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Abstract: Artificial intelligence and especially deep learning methods have achieved outstanding
results for various applications in the past few years. Pain recognition is one of them, as various
models have been proposed to replace the previous gold standard with an automated and objective as-
sessment. While the accuracy of such models could be increased incrementally, the understandability
and transparency of these systems have not been the main focus of the research community thus far.
Thus, in this work, several outcomes and insights of explainable artificial intelligence applied to the
electrodermal activity sensor data of the PainMonit and BioVid Heat Pain Database are presented. For
this purpose, the importance of hand-crafted features is evaluated using recursive feature elimination
based on impurity scores in Random Forest (RF) models. Additionally, Gradient-weighted class
activation mapping is applied to highlight the most impactful features learned by deep learning
models. Our studies highlight the following insights: (1) Very simple hand-crafted features can yield
comparative performances to deep learning models for pain recognition, especially when properly
selected with recursive feature elimination. Thus, the use of complex neural networks should be
questioned in pain recognition, especially considering their computational costs; and (2) both tradi-
tional feature engineering and deep feature learning approaches rely on simple characteristics of the
input time-series data to make their decision in the context of automated pain recognition.

Keywords: pain recognition; machine learning; deep learning; hand-crafted features; physiological
signals; pain perception; explainable artificial intelligence

1. Introduction

Artificial intelligence and particularly deep learning methods have achieved outstand-
ing results for various Machine Learning (ML) tasks in the past few years. In particular,
modern Deep Learning (DL) architectures yield results that are equivalent to human per-
formance for image classification and sometimes even outperform them. It is therefore not
surprising that attempts were made to develop ML models that compete with experts in
their respective fields. For example, in the area of medicine, automated systems have been
built to classify skin cancer [1], segment Optical Coherence Tomography (OCT) images [2],
classify COVID-19 patients from chest CT images [3], classify Parkinson’s disease based
on audio files [4] and many more to replace or enhance their current gold standard based
on expert knowledge. Moreover, the increasing simplicity to acquire physiological sensor
data by using cheap and simple-to-use wearables has opened completely new research
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areas such as automated emotion recognition [5], sleep stage classification [6], Human
Activity Recognition (HAR) [7], hunger detection [8], and countless others. Similarly, efforts
were undertaken to automatize the clinical recognition of pain. As pain constitutes both
a symptom and disease [9], it is a crucial indicator in any medical application. Currently,
the gold standard for pain detection is represented by Numerical Rating Scales (NRSs),
which ask patients about the pain they felt using a numerical scale between 0 and 10 and
its corresponding anchors “no pain” and “worst imaginable pain”. While there are several
versions of this concept, such as Visual Analogue Scales (VASs) or special types of scales
targeted for children (Faces Pain Scale) [10], and even pain observation tools used for
patients with disorders of consciousness such as the Nociception Coma Scale (NCS) [11],
these questionnaires have several drawbacks. On the one hand, pain is a highly subjective
concept that is hard to communicate and is influenced by past experiences. On the other
hand, even accurate estimates of pain identified by the gold standard are sporadic rather
than continuous measurements. Further, these questionnaires fail whenever patients are
unable to (reliably) communicate their pain, such as with coma patients, elderly (dementia)
patients or children. Thus, various medical applications would benefit from a continuous,
objective and automated pain recognition system. In the past, several attempts to build such
systems were made by training a ML model to associate physiological signals with their cor-
responding pain categories. Initial efforts relied on the use of classical ML models trained
on features obtained from expert knowledge, such as Support Vector Machines (SVMs) [12].
More recent publications evaluated the use of DL approaches to overcome the need for
explicit expertise in pain physiology [13]. Figure 1 summarizes the current trend of work
in the area of automated pain assessment. It visualizes the number of published papers
for each year since 2000 that were found through different search engines. A search using
the website “dimensions.ai” in combination with the search keys “machine learning pain”
and “deep learning pain” in the title and abstract was conducted. In addition, a PubMed
search was performed with “pain machine learning[title/abstract]” as the search term.
Furthermore, a Google Scholar retrieval for “machine learning pain” and “deep learning
pain” was performed (searching for papers having all keywords in the title). The results
show an increasing amount of publications over time, which reflects the rise of interest and
importance of the research field in recent years.
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Figure 1. Publications per year in the field of pain prediction using machine learning techniques.
Results are visualized for the following search engines and terms: dimensions.ai: “machine learning
pain” in the title and abstract, dimensions.ai: “deep learning pain” in the title and abstract, PubMed:
“pain machine learning[Title/Abstract]”, Google Scholar: “machine learning pain” in the title and
Google Scholar: “neural network pain” in the title.

The creation of publicly available datasets, such as the UNBC-McMaster shoulder pain
expression archive database [14] and BioVid Heat Pain Database (BVDB) [15], significantly
increased the number of new ML models in the scope of automated pain recognition. Cited
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numerous times, the BVDB induced pain-inducing heat stimuli with varying intensity.
While applying four calibrated heat temperatures (called T1, . . . , T4) corresponding each to
a different pain level, the physiological signals Electromyogram (EMG), Electrocardiogram
(ECG) and Electrodermal Activity (EDA) were recorded. Usually, pain recognition tasks
are then built in a binary way, distinguishing between baseline data associated with no pain
(T0) and data associated with a certain pain level. Because it consistently led to the best
classification results, the task T0 vs. T4, i.e., “no pain” vs. “high pain”, was investigated
intensively in the past. Table 1 summarizes previously published results achieved on the
BVDB. A more detailed description of the dataset can be found in Section 2.1.2.

Table 1. Leave-one-subject-out accuracy performance comparison of earlier work on the BioVid Heat
Pain Database for the task T0 vs. T4.

Author Year Method Sensors T0 vs. T4

Werner et al. [16] 2014 Early Fusion with Random Forests EMG, ECG, EDA 74.10
Kächele et al. [17] 2017 Early Fusion with Random Forests EMG, ECG, EDA 82.73

Lopez-Martinez and Picard [18] 2018 Logistic Regression EDA 74.21± 17.54
Thiam et al. [13] 2019 Convolutional Neural Network EDA 84.57± 14.13
Thiam et al. [19] 2020 Gated Latent Representation EMG, ECG, EDA 83.99± 15.58

Gouverneur et al. [20] 2021 Multi-Layer Perceptron EDA 84.22± 13.86

Previous outcomes on the automated recognition of pain can be summarised as follows.
The classification of physiological sensor data yields better results compared to the ones
based on behaviour input such as video data [21–27]. Regarding physiological modalities,
EDA was detected as the individual modality with the highest impact on the classification
outcome [13,20,26,28]. In addition, feature engineering and learning perform roughly
equivalently, where tasks such as “no pain” vs. “low pain” remain relatively challenging
in contrast to “no pain” vs. “high pain” [20]. In contrast, other work has shown that
feature learning can outperform approaches based on Hand-Crafted Featuress (HCFs) [13].
Finally, the use of a subjective pain label (patient feedback) can boost the classification
performance of such systems [20,29]. The performance of the presented systems and
accuracy of such ML models were increased incrementally over time. However, despite the
numerous works published in this area each year, the understandability and transparency
of these systems were not thoroughly investigated by the research community. However,
the medical field could benefit from insights created by interpretable ML models that would
help them grasp a deeper understanding of pain. Moreover, knowing what ML models
rely on to make their decision could be investigated to further fine-tune them. Thus, in
this work, several ML models are evaluated and compared on two different datasets for
automated pain recognition. First, classical ML models such as Random Forest (RF) based
on HCFs are trained and analysed with Recursive Feature Elimination (RFE) to determine
the most important data characteristics. Then, interpretability approaches such as Gradient-
weighted Class Activation Mapping (Grad-CAM) are similarly applied to DL models such
as Convolutional Neural Networks (CNNs). Being the most discriminative modality for
pain recognition, only the EDA signal is analysed in the current work. Furthermore, several
outcomes and insights of Explainable Artificial Intelligence techniques for automated pain
recognition are presented to further understand the mechanisms of pain in detail. The main
contributions of this study are highlighted below:

• A comparison of various ML models based on feature engineering and end-to-end fea-
ture learning including recent state-of-the-art DL methods evaluated on the PainMonit
Database (PMDB) and BVDB.

• The interpretation of the decisions of both HCFs and DL models in the scope of
automated pain recognition using Explainable Artificial Intelligence (XAI).

