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Abstract: Due to the tremendous expectations placed on batteries to produce a reliable and secure
product, fault detection has become a critical part of the manufacturing process. Manually, it takes
much labor and effort to test each battery individually for manufacturing faults including burning,
welding that is too high, missing welds, shifting, welding holes, and so forth. Additionally, manual
battery fault detection takes too much time and is extremely expensive. We solved this issue by
using image processing and machine learning techniques to automatically detect faults in the battery
manufacturing process. Our approach will reduce the need for human intervention, save time, and
be easy to implement. A CMOS camera was used to collect a large number of images belonging to
eight common battery manufacturing faults. The welding area of the batteries’ positive and negative
terminals was captured from different distances, between 40 and 50 cm. Before deploying the learning
models, first, we used the CNN for feature extraction from the image data. To over-sample the dataset,
we used the Synthetic Minority Over-sampling Technique (SMOTE) since the dataset was highly
imbalanced, resulting in over-fitting of the learning model. Several machine learning and deep
learning models were deployed on the CNN-extracted features and over-sampled data. Random
forest achieved a significant 84% accuracy with our proposed approach. Additionally, we applied
K-fold cross-validation with the proposed approach to validate the significance of the approach, and
the logistic regression achieved an 81.897% mean accuracy score and a +/— 0.0255 standard deviation.

Keywords: fault detection; deep learning; machine learning; SMOTE; image classification

1. Introduction

Battery technology converts chemical energy into an electrical current so that energy
can be stored for later use. In a battery, the cathode and anode are submerged in an
electrolyte, which is a chemical solution. Positive and negative terminals connect the
anode and cathode of a battery. When the positive and negative terminals of a battery
are linked, an electric current is generated and flows throughout the battery [1]. Positive
terminals are characterized by their ability to accept electrons from another electrode [2].
Battery terminals made of good-quality materials and manufactured with good skill can
increase battery life. The important faults in the battery making process are burning the
positive or negative terminals, welding too high, the wrong welding, welding holes, a lack
of welding, the wrong cover, continuous holes, and shifting the terminals. These faults
will lead to huge losses for companies if they are not tested accurately and on time. To
provide a high-quality product to the customers, it is essential to detect any faults in the
battery manufacturing phase [3]. Welding technology has become more commonplace in
the production of batteries [4]. Automated systems are performing welding at big plants,
but the quality of the products is not being ensured. To ensure the quality of the batteries,
companies perform manual inspections of terminals so they can track the faulty batteries.
This manual inspection is too expensive and time consuming. In response to the problems
associated with the manual inspection of defects [5], automatic detection techniques such

Sensors 2023, 23, 1927. https:/ /doi.org/10.3390/s23041927

https:/ /www.mdpi.com/journal /sensors


https://doi.org/10.3390/s23041927
https://doi.org/10.3390/s23041927
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23041927
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23041927?type=check_update&version=3

Sensors 2023, 23, 1927

2 0f23

as pattern recognition and machine learning are mainly used [6-8]. Machine-vision-based
defect detection systems can also be deployed to detect faults in batteries.

The detection of manufacturing faults in batteries is crucial to enhance safety precau-
tions. Batteries are overtaking other energy storage systems in many contexts, including
electric vehicles, grid electricity storage, and a variety of electronic devices, due to their
superior compactness, power density, long life, low toxicity, and low self-discharge rate [9].
As with other high-energy storage devices, batteries provide some danger, and there is
always the possibility of faults in manufacturing design or material distribution. The
working properties of the battery system are extremely obscure. Single cells in battery
systems can be connected in series, parallel, or series—parallel arrangements to fulfill the
vehicle’s mileage and traction power requirements [10]. During the manufacturing process,
however, the battery cell itself is initially inconsistent. A different location for the battery
cell in the system will result in a different working environment, which will exacerbate
the initial inconsistency and eventually lead to overcharging, overdischarging, or internal
short-circuit (ISC) faults of individual cells in the system, which will hinder the battery
system’s normal operation [11].

The battery faults and warning signs were detected by Xiong et al. [12] using a rule-
based and probabilistic-based method. Errors in the real-time monitoring system, both at
room and high temperatures, were predicted by their analysis. Muddappa and Anwar [13]
utilized a method based on fuzzy logic to detect a variety of battery issues. The results
indicated that the proposed method can detect several fault classes, including overcharge,
overdischarge, and aging of the battery quickly and reliably. As a result, it provides an
effective and precise way of detecting faults in Li-ion batteries. Yao et al. [14] utilized
an intelligent-based method for lithium battery fault diagnosis. First, they employed the
discrete cosine filter technique to acquire sufficient de-noising, and then, they applied
the covariance matrix of filtered data for current fluctuations. Thirdly, a Support Vector
Machine (SVM) with grid search was utilized to detect faults. Yang et al. [15] used a
Visual-Geometry-Group (VGG)-based deep learning model for defect classification and
inspection of the welding quality of lasers. The model was trained with over 8000 images.
Their results showed that the VGG model accurately classified the defects. The welding
defects of battery safety vents were proposed to be detected using a lightweight and
effective deep learning algorithm. A huge number of images were collected for the binary
and seven-class classification tasks. The proposed model was compared to six other CNN
models [16].

Following the important research domain, this study also worked on battery making
faults. The first step in our approach was to capture images of different battery faults
in order to build a dataset. We used a deep learning model to extract the features and
then trained several models for the prediction of faults. The key points of this study are
as follows:

*  This study collected a dataset from the battery manufacturing plant using a high-
megapixel CMOS digital camera with a white LED annular source.

e The collected dataset was imbalanced, and to overcome this problem, this study used
the Synthetic Minority Over-sampling Technique (SMOTE) on the image features to
generate a sample for the minority class.

