstances, the method of effectively retaining and recovering more information can be found.



In the meantime, a mechanism of error compensation is usually adopted through the simple pointwise addition of the two one-channel images,   CR i   and   EI i  . It is believed that nonlinear mapping will be helpful for image reconstruction. Therefore, the ES module is designed and inspired by the encoder-decoder, as shown in Figure 8. Instead of simple addition, it is efficient to make the network learn which information to absorb and how to integrate due to the more adaptive and diversified fusion than addition. The performance of IIFE is far better than that shown in Figure 6 because the  Φ , IRE, IEE, and ES modules are combined effectively, realizing outstanding information collection, transmission, supplementation, and fusion.



Finally, IIFE can cooperate with both ECCE and CIE to form a tight structure as IEF-CSNET. The upsampling module is replaced with CIE and ECCE to generate high-quality   EEI i  . For specific details of the combination, please refer to the overview of the pipeline in Figure 7 and the pseudocode in Algorithm 1 under Section 3.1.





4. Experiment


4.1. Settings


Datasets: The datasets are prepared for training and testing in the same way as the experimental details in [3]. COCO 2017 [37] is a large-scale dataset and is applied as the training set in this work by gathering images of complex everyday scenes containing common objects in their natural context. The patches with   128 × 128   pixels are cropped randomly without any data augmentation during the training. In addition, Set5 [38], Set11 [23], Set14 [39], BSD68 [40], and Urban100 [41] are employed as testing sets to evaluate the performance and robustness more comprehensively because they are widely applied in image reconstructions. Their specific information is listed in Table 1.



Training and Test Details: During the training, the batch size,   N I  , and learning rate   L r   are set as 64, 12, and 0.0001, respectively. All images in the datasets are transferred into  YCbCr  format, and the luminance components ( Y  channel) are utilized for both training and testing, similar to what the reference papers performed. Because of the different resolutions, images in the test sets are processed with batch size = 1 one by one. Peak Signal-to-Noise Ratio ( PSNR ) and Structural Similarity ( SSIM ) [42] are employed to quantitatively evaluate the performance of the reconstructed images. The larger the  PSNR  and  SSIM  values are, the better the performance is [43].



All the implementations and experiments are deployed under the environment of open-source framework Pytorch 1.8.0 and CPU (Intel Xeon CPU E5-2678 v3 @ 2.50 GHz) with GPU (GeForce RTX 2080 Ti).




4.2. Quantitative Evaluation


The quantitative analysis results of all methods are provided in Table 2.  PSNR  and  SSIM  are tested on five testing sets and five different sampling rates (  1 %  ,   4 %  ,   10 %  ,   25 %  , and   50 %  ) so that the effects of all methods can be objectively compared under different conditions. The results indicate that the proposed method achieves the best results under different sets or sampling rates. In addition, the smaller standard deviation than others reflects the higher robustness. As listed in Table 2, the average  PSNR  values of all testing sets are improved by 0.62, 0.6, 0.95, 1.32, and 0.99 dB under the five sampling rates. The absolute improvement under all sampling rates is helpful for practically applying the CS. Meanwhile, the inference speed is much higher than that of the SOTA methods [3] (see Section 4.4). The better reconstruction performance is attributed to the fact that the proposed method can match the characteristics of CS well and realize optimization avoiding the forced loss of intermediate results encountered by other methods. Meanwhile, it benefits from making full use of information in the compressed domain and intermediate results of previous and subsequent iterations to assist the reconstruction.




4.3. Qualitative Evaluation


For the qualitative evaluation, the performances of different methods can be compared based on the visual perception of the final output images. In Figure 9, three result sets (  R = 0.04 % , 0.10 %  , and   0.25 %  ) are randomly selected to fully demonstrate the intuitive performance of reconstruction. The full images and the enlarged parts are displayed simultaneously to show the texture and edge more clearly. In addition, the  PSNR  and  SSIM  of the images and enlarged parts are both calculated and listed. The comparison shows that there are much fewer artifacts or blurred parts in the results from the proposed method in this work than that of the other counterparts. The comparison among different methods can fully prove that the proposed method shows greater advantages in processing texture details and high-quality images with vivid and sharp edges.