• The proposal of rules based on simplistic manually-crafted features to distinguish
between “no pain” and “high pain” using EDA data only.
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Moreover, our studies highlight the following insights: (1) single simplistic features
can still compete with complex DL models with millions of parameters. (2) Both approaches,
based on HCFs and DL features, focus on straightforward characteristics of the given time
series data in the context of automated pain recognition. The remainder of the work is
organised as follows. The used datasets, models and approaches for XAI are explained in
Section 2. The resulting outcomes are presented in Section 3 and discussed in Section 4.
Eventually, the main conclusions are summarised in Section 5.

2. Materials and Methods

Two types of approaches, one based on feature engineering and the other on deep
feature learning, were implemented to classify the EDA samples of two pain datasets
for automated pain recognition. The XAI methods for understanding the decisions of
the classifiers were realised separately for both approaches. In this chapter, Section 2.1
describes the utilised data, followed by Section 2.2, which presents the feature engineering
algorithms, and Section 2.3 summarises the leveraged DL techniques.

2.1. Data

Previous publications evaluated various sensor modalities for the automated classifi-
cation of pain. It was shown that especially EDA data are helpful for the given classification
task. This section describes the analysed data in the context of automated pain recognition.
Initially, the fundamentals of EDA recordings are summarised in Section 2.1.1, followed by
Sections 2.1.2 and 2.1.3 introducing the BVDB and PMDB datasets, respectively.

2.1.1. Electrodermal Activity

EDA, sometimes also referred to as Galvanic Skin Response (GSR), is a measurement
of small fluctuations in the conductance of the skin. It is measured by applying a low and
undetectable voltage to the skin and monitoring the changes in conductance afterwards.
While in the past, larger devices in combination with (wet) electrodes were used to measure
it, various wearable devices such as wristbands are able to detect EDA today as well.
Usually, EDA measurements are given in micro Siemens (µS) and present values greater
than 0 and smaller than 20. The readings are directly related to the sweat secretion on the
electrode site, which is linked to the Autonomic Nervous System (ANS), and therefore
changes unconsciously and cannot be controlled voluntarily. Here, an increase in the
arousal of the sympathetic branch of the ANS leads to increased sweat gland activity, which
is visible by a rising EDA. Currently, EDA measurements are leveraged for various ML
tasks. Correlated with psychological or physiological arousal, it is often used in emotion
recognition [30]. Several publications proved that automated pain recognition models can
be trained using EDA data [13,20,29]. In addition, it was shown that even small differences
in the applied pain stimulus lead to changes in the EDA curves [31]. The analysis of EDA
discriminates between the slowly changing Skin Conductance Level (SCL), also referred
to as tonic level, and the smaller spikes in the signal called Skin Conductance Responses
(SCRs), sometimes also referred to as phasic information. These SCRs can be event-related
and triggered by external stimuli, based on motor activity or just spontaneously occur
without an impulse or event [32]. Figure 2 shows an EDA recording during a painful
heat stimulus.
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Figure 2. Electrodermal Activity data sample (orange) during a painful stimulus (blue) of the
PainMonit Database. In addition, the amplitude of and half recovery time of the Skin Conductance
Response is shown (black).

2.1.2. BioVid Heat Pain Database

Published in 2013 by Walter et al. [15], the BioVid Heat Pain Database (BVDB) is
one of the first publicly available datasets for automated pain recognition. Pain was
induced via a thermode (Medoc, Ramat Yishai, Israel) at the right arm of participants while
capturing physiological sensors and video recordings. In total, the data from 90 subjects
were recorded. Unfortunately, 3 subjects were excluded because of technical issues during
the data acquisition. To take into account the subjective perception of pain, individual
temperature stimuli were found during a calibration phase first. Initially, the temperatures
when the heat becomes painful (TP) and unbearable, also referred to as pain tolerance (TT),
were estimated by slowly increasing the thermode starting at 32 ◦C. The found thresholds
were used to define 4 pain intensities by using temperatures referred to as T1 to T4 that
are evenly distributed between TP and TT. Moreover, the data of the baseline temperature
(32 ◦C) were considered non-painful (T0), resulting in 5 distinguished classes. Twenty
repetitions of each stimulus were applied for 4 s with 8–12 s of randomised pauses in
between for two different sensor setups and pain induction phases each. Two data subsets,
referred to as Part A and Part B, were acquired. Part A includes video recordings of the
subjects’ faces as well as 3 physiological sensor modalities described below. Part B acquired
the same data, but replaced the video stream with facial EMG. As Part A is the more
used and cited one, it is used in this study as well and referred to as BioVid Heat Pain
Database (BVDB) from now on, for simplicity reasons. The following sensor modalities
were recorded by a Nexus-32 amplifier:

1. Electrodermal Activity (EDA): The EDA, also referred to as GSR, was measured
between the index and ring finger.

2. Electrocardiogram (ECG): The participants’ heart rate activity was recorded using
two electrodes, one on the upper right and one on the lower left of the body.

3. Electromyogram (EMG): Using a two-channel surface electromyogram (sEMG), the
activity of the shoulder muscle (Trapezius) was recorded.

The time series data of the different modalities were resampled to a common frequency
of 512 Hz. The samples of the finalised dataset consist of 5.5 s windows with a delay of 3 s
after the onset stimulus. The resulting data format for the dataset is (subjects × stimuli ×
repetitions, sampling rate × windows length, sensors) = (87 × 5 × 20, 512 × 5.5, 3) = (8700,
2816, 3). Further insights about the dataset and a detailed description can be found in [15].
Hereinafter, the binary classification task T0 vs. T4 is used to refer to the task “no pain” vs.
“high pain” in the scope of the BVDB.
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2.1.3. PainMonit Database

Similarly, the PainMonit Database (PMDB) [20] was acquired by inducing heat-induced
pain in subjects using a Pathway CHEPS (Contact Heat-Evoked Potential Stimulator ther-
mode, Medoc, Ramat Yishay, Israel) at the Institute of Medical Informatics, University of
Lübeck, Germany. In contrast to the BVDB, several adjustments were made to the data
acquisition protocol. Calibration was performed to reduce variability in pain ratings [33]
by using the “method of staircase” [34] (p. 400) and performed twice to ensure further
robustness by averaging the results of the two trials. In addition, the duration of the stimuli
windows was raised to 10 s to ensure enough recording time of the EDA signal, as previous
studies showed that peak values normally occur “between 3 and 6 s poststimulus” [35],
and thus longer recording times than the ones chosen in BVDB could be beneficial. A
non-painful stimulus was also added to analyse the role of external stimuli on physiological
body reactions, and the total number of stimuli was reduced. Moreover, the participants
were asked to rate their subjective pain in real-time with the help of a Computerised Visual
Analogue Scale (CoVAS) during the induction phase to incorporate a subjective label in the
dataset. Two wearable devices, the Empatica E4 (E4) (Empatica E4, Empatica Inc., Boston,
MA, USA) and respiBAN Professional (RB) (respiBAN Professional, Plux, Lisbon, Portugal),
registered several physiological modalities that were resampled to a common sampling
rate of 250 Hz and are listed as follows:

• respiBAN Professional:

1. Electrodermal Activity (EDA): The EDA was captured between the medial pha-
lanx of the index and middle finger of the non-dominant arm.

2. Electrocardiogram (ECG): Using 3 electrodes, one on the upper right, one on the
upper left and one on the lower left of the body, heart rate activity was recorded.

3. Electromyogram (EMG): Using a two-channel surface electromyogram (sEMG),
the activity of the shoulder muscle (Trapezius) was recorded.

4. Respiration: The breathing of the subject is recorded using a chest belt of the
RB device.

• Empatica E4:

5. Electrodermal Activity (EDA): The wristband is measuring the EDA using two
electrodes inside of its strap.

6. Blood Volume Pulse (BVP): Emitting green and red light and detecting the
reflection using a photodiode, the Empatica is capable of estimating the BVP of
its wearer.

7. Inter-Beats-Interval (IBI): The Empatica calculates the time between consecutive
heartbeats based on the recorded BVP information.

8. Heart Rate (HR): The Empatica calculates a HR signal based on the recorded
BVP information.

9. Skin temperature: The Empatica reads the peripheral skin temperature.

The resulting dataset of 52 subjects has a data shape of (subjects× stimuli× repetitions,
sampling rate × windows length, sensors) = (52 × 6 × 8, 250 × 10, 9) = (2496, 2500, 9).
More details and an in-depth description of the dataset are introduced in [20]. Hereafter,
task B vs. P4 refers to the classification task of “no pain” vs. “high pain” in the scope of the
PMDB. Following our previous findings comparing the performances of various sensor
modalities [20], the EDA signal originating from the RB is chosen over the one provided by
the E4. The PMDB is not publicly accessible due to privacy concerns.