* A deep learning model Convolutional Neural Networks (CNNs) was deployed with
fine-tuned architecture to extract the features.

*  Several machine learning and deep learning models were evaluated using the CNN
features and SMOTE over-sampled dataset.

The remainder of the paper is structured as follows: Section 2 discusses various
relevant research studies. Section 3 describes the data collection, preprocessing, dataset bal-
ancing, a methodological approach, machine learning, deep learning models, and the eval-
uation metrics. Section 4 includes the results and discussions. Section 5 is the conclusions.
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2. Literature Review

Currently, researchers all over the world are performing research on battery faults to
improve safety measures and the life of products by detecting the various faults in battery
systems. For example, Chen et al. [17] used a two-layer-based model for battery fault
diagnosis. A fault diagnosis approach was presented in a paper [18] to detect thermal
faults in the battery cell. The two-state thermal model was used to capture the core and
surface. Liu et al. [19] utilized a sensor-based defect detection technique for batteries, and
an adaptive extended Kalman filter was applied to assist in the generation of the residual.
Then, a statistical inference method was used to figure out if the fault existed or not based
on the residuals.

The researchers Adnan et al. [20] proposed a new data-driven method for embedded
diagnostics and predictions of battery health using the machine learning classifier SVM for
training and testing data that were preprocessed based on the load. Ardeshiri et al. [21]
first analyzed the battery management system limitations and problems, and then, they
analyzed the components that could affect the performance. Second, they created a model
for the battery faults; it is very difficult to determine the internal features, health, and
charging capacity with machine learning models. Logistic Regression (LR) was the simplest
and most-effective model. It was determined that Kernel Support Vector Machine (KSVM)
performed better than KNN in terms of accuracy while classifying the data.

The study also compared the different models to evaluate the pros and cons of each
approach. The wavelet features of voltage correlations were used by the research in [22]
to automatically evaluate battery packs connected in series for defects. In order to locate
the abnormal electrical signals, they first analyzed the cross-cell voltages of several cells
using a refined recursive Pearson correlation coefficient and reconstructed fault-related
features from wavelet sub-bands; the coefficient series was next deconstructed from a
wavelet packet. A multi-classification Relevance Vector Machine (mRVM) and an Artificial
Neural Network (ANN) were used to analyze the fault mechanisms and their effects. A
multi-classification relevance vector machine was then used to examine the ANN’s failure
mode and fault degree classifications (mRVM). The proposed method identified and located
various faults in an experimental setting. mRVM performed better at finding thermal faults
than the ANN; although mRVM was more accurate in some conditions, the ANN had
a higher overall diagnostic performance. The internal short-circuit of the battery was
detected and identified using the SVM approach by Sabri et al. [23]. When it was difficult
to obtain the faulty battery data, SVM and anomaly detection offered a good alternative
for fault detection. The battery current and voltage were employed as features to detect
the short-circuit. The proposed method offers excellent fault detection accuracy in both
training and testing. Hariharan et al. [24] used a Random Forest (RF) model to detect
internal battery faults. The features for the training set were prepared with and without
external short-circuits between the battery terminals. The RF model was tested with high
accuracy after being trained on a training set.

Currently, some voltage-based battery fault detection methods are being investigated
in order to reflect the faults at all battery terminals. Consequently, entropy has been used to
assess and evaluate uncertainty. The Shannon entropy was used to design a voltage fault
detection method for detecting battery faults [25]. These approaches were only utilized to
identify battery faults and their levels; they were unable to detect faults such as abnormal
battery current and temperature in a timely manner and may have missed these certain
faults [17]. In electric vehicles, fault detection is crucial to the effective running of the
batteries. The Empirical Mode Decomposition (EMD) approach was initially used to extract
features from batteries by decomposing the battery voltage signals and reducing noise
during this process. The collected features were then utilized to calculate the sample
entropy values for fault detection [26]. To overcome this problem, a battery terminal fault
detection approach based on the correlation coefficient was proposed.

In the literature review, most researchers have focused on the fault detection of battery
systems that contain internal and external faults such as overcharging, discharging, internal
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short-circuits, battery health faults, charging capacity, voltage, and thermal faults. These
faults were primarily detected using rule-based, signal processing, and entropy-based
techniques; being less accurate and time-consuming. Machine learning was used in some
studies to detect battery faults. To the best of our knowledge, the fault dataset we used to
detect faults has not been used by any other study with the machine and deep learning

models. The summary of the literature review is given in Table 1.

Table 1. Brief summary of the aims and limitations of previous studies on fault detection.