4.4. Inference Speed


The inference speed experiments are set as in reference [10] because detailed descriptions of the settings and results are provided. The number of images that can be processed by different methods per second are listed in Table 3, based on which the running speed can be compared more easily on the same hardware system. On the one hand, the inference speed of this work is obviously superior to that of the SOTA method [3] by orders of magnitude. On the other hand, the proposed method is slightly slower than the fastest method, Reconnet [23], but an additional BM3D denoiser must be cascaded after Reconnet, which will take more than 10 s for each 256 × 256 image in use and cannot be parallelized among images. Finally, it needs to be noted that the proposed method greatly improves the reconstruction performance compared with all other methods of approximate inference speed. The overall analysis results suggest that the proposed method realizes a stable and outstanding reconstruction and shows a speed advantage.




4.5. Ablation Experiment


For the ablation study, the effectiveness of the three designed submodules is explored and analyzed. To illustrate their improvement effects in CS reconstruction separately, four different configurations of IEF-CSNET are implemented, which are introduced as follows:




	
  W / O   IIFE: No IIFE is set, but ECCE, CIE, and the base model in Figure 6 are a part of the network.



	
  W / O   ECCE: No ECCE works, but the other two modules are employed.



	
  W / O   CIE: No CIE is added, but the other two are considered.



	
ALL: CIE, ECCE, and IIFE act with united strength.








The average  PSNR  and  SSIM  values of the five datasets under these settings are calculated. To evaluate the function of each module more comprehensively, two sampling rates,   R = 1 %   and   50 %  , are employed for testing, and the results are tabulated in Table 4. The IIFE module improves the performance most greatly, almost close to 1 dB higher than the base module in Figure 6. After supplementation with ECCE and CIE, the performance is still improved under both sampling ratios, even with the help of IIFE. In the case of an extremely low compression ratio, the absence of CIE (  W / O   CIE) will lead to a larger loss because the  FESD  obtained by CIE is critical in the reconstruction.



In addition, the average weights in the convolution layers of ECCE from different iterations are calculated to analyze the internal interpretability, as visualized in Figure 10. In the figure, the two sampling rates,   R = 1 %   and   50 %  , are employed to show the internal interpretability. On the one hand, all polylines   I i   from different ratios are basically in an upwards trend. This is because the closer the iteration is, the more contributive it will be to the current iteration results. The   EEI s   in previous iterations will guide the inference of   EEI i   at this stage because their corresponding weights cannot be ignored by comparison. The network will be committed to recovering the problems not solved by previous iterations. However, the   CFEI i   produced in the current iteration is decisive because the weight of this input channel is the largest.



Finally, all the submodules will be composed of the complete network structure of IEF-CSNET, and the best performance will be achieved under all compression ratios and different datasets.