2.2. Classification Based on Feature Engineering

To train traditional ML models, key characteristics are extracted from the raw data
using expert knowledge. These so-called HCFs can include anything from simple statistical
values to complex features achieved by tailored algorithms for a specific use case. Based on
these key characteristics, ML models such as RFs are trained to learn an association between
data samples and labels. Figure 3 summarises the sequence of methods applied to the pain
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datasets to evaluate feature engineering techniques for automated pain classification and
to gain additional knowledge about the decision-making process.

Datasets:
-BVDB

- PMDB
Random ForestFeature Extraction

XAI:
Recursive Feature 

Elimination/
Feature analysis

Figure 3. The flow of the applied feature engineering techniques. Initially, features are computed for
the raw data samples of the PainMonit Database (PMDB) and BioVid Heat Pain Database (BVDB)
datasets. Next, Random Forest (RF) models are trained for automated pain classification. Finally, the
decision process is analysed using techniques of Explainable Artificial Intelligence, e.g., Recursive
Feature Elimination (RFE).

2.2.1. Feature Extraction

Features to automatically classify pain were calculated following [20]. Several statisti-
cal features derived from the EDA signal, such as rapid changing spikes, also called Skin
Conductance Response (SCR), with its key characteristic and slowly adapting SCL, were
calculated. Moreover, more complex methods, such as the derivative of phasic component
of EDA (dPhEDA) based on a convex EDA optimisation method (cvxEDA) [36] and spectral
features time-varying index of sympathetic activity (TVSymp), and its modified version
(modified spectral features time-varying index of sympathetic activity (MTVSymp)) [37,38],
were applied to retrieve more detailed characteristics. The features were extracted directly
from the raw data samples of both datasets. A description of the HCFs used in this study is
summarised in Table 2.

Table 2. Hand-Crafted Features computed for the Electrodermal Activity signal.

Features

root mean square (RMS)
mean value of local maxima & minima

mean absolute value
mean of the absolute values (mav) of the first differences (mavfd)

mavfd on standardised signal
mav of the second differences (mavsd)

mavsd on standardised signal
variation of the first and second moment

indices of the minimum & maximum values
difference first and last value

mean & SD for phasic, tonic, amplitudes, rise times half recovery and recovery
range of tonic; number of SCRs

sum of amplitudes; first amplitude; phasic max;
mean, SD and Variance (VAR) on normalised signal

2.2.2. Random Forest

RFs, first introduced by Breiman [39], are simple but effective tools that have been
applied to various tasks for ML. The approach based on Bootstrap aggregating (Bagging)
leverages the union of several Decision Trees (DTs) trained on varying subsets of the
initial training data (bootstrapping). A classification outcome of the ensemble technique
is retrieved by majority voting for classification or averaging the results of the distinct
classifiers for regression (aggregation). RFs were implemented using Sklearn v1.1.3 in
combination with 100 DTs, with the samples required to split an internal node set to 2,
and no constraint on the maximum depth of the individual trees. A small study showing
the influence of each RF hyper-parameter on the classification accuracies can be found in
Appendix A.1. Moreover, RFs were trained for regression tasks with two outputs, one for
each class in the binary configurations. The output node (class) with the higher prediction
is then picked as the classification output. The impurity of the implemented RF regressors
was computed as a mean squared error as described in Equation (1).
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2.2.3. XAI in RFs

DTs, and thus RFs, have the advantage to illustrate their decision process in the way
they are structured. Each node of the classifier represents a rule on a feature to split the
dataset, and thus provides information about the impact of individual features. Here, an
impurity Cj at each node j of a DT can be calculated as:

Cj =
1
N

N

∑
i=1

(yi − µ)2, (1)

where yi is the label for sample i, N is the total number of samples, and µ = 1
N ∑N

i=1 yi.
Using this, node importance nj can be calculated as follows:

nj = wjCj − wle f t
j Cle f t

j − wright
j Cright

j , (2)

where wj is the weighted number of samples reaching node j, and le f t and right annotate
the left and right child nodes, respectively. The importance for every feature fi in the
feature space can then be estimated by:

fi =
∑j∈Ii

nj

∑k∈N nk
, (3)

where Ii is the set of all nodes that split on feature i. Usually, these importance values are
normalised afterwards:

f norm
i =

fi

∑j∈F f j
, (4)

where F is the set of all features. To estimate the importance of a feature in a RF, the
importance associated with the feature in all trees is summed up and divided by the
number of trees. These retrieved scores can also be averaged for several outcomes of a
Cross Validation (CV) to estimate feature importance in this way. Moreover, these metrics
can be used to implement a RFE [40] strategy. First, a RF model is trained on the complete
feature space. Next, the individual features are ranked according to their importance
given by their impurity score. Afterwards, the least important feature is discarded and the
model is trained again. The mentioned steps are repeated several times to find an optimal
number of features for the given task. Once the dispensable and redundant features for the
classification tasks are removed, an optimal feature space can eventually be found.

2.3. Classification Based on Feature Learning

In addition to the HCF approach, several DL architectures either commonly used or
taken from the related literature were implemented. To start with, Multi-Layer Percep-
tron (MLP), CNN and Convolutional Autoencoder (CAE) models were implemented, as
previous studies showed promising results for time-series classification [20]. Moreover,
deep learning-based approaches that have gained a lot of traction in the past few years,
such as Contrastive Learning (CL) [41] and transformer networks [42], were evaluated.
As CNNs proved to be working especially well on image datasets in the past, a method
to transform the time series data to image representations using Gramian Angular Fields
(GAF) [43] and classify them using a CNN was tested as well. In contrast, Recurrent Neural
Networks (RNNs) such as Long Short-Term Memorys (LSTMs), which are challenging and
time-consuming to train and did not provide promising results in previous studies, were
not considered in the current work. The complete list of used DL models is as follows:

1. MLP;
2. CNN;
3. CAE;
4. A supervised Contrastive Learning (CL) [41] architecture based on the encoder of the

CAE model;
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5. A transformer network [42];
6. Gramian Angular Fields (GAFs) [43] representations of the 1D time series data in

combination with multi-dilated kernel (MDK) residual modules [44].

All methods were evaluated on both datasets. The architectures and hyper-parameters
for the MLP, CNN and CAE are inspired by Gouverneur et al. [20]. The performance of the
CNN was further improved by adding another block of convolution and pooling layers
and increasing the number of feature maps. The CL, transformer and MDK models are
implemented following the suggestion found in the source papers listed above. The basic
concepts of each model are described below, and a detailed summary of the DL architectures
used can be found in Appendix A.2. Figure 4 summarises the sequence of methods applied
to the pain datasets to evaluate several feature learning techniques for automated pain
classification and to gain additional knowledge about the decision-making process.

Datasets:
-BVDB

- PMDB

Deep learning 
architecture

Preprocessing:
-Normalisation

-Smoothing

XAI:
Grad-CAM

Figure 4. The flow of the applied feature learning techniques. Initially, the data samples of the
PainMonit Database (PMDB) and BioVid Heat Pain Database (BVDB) datasets are normalised and
smoothed. Next, several DL architectures are trained in an end-to-end manner. Finally, the decision
process is analysed using techniques of Explainable Artificial Intelligence such as Gradient-weighted
Class Activation Mapping (Grad-CAM).

In the following sections, descriptions of the preprocessing step (Section 2.3.1), DL
models (Sections 2.3.2–2.3.7), implementation details (Section 2.3.8) and applied XAI tools
(Section 2.3.9) are presented.