Ref  Models Dataset Aim Limitations
Welding defect Automatic inspection of laser welding The experiments in the study u.sed a large
[15]  SqueezeNet images defects usine deep learnin dataset, but some classes were imbalanced.
& & deep & They caused over-fitting of the model.
Given large datasets, a pre-trained The study solved the two anq three
. 1 classification problems and did not use
Laser welding SqueezeNet was utilized to detect the . .
[16] VGG model . . machine learning to detect the faults.
images welding fault of the safety vent on the 9
ower batter Furthermore, it did not conduct
P y: cross-dataset experiments.
The basic aim was to improve the These methods were or}ly used to identify
. . battery defects and their levels; they were
First-order RC s accuracy of detecting external . . .
[17] Lithium cells PSR . . unable to detect accidents in a responsible
model short-circuits in lithium batteries using wav and mav have missed certain
the DPSO and RC algorithms. Y y
battery faults.
SVM-based estimation of the
[20] SVM Battery cells state-.of.—health and. prediction of the The results were unsatisfactory.
remaining useful life of
lithium batteries.
[22] mRVM Battery packs Detection 'of common battery pack The hkeh'hood of effective fault isolation
defects using machine learning models.  was relatively low.
Automated and real-time internal The deep transfer learning approach was
[24] SVM Battery data short-circuit fault detection using 3 &4app
. . not used.
powerful machine learning models.
Sample To @agnose b.attery faults in electric The study did not use machine learning to
[26] Battery system vehicles, a unique approach based on .
entropy diagnose the defects.
sample entropy was proposed.
Safety vent An effective multi-scale attention The study did not use any feature
Improved ! . . . . .
[27] welding defect semantic segmentation method for extractors or machine learning to diagnose
Res2Net . .
images power battery laser fault detection. the defects.

3. Materials and Methods

This study performed experiments for battery fault detection using supervised ma-

chine learning. First, we collected the image dataset using a CMOS camera and then
extracted the features using the CNN model. After feature extraction, the SMOTE was used
to resolve the data imbalance problem. Data splitting was performed after data balancing
with an 85:15 ratio, where 85% of the data were used for the training of the models and 15%
for the testing of the models. We evaluated all models in terms of accuracy, precision, recall,
and F1 score. The proposed workflow for battery fault detection is shown in Figure 1.
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Figure 1. Proposed workflow diagram for battery fault detection.

3.1. Dataset Description and Preprocessing

A complementary metal-oxide semiconductor (CMOS) camera was used to capture
an image of the welding area, which was illuminated by an annular white LED with a
brightness range of 0-255. Compared to CMOS cameras, the cost of the CCD camera used
in an industrial system is higher. In manufacturing environments, the CMOS camera is
widely used due to its high image quality. As part of this study, we used a 5-megapixel
industrial camera to obtain extraordinarily detailed images of the welding areas. As a
result, a 2D grey image may accurately depict the 3D geometric information of the welding
area. The welded area was more easily visible owing to a white annular light source, which
was focused on the object at an angle of about 90 degrees. When the camera was active,
white LED light beams were applied to the surface of the battery and reflected back into
the device. We shot from a variety of distances, averaging between 40 and 50 cm. The
intensity of the light was also changed at random, with levels ranging from about 50 to 150.
A total of 3736 images were collected, which belonged to 8 classes. There were 879 images
for continuous holes, 840 images for welding holes, 466 images for normal, 711 images for
weld too high, 290 images for lack of welding, 232 images for shifting, 126 images for burn,
and 192 images for cover is wrong. The images had different heights and widths. The deep
learning models took only fixed-size images for training and testing. We resized the image
to 150 x 150 x 3. The samples were taken from the battery-making faults dataset and are
shown in Figure 2.



Sensors 2023, 23, 1927

6 of 23

—

|
]
3

@

burn

normal continuousholes coveriswrong

weldinghole

weldtoohigh lackofweld shifting

(c) (d)

Figure 2. Sample of battery fault images: (a) the right side shows the normal image and the left side
shows the burn image; (b) the right side shows the cover is the wrong image, and the left side shows
the image of the continuous hole; (c) the right side shows the weld too high image, and the left side
shows the welding hole image; (d) right side shows the shifting image, and the left side shows the
lack of weld image.

3.2. SMOTE and Splitting

The collected dataset was imbalanced, containing 232 shifting images, 192 cover is
wrong images, and 126 burn images, as compared to 879 continuous hole images. The
burn class was highly imbalanced, with only 3% of the whole dataset. The imbalanced
dataset problem can cause machine learning models over-fitting toward the majority class
data. To resolve this issue, we applied the SMOTE, which automatically generates new
artificial samples from the existing images by selecting those that are close to the feature
space [28,29]. The SMOTE over-sampled the minority classes with new samples. After
deploying the SMOTE, we split the battery making faults dataset into 85% training and
15% testing to detect the faults and evaluate the model’s performance. Table 2 represents
the training and testing images.

Table 2. Splitting the datasets into training and testing.

Datasets Training Testing Total
Imbalanced dataset 3175 561 3736
Balanced dataset 5977 1055 7032

3.3. Convolutional Neural Network Architecture for Feature Extraction

In deep learning algorithms, a CNN is a kind of network architecture that is used
specifically for tasks such as image recognition [30]. The CNN is extensively used in disease
diagnosis [31], speech recognition [32], object classification [33], and fault detection [34].
A CNN needs to simplify the images without removing important details in order to
provide reliable results [35]. CNNs classify images using specialized convolution and
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pooling operations while being computationally efficient. In a conventional CNN, there
are four layers: (1) a convolution layer; (2) a pooling layer; (3) an activation layer; (4) a
fully connected layer with a linearly corrected activation [36]. We used the CNN for feature
extraction from the images [37], and the architecture of the used CNN model is represented
in Figure 3. The input image size for the CNN was 150 x 150 x 3, followed by a 4 x 4
pooling size [38], Rectified Linear Activation Function (ReLU), and a 0.5 dropout rate [38].
These same layers’ patterns repeated two times made the CNN architecture deeper to
extract the significant features. Following the CNN layers, we used the flatten layer to
convert the 2D data into 1D [36], and in the end, we used a dense layer with 200 neurons,
which will help to extract 2000 features from each image.