5. Conclusions


In this work, a novel network architecture IEF-CSNET is proposed for high-performance image reconstruction based on CS. The IIFE to strengthen the information flow can enhance the efficiency of the whole recovery network and reduce the loss of information. The ECCE module, which closely connects the whole network, purposefully enhances the prediction of error images for higher performance in image restoration. The sensing module CIE allows the network to obtain a larger receptive field and can make full use of the information in the compressed domain. In this way, IEF-CSNET achieves the best reconstruction performance at this stage with the help of the above submodules and exhibits an improved operating speed by orders of magnitude from the SOTA method. Finally, these modules may be applied to other networks for image restoration networks and provide some reference for future work.
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Figure 1. Overview of the proposed IEF-CSNET. The real image  X  to be sampled and the final output  O  are marked by solid black and red wireframes, respectively.  X  also plays the role of ground truth for training. (1) The CIE modules (displayed as purple blocks and introduced in Section 3.2) receive information in the compressed domain (Sampled Data ( SD ) or the error between  SD  and Stage Sampled Data (  SSD i  )) as input. Then, CIE modules output the 1st iteration Corase Result (  CR 1  ) or Compressed-domain Fusion Error Image   CFEI i  . (2) ECCE modules (displayed as green blocks and introduced in Section 3.3) achieve   EEI i   by summarizing   CR i  ,   CFEI i  , and   EEI  2 ∼ ( i − 1 )    from ECCE modules in previous iterations. (3) The   N I   IIFE modules (displayed as blue blocks) aim to reconstruct images more effectively stage by stage. Each IIFE module can be transmitted with little information loss. It is composed of the Sampling   S ( · )  , Iterative Result Extraction (IRE), Iterative Error Extension (IEE), and Error Supplement (ES) modules, which are all introduced in Section 3.4. (4) A total of 3 3 × 3 convolution layers with 32 channels and ReLU layers are employed as the Basic CNN (BCNN) module for nonlinear mapping and output the Intermediate Feature   IF i  . 
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Figure 2. The base upsampling module in most related works.  SD  is displayed as a feature map with 4 channels to represent that each block is sampled into 4 measurements, and then it is upsampled and expanded into 16 channels, which is marked as the purple arrow. After that, the feature map is stretched into the same shape as the ground truth  X  by pixelshuffle [34]. The image is processed separately block by block, which is shown and divided by the black dotted line. For example, the  SD  marked by the red dotted line is just processed and stretched into the block in the upper left corner of the image by itself. 
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Figure 3. The pipeline of the CIE module. First, the fusion of measurements in the compressed domain is realized by   3 × 3   convolution (indicated by the purple arrow with tail) to obtain another Expanded Sampled Data ( ESD ), which is marked in a purple solid wireframe and is concatenated to the  SD  to maintain that the original measurements will not be averaged. Then, this fusion of  SD  and  ESD , which is noted as  EFSD , can be upsampled and reshaped in a way similar to that given in Figure 2. 
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Figure 4. The pipeline of the ECCE module. In the iteration i, the module   CIE i   and its output   CFEI i   are both marked in purple. The   CR i   and the previous   EEI s   output by  ECCE s are marked as blue solid wireframes and green dotted boxes, respectively.   ECCE i   takes   CR i  ,   CFEI i  , and   EEI  ( 2 ∼ ( i − 1 ) )    as input and outputs   EEI i  . The green arrows represent the   3 × 3   convolution and activation options. I/O channels of the two convolution layers are i/32 and 32/1, respectively, for nonlinear mapping and comprehensive enhancement of  EEI . 
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Figure 5. Parallel sampling module   S ( · )  . The dimension of the sampling matrix  Φ  is set as   32 × 32 × ( 1024 × R )  . The input image of   S ( · )   is divided into blocks with   32 × 32   pixels, which is the same size as one channel of  Φ . The dividing line is shown in red, where   w =  W 32    and   h =  H 32    represent the number of blocks in the width and height, respectively. The block set will be sampled as a   1 × 1 × ( w ∗ h )   measurement for a total of   1024 × R   parallel executions. Therefore, the sampling rate can be understood as     1024 × R   32 ∗ 32   = R  . 
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Figure 6. Base module in related works.   CR i   and error images   EI i   are represented as blue solid wireframes and green dotted wireframes, respectively. The   IF i   is marked as blue cubes. The green double arrows mark the total number of feature maps, which can also be understood as the reconstructed information flow contained in the network. 
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Figure 7. IIFE module. IRE, IEE, and ES modules, marked with dark blue boxes, aim to extract the   CR i   from   IF i  , encode and extend the   EI i   to output abundant information of Error Features   EF i  , and supplement the main branch   IF i   by   EF i  , respectively. Additionally,   IF i   and   EF i   are represented as blue and gray cubes, respectively. Compared with Figure 6, there is no forced waste and compression of the information flow marked by green arrows, thus achieving a smoother reconstruction. 
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Figure 8. The fusion of errors in ES. At first, the two input feature maps   IF  i − 1    and   EF i  , which are represented by blue and gray cubes, respectively, are concatenated. Then, the features are encoded into a hidden feature with 32 channels (shown as the green cube) and decoded to achieve the final result   IF i  . In this way, the full fusion between errors and intermediate features can be achieved. The encoder and decoder are realized by two   3 × 3   convolution and ReLU layers of   C N  N  64 − 32     and   C N  N  32 − 32    , respectively. 
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Figure 9. The results for qualitative evaluation. (a): Ground truth; (b): ReconNet; (c): ISTANet++; (d): CSNET+; (e): AMPNet; (f): COAST; (g): MADUN; (h): Proposed method. The images are randomly selected for comparison under the three sampling ratios of (  0.04 %  ,   0.10 %  , and   0.25 %  ). The detailed parts of the whole image are marked with a red box and shown in an enlarged view below the corresponding image. The indicators of both the complete and enlarged images are calculated and listed. 
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Figure 10. The internal interpretability of ECCE. Each line denoted as   I i   represents the weights of the convolution layer from   ECCE i   in iteration i. On a specific polyline   I i  , there are different weight responses for different input channels. Based on these weights, the importance of each channel in the whole task can be measured because the larger the weight is, the higher the proportion of information extracted from the corresponding input channel. Point   ( x , y )   indicates how valuable the specific input channel (   EEI x  , x ∈  [ 2 , i − 1 ]    or    CFEI i  , x = i  ) is in the calculation of   ECCE i  . 
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Table 1. Summary of datasets.
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	Dataset
	Number
	Comments