2.3.1. Preprocessing

Sensor data fed to the DL models were resampled to a common frequency of 256 Hz
and min-max normalised per sample, as normalisation can have a significant impact on
the classification accuracy [45]. Especially in Neural Networks (NNs), normalisation helps
the network to extract meaningful features [46]. Moreover, the samples were smoothed
using a moving-average algorithm with a window size of one second. The outcome of the
smoothing step can be seen in Figure 5. No further preprocessing was performed, and DL
architectures were trained directly on the time series data.
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Figure 5. Raw data (blue) and outcome of the moving-average algorithm with a window size
set to one second (orange) for a random sample of the Electrodermal Activity sensor of the
PainMonit Database.
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2.3.2. Multi-Layer Perceptron

MLPs consist of interconnected artificial neurons grouped into so-called layers. Differ-
ent layers are stacked to retrieve meaningful information from the given input data. Each
neuron is linked to all preceding neurons of the previous layer, calculating its output as a
weighted summation of its inputs plus a bias value. Usually, the output is also sent through
a non-linear function referred to as an activation function to make the model able to learn
non-linear relations between the data and labels. The simple calculation of one neuron can
be processed using the following equation:

y = σ

(
b +

n

∑
k=1

wkxk

)
(5)

where σ in an activation function, b is a learnable bias value, wk is the learnable weights
applied to the previous input xk and n is the number of neurons in the preceding layer.
A deep MLP consists of at least 3 layers, i.e., one input, one hidden, and one output
layer. Often, dropout layers are used to avoid overfitting the network by deactivating a
proportion of random neurons during training [47]. For classification tasks, the number of
neurons in the output layer is often set to the number of classes, and a result is presented
using a softmax activation function, where the class output with the maximum value is
interpreted as the predicted one. The MLP architecture used in this study is a simple
feed-forward NN consisting of a flatten layer and 2 blocks with a dropout and a dense layer
(250 and 100 neurons) with a Rectified Linear Unit (ReLU) activation function. The blocks
are connected to a dense layer with 2 neurons and a softmax activation for classification.

2.3.3. Convolutional Neural Network

In contrast to MLPs, CNNs have been designed to extract features from image data,
and thus utilise convolutional kernels instead of individual artificial neurons. Here, the
weights of convolutional kernels are learned and applied to the input of the layer to
generate an output referred to as feature maps. To further improve the computation speed
by reducing the input dimensionality, pooling layers that downsample their input are
usually used as well. For example, max pooling layers aggregate the information of the
previous layer by summarising areas of the input feature maps by their maximum value.
Similarly to the convolutional layers with their kernel size, the pooling layers can also
have their window (or pool) size adjusted. In the end, the features retrieved from the
CNN architectures are flattened and fed to an MLP to obtain a classification output. The
CNN model used in this study is inspired by the one in [20] and consists of 3 blocks of
convolutional, max pooling and dropout layers.

2.3.4. Convolutional Autoencoder

In addition to the end-to-end feature learning approaches of the MLP and CNN, a
CAE was adopted for the task of automated pain recognition. The CAE aims to learn an
embedding of the given data samples in an unsupervised way by reducing the dimen-
sionality of the input (encoder) and reconstructing the input given just the embedding
afterwards (decoder). Successful training of such an autoencoder results in an encoder that
can retrieve important features from the input while the decoder is still able to reconstruct
the input with minimal error. Then, a model can be trained for classification using the
features computed by the encoder. To utilise the trained CAE model that is fitted in an
unsupervised way on the sensor data using Mean Squared Error (MSE) as the loss between
the input and reconstruction sample for a classification task, the encoder output (of the last
max pooling layer) was flattened, processed by dense layers with 100, 50 and 25 neurons,
and a classification outcome was computed by a dense layer with 2 neurons and a softmax
activation function similarly to the other DL architectures. The new layers were then
fine-tuned in a supervised manner to fit the given pain classification task.
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2.3.5. Supervised Contrastive Learning

Recent advances in DL have led to the introduction of a novel training procedure
for NNs called supervised CL [41]. The two-step approach consists of a pre-training step
where an encoder is trained to generate vector representations of the input data. The loss
monitored during training of the encoder is the supervised contrastive loss that ensures
that encodings of samples deriving from one class are alike, and encodings from varying
classes are apart. Finally, the frozen encoder is connected to an MLP that is fine-tuned
for classification. The encoder of the supervised CL approach was chosen to be similar to
the presented one of the CAE (Table A2) with an additional projection head consisting of
dense layers with 100, 50 and 25 neurons. The MLP for classification involves a dense layer
with 100 neurons and a ReLU activation function and a dense layer with 2 neurons and a
softmax activation function to present the output.

2.3.6. Transformer Network

First introduced for natural language processing, the so-called transformers [42] make
use of a multi-head self-attention mechanism. The self-attention mechanism accesses the
trained knowledge of previous steps, and thus provides information about temporal aspects
of the input data. Due to their architecture, which can handle sequential data, transformers
can also be easily applied to time series data. Thus, the time series input is split into 8 parts
of equal length.

2.3.7. MDK-Resnet Architecture

To facilitate the ability of CNNs to process 2D data, a method called GAF [43] that
transforms 1D time series into 2D representations was tested as well. The 1D time series
data were encoded into images by polar coordinates-based matrices that can preserve
absolute temporal correlation [48]. Therefore, the input data are normalised, the inverse
cosine of the time series values is taken as the angle and the time label is taken as the
radius in the polar coordinate system. Then, Gramian Summation Angular Field (GASF)
and Gramian Difference Angular Field (GADF) matrices are computed by a trigonometric
sum/difference between each point. Afterwards, the acquired image representations are
fed to a MDK-Resnet architecture following the work of Xu et al. [44], which was evaluated
on time series data for HAR in the past. It leverages MDK modules consisting of multiple
different dilated kernels [49] applied to the input and merged by addition. Dilated kernels
try to improve the receptive field of convolutional layers by artificially widening the kernels
while maintaining the initial computational cost. An MDK module is composed of the
following branches:

• Identity: The input is passed through.
• 1 x 1: A 2D convolution with a kernel size of (1, 1).
• Dilation 1: A 2D convolution with a kernel size of (3, 3).
• Dilation 2: A 2D convolution with a kernel size of (3, 3) and a dilation rate set to (2, 2).
• Dilation 4: A 2D convolution with a kernel size of (3, 3) and a dilation rate set to (4, 4).

2.3.8. Classification Step

To have a direct comparison between RF with HCFs and the DL models and to enable
RFE for the latter, a combination of DL and RF models was implemented in addition to the
end-to-end evaluation. It was realised by training DL models in an end-to-end manner,
discarding the last classification layer and feeding the output as features to a RF model.
The DL models were implemented using Keras 2.7 and trained with a batch size of 32, a
learning rate set to 10−4 and on 100 epochs if not otherwise mentioned. EDA data samples
were given to the models as a 3D shape in the form (time × sensor channels × 1) with one
sensor channel (EDA) and the time steps according to the sampling rate and window size
of the datasets. The resulting windows had the shape (2500 × 1 × 1) and (2816 × 1 × 1)
for the PMDB and BVDB, respectively. To process the 3D data, 2D convolutions were used
with kernel, pool and stride sizes equal to (n, 1), with n being the kernel size across the
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time dimension as defined in Tables A1–A4. As the only exception, the unsupervised
pre-training step of the CAE was performed with a batch size of 8. Dropout layers were
used in most architectures to avoid overfitting on the training sets. ML have been evaluated
on a machine with an i7-7700K CPU, 16 RAM and Geforce GTX 1080 Ti.

2.3.9. XAI in DL

Several attempts have been investigated in the past to increase not only the classifica-
tion performance of DL models, but also their understandability. Because of its importance
in ML, several techniques for image classification have been introduced to highlight areas
of the input data that have a high impact on the classification outcome towards specific
classes. Zhou et al. [50] introduced the so-called Class Activation Maps (CAMs) to calculate
activation maps for CNN architectures involving a global average pooling layer followed
by the softmax classification layer. Thus, the input importance is calculated by considering
the outputs of these two layers that can be specified as follows. The global average pooling
for unit k can be defined as:

Fk = ∑
x,y

fk(x, y), (6)

where fk(x, y) represents the activation of unit k in the last convolutional layer. Moreover,
the input to the softmax activation is given by:

Sc = ∑
k

wc
kFk, (7)

where the learnable weight wc
k indicates the importance of Fk for class c. By putting

Equation (6) into Equation (7) and rearranging, the softmax input can be expressed as:

Sc = ∑
k

wc
k ∑

x,y
fk(x, y) = ∑

x,y
∑
k

wc
k fk(x, y). (8)

Then, the CAM for class c with each spatial element x and y is defined as:

Mc(x, y) = ∑
k

wc
k fk(x, y). (9)