Conv2D Conv2D
(64.,(4.4)) MaxPooling2D Dropout (64.(4.4))
4.4) Activation (rate=0.5)

'relu’

®)
/\<\ —> —> —>

150,150,3

Activation
2818?)6 Flatten() Dropout relu M e
(2000) (rate=0.5) (4.4)

Figure 3. CNN architecture for feature extraction.

3.4. Machine Learning Models

Artificial Intelligence (Al) entails machine learning, the ability of machines to identify
patterns from the input data and make predictions from unseen data with little human
involvement. The machine learns to maximize its performance to produce better outcomes
from large datasets. By utilizing machines’ decision-making abilities, it is possible to
abstract the results from a large dataset with little effort. A wide variety of machine
learning applications can be found in different domains, such as the Internet of Things
(IoT) [39], health care [40], machine vision [41], edge computing [42], security [43,44], and
many others.

In this study, we used several machine learning models to predict battery faults. We
took the last layer of the CNN as the input for the machine learning models. We used a
dense layer at the end of the CNN with 2048 neurons. Therefore, the input for the machine
learning models will be 2048 features when we use the CNN for the feature extraction. The
hyper-parameters for machine learning are presented in Table 3.

Table 3. Hyper-Parameters Setting for Machine learning.

Models Hyper-Parameters
LR random_state = 200, solver = “sag”, multi_class = “multinomial”, C = 3.0
RF n_estimators = 300, random_state = 5, max_depth = 300
KNN Default_parameters
DT max_depth = 300
SVM kernel = “poly”, C = 3.0, random_state = 500

3.4.1. Support Vector Machine

SVM is an excellent supervised model for image classification because it can separate
data into distinct classes. When compared to CNN’s model, SVM's classification capability
is superior. The best results for image classification using SVM emerged from using a “poly”
kernel. In the case of large datasets, the training time of SVM is long and complex. In order
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to classify the data, a hyperplane is identified that acts as a sharp dividing line between two
classes. One way to find the optimal hyperplane is to find the one with the largest deviation
between data points. This is in addition to choosing a plane that fairly divides the data into
predetermined classes. Accordingly, the gap is the separation between two points. When
comparing two hyperplanes, sometimes, the one with the largest margin is less important
than the one with the best data separation. The SVM model is trained on the training set of
data and then applied to the classification of the test data once a hyperplane is found that
satisfies the data requirements [45].

3.4.2. Logistic Regression

Logistic regression is a supervised ML model that can be constructed with core statis-
tics to predict the probability of the target variables. Utilizing sigmoid functions, the
corresponding probability is derived. Due to its efficacy in identifying defaulters, this
ML technique has received significant recognition; in addition, it is one of the simplest
to apply across a broad range of classification tasks [46,47]. Because of its improved flexi-
bility and reduced amount of parameters, logistic regression succeeds at handling binary
classification problems.

3.4.3. Random Forest

A random forest is a method for classification that uses multiple decision trees to
interpret the data. One of the most-popular machine learning algorithms, a random forest
classifier does not require hyper-parameter tuning to produce accurate results. Since it is
both easy to implement and flexible, random forest has become a popular machine learning
preference. Known also as bagged decision trees, these trees use the bootstrap aggregation
technique to build robust learners from a pool of relatively ineffective ones. The random
forest classifier builds a new decision tree from scratch based on a sample of data randomly
selected [48].

3.4.4. Decision Tree

Currently, the decision tree is the best model for classification and predictions. Similar
to a flowchart, a decision tree is a graph that depicts a series of logical process steps as
a tree structure. An attribute test is represented as an internal node in a decision tree, a
branch as an attribute test result, and a class label as a leaf node. Decision trees are useful
for data classification because they can perform this with minimal computational time. The
decision tree can be used for handling both continuous and categorical data. Decision trees
show which data points are required for accurate classification and predictions [49].

3.4.5. K-Nearest Neighbor

K-Nearest Neighbor (KNN) is a very efficient classification model with less computa-
tional cost [50]. It is also known as a lazy learner because it does not require training. The
KNN classifier uses the distance metric to measure the similarity to the data points in the
neighborhood. The Euclidean distance is used to produce accurate results for KNN [51]. It
is not essential to build a model, fine-tune the parameters, nor make any other assumptions.
The processing time grows exponentially as the number of independent variables grows.

3.5. Deep Learning Models

We also deployed some deep learning architectures in comparison with the machine
learning models, which are listed below:

¢  MobileNet-V2 model: MobileNet-V2 is a lightweight enhanced version of V1 that
was designed by Google. It was trained on millions of images using a thousand
different categories. Since this is a depthwise separable convolution, it just performs a
single convolution on each channel rather than mixing all of the convolutions that are
performed. MobileNet-v2 is an architecture that takes up very little time and performs
computations very efficiently [52].
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VGG-16 model: VGG16 is a well-known and extensive model for large image datasets,
which is used for image object recognition. Karen Simonyan and Andrew Zisserman
in their paper [53] “Very Deep Convolutional-Networks for Large-Scale Image Recog-
nition”, from Oxford University, offered VGG16 as a CNN approach. The concept for
this model was first described in 2013, and the model itself was submitted in 2014
for the ILSVRC ImageNet Challenge. The final results of large-scale image classifica-
tion (and object identification) models were evaluated in the ImageNet Wide-Scale
Visual Recognition Challenge (ILSVRC). When tested on ImageNet, a database of over
14 million images organized into 1000 classes, the model outperformed 92.7% of the
top models currently available.