	Set5
	5
	Red-Green-Blue (RGB), unfixed resolutions



	Set11
	11
	Gray, unfixed resolutions



	Set14
	14
	2 Gray, 12 RGB, unfixed resolutions



	BSD68
	68
	RGB, fixed resolution



	Urban100
	100
	RGB, unfixed high-resolution city images










[image: Table] 





Table 2. The performances of different methods. All methods are tested under five testing datasets and five sampling ratios R. The indicators are shown in  PSNR / SSIM  format.
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Methods

	
R

	
Set5

	
Set11

	
Set14

	
BSD68

	
Urban100

	
Avg ± Std






	
Reconnet

[23]

	
1%

	
20.66/0.5211

	
19.34/0.4716

	
20.15/0.4650

	
21.16/0.4816

	
18.32/0.4261

	
19.92 ± 1.00/0.4731 ± 0.0305




	
4%

	
24.45/0.6599

	
22.63/0.6115

	
23.16/0.5813

	
23.58/0.5760

	
20.82/0.5426

	
22.93 ± 1.21/0.5943 ± 0.0394




	
10%

	
27.82/0.7824

	
25.87/0.7459

	
25.90/0.6937

	
25.79/0.6763

	
23.38/0.6697

	
25.75 ± 1.41/0.7136 ± 0.0436




	
25%

	
31.93/0.8796

	
29.80/0.8578

	
29.28/0.8137

	
28.74/0.7965

	
26.84/0.8020

	
29.32 ± 1.64/0.8299 ± 0.0329




	
50%

	
35.80/0.9350

	
33.89/0.9260

	
32.96/0.9013

	
32.22/0.8932

	
30.69/0.8954

	
33.11 ± 1.70/0.9102 ± 0.0170




	
Avg.

	
28.13/0.7556

	
26.31/0.7225

	
26.29/0.6910

	
26.30/0.6847

	
24.01/0.6671

	
26.21 ± 1.31/0.7042 ± 0.0313




	
ISTA-Net++

[31]

	
1%

	
22.21/0.5872

	
20.43/0.5235

	
21.24/0.5118

	
22.09/0.5095

	
19.27/0.4682

	
21.05 ± 1.10/0.5200 ± 0.0384




	
4%

	
26.53/0.7968

	
24.85/0.7528

	
24.79/0.6858

	
24.80/0.6557

	
22.71/0.6768

	
24.74 ± 1.21/0.7136 ± 0.0528




	
10%

	
31.47/0.9111

	
29.82/0.8972

	
28.63/0.8220

	
27.64/0.7858

	
27.53/0.8513

	
29.02 ± 1.48/0.8535 ± 0.0465




	
25%

	
36.09/0.9577

	
34.78/0.9569

	
33.03/0.9146

	
31.23/0.8939

	
32.48/0.9393

	
33.52 ± 1.72/0.9325 ± 0.0248




	
50%

	
41.43/0.9824

	
40.19/0.9833

	
38.28/0.9672

	
36.08/0.9615

	
38.14/0.9794

	
38.82 ± 1.84/0.9747 ± 0.0088




	
Avg.

	
31.55/0.8470

	
30.02/0.8227

	
29.19/0.7803

	
28.37/0.7613

	
28.03/0.7830

	
29.43 ± 1.26/0.7989 ± 0.0313




	
CSNET+

[26]

	
1%

	
24.57/0.6853

	
22.70/0.6257

	
23.20/0.6027

	
23.94/0.5876

	
21.03/0.5591

	
23.09 ± 1.21/0.6121 ± 0.0425




	
4%

	
29.20/0.8799

	
26.78/0.8421

	
26.72/0.7816

	
26.58/0.7555

	
24.26/0.7658

	
26.71 ± 1.56/0.8050 ± 0.0480




	
10%

	
32.97/0.9418

	
30.38/0.9188

	
29.68/0.8740

	
28.93/0.8519

	
27.26/0.8687

	
29.84 ± 1.88/0.8910 ± 0.0337




	
25%

	
37.35/0.9721

	
35.00/0.9629

	
33.69/0.9407

	
32.55/0.9320

	
31.56/0.9423

	
34.03 ± 2.02/0.9500 ± 0.0150




	
50%

	
42.47/0.9879

	
40.77/0.9876

	
38.75/0.9768

	
37.56/0.9772

	
36.96/0.9798

	
39.30 ± 2.05/0.9819 ± 0.0049




	
Avg.