To overcome the need for a specific architecture type, the Grad-CAM approach was
introduced by Selvaraju et al. [51] in 2017. This generalisation of CAMs does not rely on
architectures using a global average pooling layer, but applies to any CNN by using the
gradient information flowing into the (last) convolutional layer of the CNN to understand
the importance of each neuron for a decision of interest. Here, the importance weights are
estimated by calculating the gradients of the backpropagation. First, the gradient of the
score for class c, yc (before the softmax), with respect to feature map activations f k of a
convolutional layer, i.e., ∂yc

∂ f k [51], is computed. Moreover, global-average-pooling is applied
to the width (w) and height (h) dimensions of the feature map to retrieve importance
weights ak

c as follows:

ak
c =

1
w + h

w

∑
i

h

∑
j

∂yc

∂ fk(i, j)
. (10)

This weight captures the ’importance’ of a given feature map k for a target class c and
is thus summed as a weighted combination of all feature maps K to estimate an overall
score Lc. In addition, a ReLU activation function is applied to focus on positive activation
towards the given class:

Lc = ReLU(
K

∑
k

ac
k f k). (11)

3. Results

The following section gives an insight into the results that were achieved on both the
PMDB and BVDB. The performances of the ML approaches presented in Sections 2.2 and 2.3
are presented first. All reported classification performances are given as accuracy, as it is
the standard metric for pain recognition [16–20] and provides a realistic representation
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of the results given the balanced classes of the pain recognition datasets. In order to give
comparable results to previous publications (see Table 1) and test the algorithms in a subject-
independent manner, all models were evaluated in a Leave-one-subject-out (LOSO) CV.

3.1. Comparison Study

Table 3 summarises the performance of the RF model based on HCFs and several
end-to-end DL architectures trained for the task “no pain” vs. “high pain” on the BVDB
and PMDB evaluated in a LOSO CV. The best results were yielded by the RF approach on
the PMDB with an accuracy of 91.70%, whereas the best performance on the BVDB was
obtained by the supervised CL approach with an accuracy of 84.54%.

Table 3. Accuracy scores of several classifiers trained for the task “no pain” vs. “high pain” on
the BioVid Heat Pain Database (BVDB) and PainMonit Database (PMDB) evaluated in a Leave-one-
subject-out Cross Validation. The results of the best-performing method are depicted in bold for
each dataset.

Approach PMDB BVDB

RF 91.70 ± 7.83 83.56 ± 14.94
MLP 91.09± 9.70 84.22 ± 13.19
CNN 91.05± 10.03 82.16 ± 14.08
CAE 90.58 ± 10.19 84.02 ± 13.09

Supervised CL 90.47 ± 10.37 84.54 ± 12.82
Transformer 90.61 ± 7.94 84.34 ± 12.60
MDK-Resnet 89.79 ± 11.68 81.50 ± 13.88

Since the RF model performed the best and decent on the PMDB and BVDB, respec-
tively, the RF model and its classification result were further analysed. Figure 6 shows
a confusion matrix for the RF approach evaluated in a LOSO CV on both datasets. The
reported numbers represent the cumulative results of each individual fold.

B P4

Predicted label

B

P4

Tr
ue

la
be

l

385 31

38 378

PMDB

T0 T4

Predicted label

T0

T4

Tr
ue

la
be

l

1503 237

337 1403

BVDB

100

200

300

400

600

800

1000

1200

1400

Figure 6. Confusion matrices for the Random Forest approach evaluated on the PainMonit Database
(PMDB) (left) and BioVid Heat Pain Database (BVDB) (right) in a Leave-one-subject-out Cross
Validation. An accuracy of 91.69% and 83.51% were obtained on the PMDB and BVDB, respectively.

Moreover, Table 4 summarises the computational time for each model on the PMDB
and BVDB in a Leave-one-subject-out Cross Validation. The results are reported as an
average of five runs and given in seconds. While the LOSO is finished relatively quickly
for the straightforward DL models such as MLP and CNN, the training time increases
gradually for the transformer, MDK-Resnet, Supervised CL and CAE models. The RF
training was the fastest on both datasets.
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Table 4. Computation time (secs) of several classifiers trained for the task “no pain” vs. “high
pain” on the BioVid Heat Pain Database (BVDB) and PainMonit Database (PMDB) evaluated in a
Leave-one-subject-out Cross Validation.

Approach PMDB BVDB

RF 138 933
MLP 442 1074
CNN 389 3682
CAE 2906 18,346

Supervised CL 2216 12,164
Transformer 1673 10,207
MDK-Resnet 2180 14,197

3.2. Interpretability Study

The results of the feature importance analysis of the RFs trained with HCF can be
found in Table 5. The top 10 features with the most impact on classification performance
evaluated in a LOSO manner were listed separately for the BVDB and PMDB. Although
some complex features deriving from the dPhEDA approach are considered relevant for
the target classification problem, the best features come mostly from elementary statistical
calculations, such as “argmax” or the difference of the first and last value in the time series
(“diff_start_end”). In addition, a significant gap between the importance of the first feature
to the subsequent ones is existing in both datasets.

Table 5. The 10 most discriminating features for the Electrodermal Activity signal calculated using
the impurity scores of the Random Forest models in a Leave-one-subject-out Cross Validation. Scores
were computed for the PainMonit Database (PMDB) and BioVid Heat Pain Database (BVDB) datasets.
The importance scores were averaged across folds, min-max-normalised between 0 and 1 and rounded
to the third decimal.

Feature PMDB BVDB

Rank Feature Name Importance Feature Name Importance

10 dPhEDA_16 0.015 norm_sd 0.031
9 dPhEDA_4 0.016 norm_var 0.032
8 range_tonic 0.016 local_min 0.037
7 dPhEDA_6 0.016 dPhEDA_4 0.037
6 argmax 0.020 local_max 0.039
5 iqr 0.022 norm_mean 0.045
4 sd_tonic 0.028 mean_phasic 0.062
3 dPhEDA_3 0.030 diff_start_end 0.063
2 argmin 0.095 argmin 0.169
1 diff_start_end 1 argmax 1

Figure 7 compares the LOSO accuracy outcome for several RFE tests for the different
tested approaches on the BVDB and PMDB. In the RF approach, RFE was applied directly
to the HCFs, whereas in the DL approaches, the sensor data were first transformed in a
feature set using the trained NNs without the softmax classification layer. Afterwards,
an RF with RFE was trained on the newly acquired feature set. The accuracies for both
datasets are stable for most of the RFE iterations, but drop visibly for most models when
10 or fewer features remain. The best performance was obtained with 7 HCFs (“min”,
“argmax”, “argmin”, “diff_start_end”, “mean_phasic”, “norm_var” and one feature from
“dPhEDA”) on the BVDB achieving an accuracy of 83.74%, and with 19 HCFs (“max”, “min”,
“iqr”, “rms”, “local_max”, “argmax”, “argmin”, “diff_start_end”, “sd_tonic”, “range_tonic”,
seven features from “dPhEDA”, and two from “TVSymp”) on the PMDB with an accuracy
of 93.26%. RFE leads to performance improvement in all scenarios, with a higher number
of features required for optimal performance in DL models compared to RF. Table 6
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summarises the accuracies without RFE, the number of optimal features and the best
accuracies with RFE for the different approaches.
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Figure 7. Comparison of different Recursive Feature Elimination parameters (x-axis) and the resulting
accuracy of an Random Forest evaluated on the PainMonit Database and BioVid Heat Pain Database
in a Leave-one-subject-out Cross Validation. Features were limited to a total of 100 for this plot.

Table 6. Classification results achieved by the tested models in combination with a Random Forest
trained on the Electrodermal Activity signal in a Leave-one-subject-out with (column “Acc w/. RFE”)
and without Recursive Feature Elimination (column “Acc w/o. RFE”). In addition, the optimal
number of selected features is shown in the column “# RFE”.