DenseNet-121 model: DenseNet-121 was designed to improve testing accuracy in a wide
variety of classification tasks by addressing vanishing gradient issues [54]. A lengthy
transformation between the input and output layers resulted to some extent in infor-
mation loss. When compared to ResNet, DenseNet performs better on the measures of
accuracy, efficiency, and network size. DenseNet-121 uses 166,280 trainable parameters.
ResNet-50 model: ResNet-50 is a 50-layer convolutional neural network model that
outperforms classification tasks and solves the “vanishing gradient” problem [55].
The ResNet-50 model uses 24,061,192 parameters for training with a categorical loss
function and 32 batch sizes, one dense layer with 524544 parameters, and a second
dense layer, also called a fully connected layer, with 2056 parameters. Furthermore,
50% dropout is added after the first dense layer. The trainable parameters for deep
learning are illustrated in Table 4.

Table 4. Trainable parameters for deep learning and their setting.

Models Parameters Settings

loss= “categorical_crossentropy”, Ir = 0.001,

CNN 5,398,998 optimizer = adam, batch_size = 32

loss = “categorical_crossentropy”, dropout = 0.001,

DenseNet-121 166,280 optimizer = adam, batch_size = 32
VGG-16 137,496 loss = categor}cal_crossentropy , d.ropout =0.001,
optimizer = adam, batch_size=32
ResNet-50 24061192 loss = categorlcal_crossentropy , <?1ropout =0.001,
optimizer = adam, batch_size = 32
MobileNet-V2 662,536 loss = “categorical_crossentropy”, neurons = 512,

dropout = 0.3, Ir = 0.001, optimizer = Adamax

3.6. Evaluation Measures

The machine learning and deep learning models’ performances were evaluated using

evaluation parameters. A machine learning model was applied to test the data that had
previously been unknown to the algorithm to estimate how well it performed on them.
Using the test data, the evaluation methods examined the model’s performance and scored
it according to its efficiency. To assess how well the models performed in the classification
task, the test data were used in conjunction with a training set of the same data. The task
of analyzing the performance of an applied model is one of the significant contributions
of machine learning. Machine learning models can typically be evaluated based on four
basic measures:

TP is the rate that refers to the actual positive class that is predicted positively.

TN is the rate that refers to the correct negative predictions made by the model among
all negative samples.

FP is a false positive rate that states the actual negative predictions that are classified
as positive by the model.
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*  FNis the rate that states that the data belong to the positive class and are predicted as
negative by the machine learning algorithm.

The four basic evaluation measures (accuracy, precision, recall and F1 score) are
calculated using the following formulas:

(TP + TN)
A = 1
couracy (TP +FP+ TN + FN) 1)
__ (TP)
Precision = (TP + FP) @)
(TP)
Recall = ——2
«Hl = TP+ EN) ®)
Flscore — 2 x (Recall x Precision) @

(Recall 4 Precision)

4. Results and Discussion

In this section, machine-learning-based experiments using an imbalanced and a bal-
anced dataset of battery making faults are conducted. Five machine learning classifiers
were used in this experiment with fine-tuned parameters. Furthermore, pre-trained deep
learning models were used to detect the faults in the battery making process in comparison
with machine learning. The transfer deep learning experiments were run on a Colab note-
book with 16GB RAM and used 20 epochs, 32 batch sizes, a categorical cross-entropy loss
function, an AdamX or Adam optimizer, and softmax dense layers to fit the model.

4.1. Results of Machine Learning Models

Table 5 represents the results of five machine learning classifiers: LR, DT, KNN, SVM,
and RF, with the finely tuned best hyper-parameters. The experiment results showed that
the Random Forest (RF) classifier had the highest accuracy of 84% in detecting overall
faults in the image dataset. The K-Nearest Neighbor (KNN) classifier came in second with
79% accuracy. The logistic regression achieved 76% accuracy. Other machine learning
classifiers also performed well. The RF classifier achieved a 100% precision and F1-score
on the burn class and a 99% recall score, as well as a 99% recall on the cover is wrong and
normal classes.

The results of machine learning classifiers were also analyzed using an imbalanced
dataset. The RF also attained the highest results as compared to other machine learning
classifiers, with an accuracy of 65%. The LR achieved 64% accuracy, while the DT only
achieved 50% accuracy. Machine learning models could not outperform well using an
unbalanced dataset as they outperformed using a balanced dataset after applying SMOTE.
We used SMOTE to balance the battery making dataset classes. The machine learning
classifier RF performed 19% more accurately on a balanced dataset as compared to the
results on the imbalanced dataset.

The fault detection results also analyzed using the confusion matrix are shown in
Figure 4. RF predicted 140 correct predictions out of 141 total predictions, with only one
incorrect prediction in the burn class. RF also achieved good prediction in the cover is
wrong class with only one wrong prediction. RF achieved 881 correct predictions out of
1055. SVM achieved 784, the LR 798, and the KNN 831 correct predictions. Figure 5a—c
show the ML results with various evaluation metrics such as the precision, recall, and F1
score for the eight fault detection classes using a balanced dataset.

4.2. Results of Deep Learning Models

Table 6 shows the findings of five deep models based on transfer learning: VGG-16,
ResNet-50, MobileNet-V2, CNN, and DenseNet-211. The CNN model achieved the greatest
overall fault detection accuracy in the experiments, at 75%. Both the DenseNet-211 and
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the MobileNet-V2 models were able to perform well with an accuracy of 71% and 71%.
Both VGG-16 and ResNet-50 performed poorly, with an accuracy of only 28% and 24%,
respectively. The CNN model achieved 94% precision, 97% recall, and a 94% F1 score on
the burn class. The above-mentioned results were achieved on the balanced dataset.