	
33.31/0.8934

	
31.13/0.8674

	
30.41/0.8352

	
29.91/0.8209

	
28.21/0.8232

	
30.59 ± 1.66/0.8480 ± 0.0281




	
AMPNet

[4]

	
1%

	
24.74/0.6989

	
21.61/0.6201

	
23.41/0.6153

	
24.10/0.5967

	
21.34/0.5803

	
23.04 ± 1.35/0.6222 ± 0.0408




	
4%

	
29.44/0.8878

	
26.13/0.8433

	
27.14/0.7884

	
26.82/0.7593

	
24.89/0.7842

	
26.88 ± 1.49/0.8126 ± 0.0465




	
10%

	
33.84/0.9480

	
30.01/0.9202

	
30.43/0.8801

	
29.37/0.8551

	
28.67/0.8892

	
30.46 ± 1.79/0.8985 ± 0.0324




	
25%

	
38.31/0.9750

	
35.12/0.9676

	
34.93/0.9470

	
33.20/0.9337

	
33.88/0.9566

	
35.09 ± 1.75/0.9560 ± 0.0147




	
50%

	
43.53/0.9892

	
40.56/0.9868

	
40.08/0.9787

	
38.26/0.9774

	
39.34/0.9848

	
40.35 ± 1.77/0.9834 ± 0.0046




	
Avg.

	
33.97/0.8998

	
30.68/0.8676

	
31.20/0.8419

	
30.35/0.8244

	
29.63/0.8390

	
31.17 ± 1.49/0.8545 ± 0.0266




	
COAST

[44]

	
1%

	
24.05/0.6637

	
20.87/0.5836

	
22.70/0.5847

	
23.62/0.5749

	
20.74/0.5473

	
22.40 ± 1.37/0.5908 ± 0.0388




	
4%

	
29.16/0.8813

	
25.55/0.8333

	
26.71/0.7816

	
26.56/0.7537

	
24.45/0.7738

	
26.49 ± 1.56/0.8048 ± 0.0464




	
10%

	
33.36/0.9445

	
29.45/0.9159

	
29.99/0.8761

	
29.11/0.8517

	
28.06/0.8811

	
29.99 ± 1.80/0.8938 ± 0.0326




	
25%

	
38.20/0.9742

	
35.03/0.9680

	
34.72/0.9465

	
33.08/0.9338

	
33.65/0.9565

	
34.94 ± 1.78/0.9558 ± 0.0145




	
50%

	
42.81/0.9879

	
39.58/0.9857

	
39.13/0.9770

	
37.66/0.9760

	
37.96/0.9820

	
39.43 ± 1.83/0.9817 ± 0.0047




	
Avg.

	
33.52/0.8903

	
30.10/0.8573

	
30.65/0.8332

	
30.00/0.8180

	
28.97/0.8281

	
30.65 ± 1.53/0.8454 ± 0.0259




	
MADUN

[45]

	
1%

	
24.91/0.7161

	
21.80/0.6412

	
23.46/0.6269

	
24.17/0.6042

	
21.56/0.6044

	
23.18 ± 1.31/0.6386 ± 0.0412




	
4%

	
29.94/0.8984

	
26.56/0.8595

	
27.41/0.7985

	
27.03/0.7682

	
25.56/0.8094

	
27.30 ± 1.46/0.8268 ± 0.0463




	
10%

	
34.19/0.9503

	
30.42/0.9261

	
30.66/0.8856

	
29.59/0.8612

	
29.54/0.9052

	
30.88 ± 1.71/0.9057 ± 0.0310




	
25%

	
38.82/0.9757

	
35.88/0.9714

	
35.42/0.9509

	
33.52/0.9378

	
34.85/0.9634

	
35.70 ± 1.75/0.9599 ± 0.0139




	
50%

	
42.36/0.9862

	
39.31/0.9849

	
38.93/0.9746

	
36.99/0.9717

	
38.63/0.9839

	
39.25 ± 1.75/0.9802 ± 0.0059




	
Avg.