Model
PMDB BVDB

Acc w/o. RFE # RFE Acc w/. RFE Acc w/o. RFE # RFE Acc w/. RFE

RF 91.22 19 93.26 82.96 7 83.74
MLP 88.07 48 89.14 82.67 74 83.22
CNN 88.79 12 89.87 81.18 33 81.78
CAE 89.64 13 89.75 82.61 8 83.19

4. Discussion

The following section offers a detailed discussion concerning the presented results.
First, the comprehensive investigations carried out with various ML approaches reveal that
despite being stated differently in the past [13], HCFs can outperform the models based
on automated feature learning methods. In particular, RFE can boost the performance of
HCF-based approaches and broaden their superiority over DL techniques. One benefit
of the leveraged RF model based on HCFs is the immediate exploitation of the raw data,
whereas DL rely on a normalisation step to quicken convergence. Here, it is also assumed
that the loss of information regarding the raw data values caused by the normalisation step
explains the weaker performance results yielded by the NN architectures. Moreover, the
training time of the RF is significantly shorter than the ones of the DL models. Nevertheless,
all models yield comparable results as they managed to retrieve the needed information
for the given task. Although the same approaches were applied on both BVDB and
PMDB datasets, a difference of ∼10% in the best classification accuracy can be observed
for “no pain” vs. “high pain” between the two datasets. This could be explained by
the longer stimuli and time series windows in the PMDB that permit the detection of
long responses in EDA. Despite intensive efforts to further optimise and improve the
classification results of DL models, the performance yielded with HCFs still competes with
DL. For this reason, the importance of single features for classification performance was
investigated in the scope of pain. Results for our feature importance analysis (Table 5)
suggest that classifiers trained on both datasets are dominated by individual characteristics
rather than an accumulation of many features, clearly visible on the margin between the
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most dominant feature and consecutive ones. Moreover, RFE on both datasets indicates that
7 to 19 features are sufficient for the classification task of “no pain” vs. “high pain” based
on EDA time series data. Here, a great proportion of features are basic statistical features
describing the outer shape of the given data sample such as “min”, “max”, “argmin”,
“argmax”, “diff_start_end”, “mean_phasic”, “norm_var”, “iqr”, “rms”, “sd_tonic”, and
“range_tonic”.To further investigate the validity of simple statistical features, a small study
in which simple naive features were calculated and used to individually classify “no pain”
against “high pain” was conducted. These classification rules, based on simple Boolean
tests, are carried out on a single feature of the EDA signal, either confirming the class “high
pain” or rejecting a painful class, thus categorising the sample as “no pain”. The terms
can be applied to all samples of a given dataset and be compared with the actual label to
estimate the accuracy. Furthermore, the tested classification rules were found in a trial
and error fashion, based on the analysis of the most important features derived from the
feature importance analysis. For the given conditions, the EDA samples are considered
as sequences expressed by xi, with 1 6 i 6 l being the index of a value and l the length
of the time series. First, the “diff_start_end” feature is evaluated on its own by checking
whether the last element is greater than the first element of the given time series (x0 < xl).
Afterwards, calculations around the “argmin”/“argmax” in relation to the length of the
time series data to evaluate when the highest values occur and how much the signal is
increasing were tested. More specifically, it is tested whether the “argmax” is found after 7

10
of the sample’s time and whether the difference between “argmax” and “argmin” is greater
than 1

4 of the time series length. Finally, categorisation is carried out by examining whether
the signal tends to rise or fall by checking whether the sum of the discrete derivative is
greater than zero. The discrete derivative of a time series x with length l is defined by

x′i = xi − xi−1 ∀ 2 6 i 6 l, (12)

where f ′1 is arbitrarily set to 0. This simplicity contrasts with the complexity of the training
process of DL models and the complexity of the DL models themselves. Table 7 sum-
marises the accuracies obtained with these classification rules based on simple features and
compares them to the RF and MLP approaches on the PMDB and BVDB.

Table 7. Overview of the accuracies obtained by simple classification rules in comparison to Machine
Learning models for the classification of “no pain” vs. “high pain” on the PainMonit Database (PMDB)
and BioVid Heat Pain Database (BVDB). The Electrodermal Activity samples are expressed by
〈xi|i ∈ I〉, where I is the index of each element and l is the length.

Classification Rule PMDB BVDB

x0 < xl 88.46 81.78
( 7l

10 ) < argmaxi(xi) 84.98 82.87
l
4 < (argmaxi(xi)− argmini(xi)) 90.14 81.03
0 < ∑l

i=1 x′i 88.46 81.78

RF 91.70 83.56
MLP 91.09 84.22

Similar to the RFE, various simplistic features could be introduced to classify EDA
into “no pain” and “high pain” classes with comparable performance results to various
ML models. It is important to note that no training of complex ML models is performed
here, but the classification is based on a decision involving the computation of a single
feature. It again underscores the point that the general shape of the time series and whether
the EDA signal increases or decreases are important—even to the point that individual
features are sufficient for classification. Different features showed varying results on both
datasets, where some performed better on PMDB and some were preferable on the BVDB.
Overall “argmax” and “argmin” values, which characterise the peak and low points of
the EDA signal, and when they occur seem to be highly relevant for the given task. In
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addition, it should be noted that there could be even better features, as the ones presented
(Table 7) were found through trial and error. The simple relationship between individual
features and class association becomes apparent when the distribution of a single feature
is plotted individually for the various classes. Figures 8 and 9 show boxplots for the
“argmin” feature for the classes of the PMDB and BVDB, respectively. The “argmin” value
describes the position of the minimum element in the time series. After conversion into
seconds, it describes at what point in time the minimum of the series is reached. Whereas
high values are clearly dominant in low-pain classes, low values are outweighing those in
high-pain classes. In simpler words, a decrease of EDA over time is often seen in resting
phases without stimulus (thus minimum being at the end of the window samples), while
an increase (and thus minimum at the beginning of window samples) is present in time
series belonging to high pain classes. Again, the better classification results yielded on the
PMDB outlined in greater differentiation of “no pain” vs. “high pain” in PMDB (B vs. P4) in
comparison to BVDB (T0 vs. T4) can be explained by the longer time windows in samples.
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Figure 8. The “argmin” values of all Electrodermal Activity samples of the PainMonit Database
visualised as boxplots for the different classes.
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Figure 9. The “argmin” values of all Electrodermal Activity samples of the BioVid Heat Pain Database
visualised as boxplots for the different classes.

While retrieving the feature importance in classical ML models, as with the impurity
score in RFs, is relatively simple, NNs lack deeper interpretation tools despite their recent
success. Thus, the research community worked on the interpretability of such models
by creating grey-box classifiers from black-box ones [52] or relying on white-box algo-
rithms [53]. To not alter the classification system itself, the interpretability in NNs is mainly
investigated in the form of heat maps that highlight areas in the input data that are relevant
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to the classification outcomes. Examples of the results of Grad-CAM on the PMDB for the
CNN architecture can be seen in Figures 10 and 11. The EDA data for the eight stimulus
repetitions for the respective classes “no pain” (left) and “high pain” (right) of a subject are
presented in two different graphs. In addition, Grad-CAM highlights once which parts are
relevant for the class “no pain” (Figure 10) and once for the class “high pain” (Figure 10)
with the colour coding specified by the existing colour bar on the right side. All of the
subject’s samples were correctly classified by the CNN approach. See Appendix A.3 for
more examples, especially for a subject where the DL architecture struggles to classify all
the samples well.
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Figure 10. Electrodermal Activity samples for the class “no pain” (left) and “high pain” (right) for
one subject with class activation calculated using Grad-CAM towards the class “no pain”. The time
series data were smoothed by applying a moving average with a window size of one second.
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Figure 11. Electrodermal Activity samples for the class “no pain” (left) and “high pain” (right) for
one subject with class activation calculated using Grad-CAM towards the class “high pain”. The time
series data were smoothed by applying a moving average with a window size of one second.

The resulting plots differ greatly for the activation towards “no pain” and “high pain”.
More specifically, areas with decreasing EDA are highlighted for the samples with no pain,
while areas with increasing EDA are emphasised for the classification towards pain in
contrast. Heat maps, similar to saliency, CAMs, Grad-CAM or grad-CAM++, have been
investigated heavily on image databases in the past. Although the interpretation of these
heat maps for images created by Grad-CAM is trivial, the output of these techniques is
not clear for time series data, and an objective analysis remains challenging. From the
examination of Figures 10 and 11, it is apparent that there is a correlation between the slope
of the signal and the class association of the CNN for the given subject. To evaluate this
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finding for all subjects of the dataset, a naive approach to objectify the class importance
given by Grad-CAM with regard to the available classes and raising and falling slopes
of the given time series data is presented. For this purpose, heat maps for all samples
of the PMDB are calculated using Grad-CAM first. The CNN model used to retrieve a
classification output and Grad-CAM heat map were trained in a LOSO manner as well.
Next, the resulting maps are masked depending on the discrete derivative of the curve to
estimate the focus of the NN for areas with positive and negative slopes in the samples
with respect to the classification outcome for each class individually. An overall estimation
is calculated by summing up and normalising all the masked scores of all available samples.
In the following, the calculation of this score is described in more detail. To begin with, the
following notation is used:

• Dataset: D = {x(i)}n
i=1 where x(i) ∈ Rl and 1 6 i 6 n is the example index.