The imbalanced dataset was also used to evaluate the efficacy of transfer deep learning
models. In terms of total fault detection accuracy, the studies revealed that the CNN model
performed best, with a 65% accuracy rate (Table 7). Accuracy was high for the DenseNet-211
and MobileNet-V2 models. Poor results (accuracy of 41%) were achieved by both VGG-16
and ResNet-50. The CNN and MobileNet-V2 models achieved only a 100% precision score
on the burn class, while the DenseNet-211 model achieved a 100% recall score on the cover
is wrong class. Deep learning did not perform very well in detecting faults in battery
making image datasets.

Table 5. Performance of machine learning models on the imbalanced and balanced datasets.

Imbalanced Dataset Balanced Dataset
Classifiers Accuracy Faults Precision Recall F1 Score Accuracy Precision Recall F1 Score
burn 53 47 47 93 93 93
continuous holes 50 55 52 50 55 53
cover is wrong 97 88 92 94 99 96
lack of weld 18 15 16 73 74 74
DT 50 normal 52 54 53 73 80 78 79
shifting 28 19 18 74 79 76
welding hole 38 35 37 50 42 46
weld too high 64 64 64 65 60 62
burn 100 68 81 100 99 100
continuous holes 62 66 64 66 56 61
cover is wrong 97 100 99 94 99 96
lack of weld 45 47 46 70 96 81
KNN 61 normal 50 64 56 7 71 96 71
shifting 61 35 45 86 90 88
welding hole 45 41 43 56 39 46
weld too high 73 70 71 90 57 70
burn 100 74 85 100 100 100
continuous holes 65 67 66 58 65 61
cover is wrong 97 94 96 92 98 95
lack of weld 42 33 37 72 71 72
LR 64 normal 59 78 68 76 72 94 82
shifting 50 35 42 80 72 75
welding hole 49 38 43 53 34 42
weld too high 69 84 76 72 72 72
burn 100 74 85 99 99 99
continuous holes 59 86 70 52 83 64
cover is wrong 97 100 97 94 98 96
lack of weld 67 10 17 68 71 69
SVM 63 normal 57 99 72 74 69 98 81
shifting 67 6 12 85 69 76
welding hole 55 10 16 78 13 22
weld too high 64 89 74 70 68 69
burn 100 79 88 100 99 100
continuous holes 66 69 68 61 66 63
cover is wrong 97 100 99 94 99 97
lack of weld 53 25 34 94 91 92
RE 65 normal 58 91 71 84 74 99 84
shifting 75 10 17 94 93 94
welding hole 56 35 43 62 34 43

weld too high 64 90 75 88 86 87
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Table 6. Results of deep transfer learning using the balanced dataset.

Models Accuracy% Faults Precision% Recall% F1 Score%

burn 94 97 94

continuous holes 81 45 54

cover is wrong 96 86 91

CNN 75 lack of weld 86 58 69

normal 77 67 72

shifting 66 84 74

welding hole 47 79 59

weld too high 73 82 77

burn 95 87 91

continuous holes 69 71 70

cover is wrong 85 95 90

DenseNet-211 74 lack of weld 72 63 67

normal 68 91 78

shifting 69 65 67

welding hole 57 38 45

weld too high 69 76 73

burn 99 98 98

continuous holes 16 100 27

cover is wrong 0 0 0

VGG-16 28 lack of weld 0 0 0

normal 0 0 0

shifting 0 0 0

welding hole 0 0 0

weld too high 0 0 0

burn 33 93 48

continuous holes 0 0 0

cover is wrong 38 30 33

ResNet-50 24 lack of weld 0 0 0
normal 50 1

shifting 15 74 25

welding hole 0 0 0

weld too high 0 0 0

burn 95 93 94

continuous holes 60 85 70

cover is wrong 88 94 91

MobileNet-V?2 71 lack of weld 65 56 60

normal 69 63 66

shifting 63 62 63

welding hole 44 24 31

weld too high 67 79 73
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Table 7. Results of deep transfer learning using the imbalanced dataset.

Models Accuracy% Faults Precision% Recall% F1 Score%
burn 100 96 98
continuous holes 69 62 65
cover is wrong 96 85 90
CNN 65 lack of weld 56 56 56
normal 53 29 38
shifting 96 62 75
welding hole 47 61 53
weld too high 72 86 78
burn 92 96 94
continuous holes 65 66 65
cover is wrong 93 100 96
DenseNet-211 65 lack of weld 48 67 56
normal 52 94 67
shifting 53 92 67
welding hole 56 29 38
weld too high 86 56 67
burn 0 0 0
continuous holes 33 99 49
cover is wrong 0 0 0
VGG-16 41 lack of weld 12 2 4
normal 0 0 0
shifting 0 0 0
welding hole 0 0 0
weld too high 64 89 74
burn 100 46 63
continuous holes 24 47 32
cover is wrong 68 100 81
ResNet-50 41 lack of weld 39 21 27
normal 56 68 61
shifting 81 35 49
welding hole 48 52 50
weld too high 100 01 02
burn 100 88 93
continuous holes 58 77 93
cover is wrong 93 100 96
MobileNet-V?2 62 lack of weld 60 49 54
normal 46 44 45
shifting 81 59 69
welding hole 42 31 35

weld too high 75 83 79
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4.3. Training and Validation Accuracy Curves

Figure 6 illustrates the accuracy of training and validation for several deep learning
models on both the imbalanced and balanced datasets. Figure 6a demonstrates that the
CNN model achieved its best levels of accuracy during training at Epoch 19 and during
validation at Epoch 12. Figure 6b demonstrates that, when employing a balanced dataset,
the CNN model achieved its best training accuracy at Epoch 20 and its highest validation
accuracy at Epoch 18. Figure 6c—f represent the accuracy for other models.
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Figure 4. X-axis shows the Actual class and Y-axis shows the Predicted class where (a) represents
the confusion matrix for Random forest-classifier, (b) represents the confusion matrix for Logis-
tic Regression-classifier, (c) represents the confusion matrix for Support Vector Machine-classifier,
(d) represents the confusion matrix for K-Nearest Neighbor-classifier.