	
34.04/0.9053

	
30.79/0.8766

	
31.18/0.8473

	
30.26/0.8286

	
30.03/0.8533

	
31.26 ± 1.45/0.8622 ± 0.0264




	
CSformer

[3]

	
1%

	
25.22/0.7197

	
21.95/0.6241

	
23.88/0.6146

	
23.07/0.5591

	
21.94/0.5885

	
23.21 ± 1.24/0.6212 ± 0.0542




	
4%

	
30.31/0.8686

	
26.93/0.8251

	
27.78/0.7581

	
25.91/0.7045

	
26.13/0.7803

	
27.41 ± 1.59/0.7873 ± 0.0562




	
10%

	
34.20/0.9262

	
30.66/0.9027

	
30.85/0.8515

	
28.28/0.8078

	
29.61/0.8762

	
30.72 ± 1.97/0.8729 ± 0.0411




	
25%

	
38.30/0.9619

	
35.46/0.9570

	
35.04/0.9316

	
31.91/0.9102

	
34.16/0.9470

	
34.97 ± 2.07/0.9415 ± 0.0188




	
50%

	
43.55/0.9845

	
41.04/0.9831

	
40.41/0.9730

	
37.16/0.9714

	
39.46/0.9811

	
40.32 ± 2.08/0.9786 ± 0.0054




	
Avg.

	
34.32/0.8922

	
31.21/0.8584

	
31.59/0.8258

	
29.27/0.7906

	
30.26/0.8346

	
31.33 ± 1.70/0.8403 ± 0.0339




	
IEF-CSNET

	
1%

	
25.26/0.7285

	
22.21/0.6533

	
23.88/0.6363

	
24.33/0.6090

	
22.04/0.6275

	
23.54 ± 1.24/0.6509 ± 0.0414




	
4%

	
30.31/0.9016

	
26.98/0.8656

	
27.82/0.8033

	
27.17/0.7706

	
26.27/0.8247

	
27.71 ± 1.39/0.8332 ± 0.0461




	
10%

	
34.64/0.9522

	
31.03/0.9324

	
31.09/0.8884

	
29.78/0.8626

	
30.29/0.9133

	
31.37 ± 1.71/0.9098 ± 0.0316




	
25%

	
39.00/0.9758

	
36.20/0.9721

	
35.71/0.9519

	
33.65/0.9381

	
35.36/0.9656

	
35.99 ± 1.73/0.9607 ± 0.0139




	
50%

	
44.17/0.9893

	
41.18/0.9877

	
40.65/0.9799

	
38.67/0.9791

	
40.29/0.9870

	
40.99 ± 1.80/0.9846 ± 0.0042




	
Avg.

	
34.68/0.9095

	
31.52/0.8822

	
31.83/0.8519

	
30.72/0.8319

	
30.85/0.8636

	
31.92 ± 1.44/0.8678 ± 0.0265
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Table 3. The number of images that can be processed by different methods per second. The inference of 256 × 256 images is executed 105 times, and the average running time of the next 100 times is taken as the final result of the running time t of each image. All images are processed with   B = 1  . The number of pictures that can be processed per second is   1 / t  .
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	Methods
	Ratio = 0.01
	Ratio = 0.01





	Reconnet
	137.17
	132.62



	ISTA-Net++
	44.80
	44.84



	CSNET+
	93.02
	91.32



	AMPNet
	39.95
	37.52



	COAST
	24.76
	24.87



	MADUN
	16.00
	16.02



	CSformer
	-
	0.20



	IEF-CSNET
	36.11
	35.71
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Table 4. The Ablation Experiment.






Table 4. The Ablation Experiment.





	

	
R = 0.01

	
R = 0.5




	

	
PSNR

	
SSIM

	
PSNR

	
SSIM






	
  W / O   IIFE

	
23.40

	
0.6291

	
40.28

	
0.9833




	
  W / O   ECCE

	
23.77

	
0.6519

	
41.18

	
0.9848




	
  W / O   CIE

	
23.70

	
0.6479

	
41.24

	
0.9849




	
ALL

	
23.83

	
0.6551

	
41.31

	
0.9850
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