• Length of one data sample: l.
• Grad-CAM method: Lc : Rl → Rl .

To investigate the activation during areas with positive and negative slopes of the time
series, two helper functions g+(x) and g−(x) for x ∈ D to mask the activation are used.
The function g+ enables areas with a positive slope by leveraging only the outcome greater
than 0 of the discrete derivative introduced in Equation (12) by:

[g+(x)]i =
{

1 if x′i > 0
0 otherwise.

(13)

Afterwards, an importance score w+
c,i can be calculated for any given sample x(i) in

relation to the class c and positive slope by masking the general Grad-CAM output with
the created function g+:

w+
c,i = Lc(x(i)) · g+(x(i)) ∀ 1 6 i 6 n. (14)

The above step is performed for all samples in the database. The individual results are
summed up leading to a weights value, but representing the class activation for the given
class in parts of a positive slope for the whole dataset:

w+
c =

n

∑
i=1

w+
c,i. (15)

By adopting Equation (13) to

[g−(x)]i =
{

1 if x′i 6 0
0 otherwise

(16)

and updating Equations (14) and (15) accordingly, the activation for negative slope (w−c )
can be calculated equally. To have an interpretable value between 0 and 1, and to compare
it with other classes, the values are normalised per class at this point. Here, each weight
value is divided by the sum of weights inside its class. The following equation summarises
the normalisation step:

w+norm
c =

w+
c

w+
c + w−c

(17)

and
w−norm

c = 1− w+norm
c . (18)

The resulting values for w+norm
c and w−norm

c represent a score estimating the impor-
tance of parts with increasing and decreasing EDA signals, respectively, for the classification
outcome towards class c. Figure 12 visualises w+norm

c and w−norm
c for the classes “no pain”

and “high pain” of the PMDB. For the class “high pain”, w+ exceeds w−, whereas w−

outweighs w+ for the class “no pain”. In other words, the attention scores, and thus the
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focus of the DL model, are mostly concentrated in areas where the EDA rises for “high
pain”, and decreases for “no pain”.

w+
High pain w−High pain w+

No pain w−No pain

0.0

0.2

0.4

0.6

0.8

Figure 12. Important scores calculated for areas with positive (+) and negative (−) slope for the
classes “no pain” (orange) and “high pain” (blue) of the PainMonit Database for the Convolutional
Neural Network architecture visualised as a bar chart.

Moreover, the presented importance score based on Grad-CAM for DL architectures
indicates that simple characteristics of the time series samples have a high impact on the
classification results similar to the HCF approach. In simple words, areas with positive
and negative slopes highly influence the results towards the classes “high pain” and “no
pain”, respectively. An SCR event is associated with pain, whereas no EDA reaction,
i.e., constant or decreasing SCL, is associated with no pain. Despite their complexity
and numerous parameters, NN architectures may learn simplistic characteristics of EDA
samples in the scope of automated pain research. In summary, the in-depth analysis of
the feature importance in RF models and the characteristics that are influencing the DL
outcome shows that straightforward features are the most relevant for the task of automated
pain recognition based on EDA data. The results showed that “argmin”, “argmax”, the
difference between the first and last values, and the sum of the slope (derivative) of the
given sequence are of high importance. Here, it is assumed that certain increases in
EDA data, also referred to as SCR, are greatly connected to the classes associated with
pain. Although not all samples with an SCR are categorised as painful, the two concepts
are affiliated strongly. To further investigate possibilities to improve the classification
performance, the wrongly classified samples for the best model (RF) on the PMDB were
examined. For better readability, the samples were clustered using K-Means clustering
based on DTW Barycenter Averaging and plotted for their respective classes individually.
The number of clusters was found using the Elbow method. A more detailed description
can be found in Appendix A.4. Figures 13 and 14 summarise the samples for the classes
“no pain” and “high pain”, respectively.

Samples that should be classified as “no pain” but were labelled as “high pain”
(Figure 13) are clustered into four groups. Clusters 0, 2 and 3 seem to have a major increase
in the EDA data, which could explain why the classifier decided to choose “high pain”.
Probably, the SCR observed for these examples was triggered by another event not related
to the study, as SCRs are not specific to pain but can be introduced by various incidents [54]
(p. 13), such as strong emotions or a demanding task. The samples in cluster 1 seem to have
little variation in the signal, so understanding why the classifier made the wrong decision
is difficult. On the other hand, wrongly classified “high pain” samples are categorised into
four clusters (Figure 14). The instances are clustered into groups with almost no variation
(clusters 2 and 3) and small fluctuations (clusters 0 and 1), which are not unambiguously
considered as pain by the ML models. The absence of strong reactions in the EDA signal can
be reasoned by the existence of subjects with little EDA activity despite environmental fac-
tors, who are commonly referred to as non-responders in the literature [55]. Because of the
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aforementioned discrepancies between classes and association with autonomic responses
in the EDA signal, it is believed that it will be difficult to further improve classification
results for automated pain recognition on both the PMDB and BVDB significantly. This
assumption is further underlined by the trend of smaller performance increments in novel
proposed classification systems (as shown in Table 1), which suggests a “natural boundary
of maximal classification performance” being present in datasets in relation to complex
tasks such as pain recognition based on physiological sensor data.
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Figure 13. Samples of the class “no pain” wrongly classified by an Random Forest classifier in a
Leave-one-subject-out evaluation scheme on the PainMonit Database, clustered into 4 groups using
K-Means clustering based on DTW Barycenter Averaging.
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Figure 14. Samples of the class “high pain” wrongly classified by an Random Forest classifier in a
Leave-one-subject-out evaluation scheme on the PainMonit Database, clustered into 4 groups using
K-Means clustering based on DTW Barycenter Averaging.

5. Conclusions

In this paper, an in-depth comparison of various ML models based on feature engineer-
ing and end-to-end feature learning including recent state-of-the-art DL methods evaluated
on the PMDB and BVDB was conducted. The best accuracy of 93.26% using an RF with RFE
and 84.54% using a supervised CL approach could be achieved for the task “no pain” vs.
“high pain” on the PMDB and BVDB, respectively. Moreover, different approaches for XAI
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in the scope of automated pain recognition based on EDA data were shown. The presented
analysis showed that both classical ML approaches based on HCF, as well as DL models,
rely on simplistic characteristics of the given time series data to classify pain. Rises in EDA
(also referred to as SCR) are highly connected to pain, whereas no change or a slight decline
is associated with the absence of pain. To summarise, our studies highlight the following
insights: (1) single simplistic features can compete with complex DL models based on
millions of parameters. (2) Both approaches, based on HCFs and DL features, focus on
straightforward characteristics of the given time series data in the context of automated
pain recognition. Moreover, the aforementioned points lead to the question of whether
complex ML models such as NNs suit the task of heat-based automated pain recognition
based on physiological signals. Although DL can obtain good performances, simplistic
approaches based on simple features can achieve equal or better performances for a fraction
of the cost (especially computational time). Therefore, instead of simply applying DL to
any task, researchers should question its use for each situation individually. In the scope
of automated pain recognition, straightforward features can yield a relevant classification
performance while also giving insights into the decision-making process. Although novel
insights for pain recognition using XAI were obtained, the presented approach of leverag-
ing Grad-CAM for DL models is relatively naive. Future iterations of such methods should
include further masking criteria than just the slope and gradient of the given time series
samples. In particular, the mask presented in Equation (13) should be extended to grasp
additional aspects of interest. For example, maximum and minimum in addition to further
features for basic curve characterisation should be included to broaden XAI tools for deep
learning applied to time series data and enhance the understanding of the role of EDA
samples for automated pain recognition. Moreover, transfer learning approaches between
pain recognition datasets could be investigated to check if it is possible to leverage publicly
available data to improve the classification performances on a target dataset.
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HR Heart Rate
EDA Electrodermal Activity
SCL Skin Conductance Level
SCR Skin Conductance Response
IBI Inter-Beats-Interval
RB respiBAN Professional
E4 Empatica E4
DT Decision Tree
RF Random Forest
SVM Support Vector Machine
HCF Hand-Crafted Features
MLP Multi-Layer Perceptron
NN Neural Network
CNN Convolutional Neural Network
CAE Convolutional Autoencoder
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
ReLU Rectified Linear Unit
CL Contrastive Learning
LOSO Leave-one-subject-out
CV Cross Validation
MSE Mean Squared Error
NRS Numerical Rating Scale
VAS Visual Analogue Scale
NCS Nociception Coma Scale
CoVAS Computerised Visual Analogue Scale
VAR Variance
GAF Gramian Angular Field
cvxEDA convex EDA optimisation method
dPhEDA derivative of phasic component of EDA
TVSymp spectral features time-varying index of sympathetic activity
MTVSymp modified spectral features time-varying index of sympathetic activity
RFE Recursive Feature Elimination
DBA DTW Barycenter Averaging
XAI Explainable Artificial Intelligence
CAM Class Activation Map
Grad-CAM Gradient-weighted Class Activation Mapping
DL Deep Learning
ML Machine Learning
MDK multi-dilated kernel
OCT Optical Coherence Tomography
ANS Autonomic Nervous System
HAR Human Activity Recognition