4.4. Training and Validation Loss Curves

The training and validation losses of different deep learning models using the imbal-
anced and balanced datasets are shown in Figure 7. Figure 7 shows that the CNN model
had its highest training loss at Epoch 1 with 3.4130 and lowest at Epoch 20. Figure 7b shows
that the CNN model had its highest validation loss at Epoch 1 with 1.5459 and lowest at
Epoch 18 with 0.6796 using an imbalanced dataset.
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Figure 7 illustrates the training and validation losses of various deep learning models
on both the imbalanced and balanced datasets. The training loss for the CNN model was
highest at Epoch 1 with 2.8841 and lowest at Epoch 20, as shown in Figure 7a. Figure 7b
demonstrates that, after using a balanced dataset, the CNN model’s validation loss was
highest at Epoch 1 with 1.4192 and lowest at Epoch 18 with 0.6515. The losses of other
models are shown in Figure 7c—f. The loss curves show that the deep learning models
performed best with a balanced dataset with the lowest training and validation loss.
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Figure 5. Performance of ML classifiers: (a) represents the precision score, (b) represents the recall
score, and (c) represents the F1 score.

To perform an extensive comparison, we also used several variants of the CNN in
comparison with our approach. We deployed the variant of the CNN with a change in the
number of thearchitecture hyper-parameter values, as shown in Table 8. All CNN variants
were common in the first layer and last layers, as well as the compile and fitting settings.

Table 9 shows the results of the fine-tuned CNN variants, and according to the results,
all variants were approximately similar in their accuracies, as CNN-1, CNN-2, and CNN-3
achieved 77, 78, and 76 accuracy scores, respectively.

We also checked the computational complexity of the Machine Learning (ML) and
Deep Learning (DL) models in terms of the computational time. We measured the time
(in seconds) for each model that it took for training and testing. Table 10 shows the
computational time in seconds for both the ML and DL models. ML models were very low
in computational cost as compared to the DL models because of their simple architectures,
while the deep learning model architectures are complex and took more time for training.

4.5. K-Fold Cross-Validation Results

The machine learning results were also evaluated by applying K-fold cross-validation
(10-fold and 5-fold) on a balanced dataset and are presented in Table 11. LR and RF
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achieved the highest accuracy on 10-fold and 5-fold cross-validation. LR achieved 81.897%
accuracy with a 10-fold standard deviation rate of 0.0255. The Decision Tree achieved
71.246% accuracy with 10-fold and 71.275 with 5-fold validation, which is the lowest in
machine learning, and also a 0.0336 standard deviation.
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Figure 6. Training and validation accuracy of the (a) CNN model using the imbalanced dataset,
(b) CNN model using the balanced dataset, (c) DenseNet-121 model using the imbalanced dataset,
(d) DenseNet-121 model using the balanced dataset, (e) MobileNet-V2 model using the imbalanced
dataset, and (f) MobileNet-V2 model using the balanced dataset.
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Figure 7. Training and validation loss of (a) CNN model using the imbalanced dataset, (b) CNN model

using the balanced dataset, (¢) DenseNet-121 model using the imbalanced dataset, (d) DenseNet-

121 model using the balanced dataset, (e) MobileNet-V2 model using the imbalanced dataset, and
(f) MobileNet-V2 model using the balanced dataset.
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Table 8. Different fine-tuned variants of the CNN used to perform the experiments.

CNN1

Sequential ()
preprocessing.Rescaling (1./255, input_shape = (150, 150, 3)))

Conv2D (filters = 32, kernel_size = (3, 3), activation = “relu”, kernel_initializer = “he_normal”)

MaxPooling2D (pool_size = (2, 2))
Dropout (0.1)

Conv2D (filters = 64, kernel_size = (3, 3), activation = “relu”, kernel_initializer = “he_normal”)

MaxPooling2D (pool_size = (2, 2))
Dropout (0.2)

Conv2D (filters = 256, kernel_size = (3, 3), activation = “relu”, kernel_initializer = “he_normal”)

MaxPooling2D (pool_size = (2, 2))
Dropout (0.2)

Flatten ()

Dense (256, activation = “relu”)
Dense (512,activation = “relu”)
Dense (256, “relu”)

CNN 2

CNN 3

Sequential ()

preprocessing.Rescaling (1./255, input_shape = (150, 150, 3))
Conv2D (filters = 32, kernel_size = (3, 3), activation = “relu”)
MaxPooling?2D (pool_size = (2, 2))

Conv2D (filters = 64, kernel_size = (3, 3), activation = “relu”)
MaxPooling?2D (pool_size = (2, 2))

Conv2D (filters = 64, kernel_size = (3, 3), activation = “relu”)
MaxPooling2D (pool_size = (2, 2))