Appendix A

Appendix A.1. RF Parameters

Previous work has shown that fine-tuning the RF parameters can influence the clas-
sification outcome greatly for specific tasks [56]. To evaluate the effects of varying RF
parameters on the classification results of automated pain recognition, different parameter
values for the number of trees, max depth and minimum sample split were tested on the
PMDB. A partial grid search was performed, optimising the parameters one by one by
setting their value to either the default or the best previously found value. Initially, the
number of trees was tested with 25, 50, 75, 100, 125, 150, 175 and 200 trees, yielding the best
performance with 100 trees. Fixing this value, the maximum depth of the individual trees
was reviewed next. Values of 0 (no constraint), 2, 4, 6, 8 and 10 for the depth parameter in
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the DTs were monitored, with the best performance obtained with no restriction. Eventu-
ally, 2, 4, 6, 8, 10 and 12 were tested for the minimum sample split. All experiments were
performed as 5× LOSO, yielding a classification result as the mean over the individual
LOSO runs to overcome fluctuations in single runs. Results are visualised in Figure A1. It
can be seen that most parameter changes have a small effect on the overall classification
performance, yielding the best result with 100 trees, no limitation for the depth of trees and
a min sample split set to 2.
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Figure A1. The influence of different parameters on the Random Forest performance on the PainMonit
Database. Accuracy results are computed as the mean of 5× Leave-one-subject-out Cross Validation.

Appendix A.2. Deep Learning Architectures

This section provides a detailed description of the applied DL architectures. The used
CNN model consists of three blocks of convolutional, max pooling and dropout layers. An
in-depth description of the network architecture can be found in Table A1.

Table A1. Convolutional Neural Network architecture with dropout rate set to 0.2.

Layer Name No. Kernels (Units) Kernel (Pool) Size Stride Activation

Convolutional 128 7 2 ReLU

Max Pooling - 4 - -

Dropout - - - -

Convolutional 64 11 2 ReLU

Max Pooling - 4 - -

Dropout - - - -

Convolutional 32 7 2 ReLU

Max Pooling - 4 - -

Dropout - - - -

Flatten - - - -

Dense 100 - - -

Dense 2 - - Softmax

The used CAE architecture is described in Table A2 in detail.
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Table A2. CAE architecture with its encoder and decoder parts.

Layer Name No. Kernels (Units) Kernel (Pool) Size

Sensors 2023, 1, 0 25 of 30
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Layer Name No. Kernels (Units) Kernel (Pool) Size

Convolutional 64 7

Max Pooling - 4

Convolutional 32 11

Max Pooling - 4

Convolutional 16 11

Max Pooling - 4

Up Sampling - 4
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The transformer architecture inspired by [57] is summarised in Table A3. Additional
residual connections are visualised as arrows on the right side. Blocks that occur more than
one time are highlighted on the left side. The dropout rate was set to 0.2.

Table A3. The used transformer architecture with individual layers. Residual connections are visu-
alised as arrows on the right side in addition to the sequential flow. n is the number of time samples
for each dataset, i.e., 2560 for the PainMonit Database and 1408 for the BioVid Heat Pain Database.

Layer Name No. Kernels (Units) Kernel (Pool) Size Activation

Input - - -

Layer Normalisation - - -

Multi-head attention 128 2 -

Dropout - - -

Add - - -

Layer Normalisation - - -

Convolutional 4 1 ReLU

Dropout - - -

Convolutional n
4 1 -

Add - - -

GlobalAveragePooling1D - - -

Flatten - - -

Dense 100 - ReLU

Dropout - - -

Dense 2 - Softmax

3×

The MDK-Resnet architecture is summarised in Table A4.
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The transformer architecture inspired by [57] is summarised in Table A3. Additional
residual connections are visualised as arrows on the right side. Blocks that occur more than
one time are highlighted on the left side. The dropout rate was set to 0.2.

Table A3. The used transformer architecture with individual layers. Residual connections are visu-
alised as arrows on the right side in addition to the sequential flow. n is the number of time samples
for each dataset, i.e., 2560 for the PainMonit Database and 1408 for the BioVid Heat Pain Database.

Layer Name No. Kernels (Units) Kernel (Pool) Size Activation

Input - - -

Layer Normalisation - - -

Multi-head attention 128 2 -

Dropout - - -

Add - - -

Layer Normalisation - - -

Convolutional 4 1 ReLU

Dropout - - -

Convolutional n
4 1 -

Add - - -

GlobalAveragePooling1D - - -

Flatten - - -

Dense 100 - ReLU

Dropout - - -

Dense 2 - Softmax

3×

The MDK-Resnet architecture is summarised in Table A4.

Layer Normalisation - - -

Multi-head attention 128 2 -

Dropout - - -

Add - - -

Layer Normalisation - - -

Convolutional 4 1 ReLU

Dropout - - -

Convolutional n
4 1 -

Add - - -

GlobalAveragePooling1D - - -

Flatten - - -

Dense 100 - ReLU

Dropout - - -

Dense 2 - Softmax

The MDK-Resnet architecture is summarised in Table A4.



Sensors 2023, 23, 1959 26 of 30

Table A4. MDK-Resnet architecture that is trained on samples produced by Gramian Angular Field.

Layer Name No. Kernels (Units) Activation

Mdk module - -

Mdk module - -

Mdk module - -

Mdk module - -

Flatten - -

Dense 250 ReLU

Dense 100 ReLU

Dense 2 Softmax

Appendix A.3. Further Grad-CAM Visualisation Examples

Similarly to Figures 10 and 11, Figures A2 and A3 show the outcome of Grad-CAM for
one subject. In contrast to previously shown images, the proposed CNN model performs
poorly for the chosen model (53.33% accuracy). Nevertheless, similar findings can be
seen. While class activations highlight areas with a negative slope when calculated with
respect to the “no pain” class, areas with a positive slope are highlighted with respect
to the class “high pain”. Thus, it can be assumed that this simple relationship seen in
Figures 10 and 11 and highlighted in Figure 12 is present in each subject’s data regardless
of the CNN classification performance.
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Figure A2. Electrodermal Activity samples for the class “no pain” (left) and “high pain” (right)
for a subject that is evaluated with an accuracy of 53.33% by the RF model. Class activations were
calculated using Grad-CAM towards the class “no pain”. The time series data were smoothed by
applying a moving average with a window size of one second.
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Figure A3. Electrodermal Activity samples for the class “no pain” (left) and “high pain” (right)
for a subject that is evaluated with an accuracy of 53.33% by the RF model. Class activations were
calculated using Grad-CAM towards the class “high pain”. The time series data were smoothed by
applying a moving average with a window size of one second.

Appendix A.4. Elbow Method

Figure A4 visualises the Elbow method to find the proper amount of clusters for the
PMDB. An arbitrary number of cluster sizes is plotted against the sum of squared distances
of samples to their closest cluster centre [58]. The elbow of the graph is used to find the
optimal number of clusters. For the given data, the optimal number of clusters was four for
the samples of the class “no pain” and “high pain”.
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100

200
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400

Elbow curve

Figure A4. Illustrative visualisation of the Elbow method to find the proper amount of clusters for
wrongly classified samples of one subject in the PainMonit Database. An arbitrary number of cluster
sizes is plotted against the sum of squared distances of samples to their closest cluster centre [58].
The elbow of the graph is used to find the optimal number of clusters, here highlighted as the dashed
vertical line.
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