Conv2D (filters = 64, kernel_size = (3, 3), activation = “relu”)
MaxPooling2D (pool_size = (2, 2))

Dropout (0.2)

Flatten ())

Dropout (0.5)

Dense (128, activation = “relu”)

Dense (256, activation = “relu”))

Dense (512, activation = “relu”))

Sequential ()

preprocessing.Rescaling (1./255, input_shape = (150, 150, 3))
Conv2D (filters = 32, kernel_size = (3,3), activation = “relu”)
Conv2D (filters = 32, kernel_size = (3, 3), activation = “relu”)
Conv2D (filters = 32, kernel_size = (3, 3), activation = “relu”)
Conv2D (filters = 32, kernel_size = (3, 3), activation = “relu”)
Conv2D (filters = 32, kernel_size = (3, 3), activation = “relu”)
MaxPooling2D ()

Dropout (0.2))

Flatten ())

Dropout (0.5)

Dense (128, activation = “relu”)

Dense (256, activation = “relu”))

Dense (8, “softmax”))

compile(loss = “categorical_crossentropy”, optimizer = “Adam”, metrics = [“accuracy”])

Table 9. Results of the fine-tuned CNN models.

Models Accuracy Parameters Faults Precision Recall F1 Score
burn 93 99 95
continuous holes 71 50 58
cover is wrong 94 96 95

Fine-tuned CNN 1 77 21,665,992  lack of weld 77 60 68
normal 69 94 79
shifting 84 78 81
welding hole 56 52 54
weld too high 70 87 78
burn 96 99 98
continuous holes 65 76 70

Fine-tuned CNN 2 78 889,672 cover is wrong 9% 98 97
lack of weld 83 71 76
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Table 9. Cont.

Models Accuracy Parameters Faults Precision Recall F1 Score
normal 77 81 79
shifting 85 76 80
welding hole 49 37 42
weld too high 68 85 76
burn 96 94 95
continuous holes 62 64 63
cover is wrong 91 93 92

Fine-tuned CNN 3 76 23,113,096  lack of weld 83 81 82
normal 70 85 82
shifting 79 85 82
welding hole 49 43 46
weld too high 78 78 78

Table 10. Computational complexity in terms of time for learning models.

ML Model Time DL Model Time
DT 9.13 DenseNet121 231
KNN 0.69 ResNet50 700
LR 38.29 VGG16 360
SVM 18.58 MobileNetV2 100
RF 35.65 Fine-tuned CNN 1 122
. 1654 Fine-tuned CNN 2 100
Fine-tuned CNN 3 361
Table 11. K-fold cross-validation results.
Models 10-Fold Accuracy 05-Fold Accuracy

DT 71.246 £ 0.0336 71.275 + 0.0327

KNN 76.008 £ 0.0310 74.999 £ 0.0321

LR 81.897 + 0.0255 80.930 £ 0.0178

SVM 80.588 + 0.0248 79.735 + 0.0148

RF 81.285 + 0.0304 80.218 £ 0.0340

4.6. Comparison of Other State-of-the-Art Models with Our Model

We compared our model with the state-of-the-art models on the same battery fault
detection dataset. Support vector machine with the RBF kernel [56], the extra tree classi-
fier [57] with 300 total estimators, random state 5, maximum of depth 300, and random
forest [58] all yielded unsatisfactory results. Comparisons with our model were made using
the accuracy, precision, recall, and the F1 score. All of the metrics showed that our model
performed the best. Table 12 shows the comparison with state-of-the-art approaches.
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Table 12. Comparison of other state-of-the-art models with our model.

Models Accuracy% Precision% Recall% F1 Score%
Modified VGG-16 [15] 61 62 61 59
ETC [57] 67 66 67 65
RF [58] 63 62 63 61
SVM (RBF kernel) [56] 66 67 67 66
SVM [59] 24 13 28 13
Our study 84 71 84 70

5. Conclusions

The aim of this work was to automatically detect battery faults from a battery im-
age dataset using machine learning and image processing. The experimentation dataset
contained eight classes and was highly imbalanced. The SMOTE was used to balance
the dataset. Machine learning models were used to detect faults in batteries on balanced
and imbalanced datasets in order to evaluate the performance. The deep learning models
were used to detect faults in comparison with machine learning. Furthermore, 10-fold
cross-dataset validation and 5-fold cross-validation were performed with machine learning
models to ensure the algorithms’ reliability and validity. Our best results were with the
RF model, which performed well with 0.84 accuracy scores using our proposed CNN
features and SMOTE over-sampled data. There are several conclusions from the studies:
First, feature extraction is one of the important things to improve the accuracy of learning
models, and we used the CNN, which extracts the worthy features from the image dataset
to improve the performance of the learning models. Second, an imbalanced dataset can
cause model over-fitting for majority class data, and to resolve this issue, data balancing
is important. For this, we used SMOTE to generate artificial data for minority class data.
Third, we concluded that image data generate a large feature space, which is suitable for
linear models such as LR and tree-based ensemble models. Both achieved significant results
because of the large feature set. Finally, we also concluded that deep learning models re-
quire a large dataset to achieve significant results, and this study’s dataset was not enough
for the deep learning models, which is also a limitation of the study. In future work, we
will collect more images and will create a large dataset. We will resolve the imbalanced
dataset problem by collecting more images for the minority class category. In this study,
we took images only from a single angle (from above), but probably, other angles would
be beneficial for increasing the quality of the results. In our future work, we will work on
this limitation. A transfer learning approach will also be used in our future work to detect
battery faults.
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