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Abstract: The current accuracy of speech recognition can reach over 97% on different datasets, but
in noisy environments, it is greatly reduced. Improving speech recognition performance in noisy
environments is a challenging task. Due to the fact that visual information is not affected by noise,
researchers often use lip information to help to improve speech recognition performance. This
is where the performance of lip recognition and the effect of cross-modal fusion are particularly
important. In this paper, we try to improve the accuracy of speech recognition in noisy environments
by improving the lip reading performance and the cross-modal fusion effect. First, due to the same
lip possibly containing multiple meanings, we constructed a one-to-many mapping relationship
model between lips and speech allowing for the lip reading model to consider which articulations are
represented from the input lip movements. Audio representations are also preserved by modeling the
inter-relationships between paired audiovisual representations. At the inference stage, the preserved
audio representations could be extracted from memory by the learned inter-relationships using only
video input. Second, a joint cross-fusion model using the attention mechanism could effectively
exploit complementary intermodal relationships, and the model calculates cross-attention weights
on the basis of the correlations between joint feature representations and individual modalities.
Lastly, our proposed model achieved a 4.0% reduction in WER in a −15 dB SNR environment
compared to the baseline method, and a 10.1% reduction in WER compared to speech recognition.
The experimental results show that our method could achieve a significant improvement over speech
recognition models in different noise environments.

Keywords: audiovisual speech recognition; noisy environment; lip reading; cross-modal fusion

1. Introduction

Language is the most natural, effective, and intuitive way for humans to express them-
selves to each other; through speech, humans can obtain and understand more information.
With the development of deep learning in recent years, great success has been achieved in
the field of speech recognition [1,2]; currently, speech recognition is rather accurate with a
word error rate (WER) of less than 3% in quiet environments according to different datasets.
However, in noisy environments, the performance of speech recognition is drastically
degraded by noise, and it is difficult to achieve significant improvement by using noise
reduction and speech separation methods [3,4].

Audiovisual speech recognition (AVSR) is a task that leverages both the audio input
of human voices and the aligned visual input of lip motions. In recent years, it has been
one of the most successful application fields that involve multiple modalities. It uses
lip motion information to assist in speech recognition and improve speech recognition
performance in noisy environments. Therefore, the performance of lip reading plays a
significant role. However, most of the lip reading modules of existing audiovisual speech
recognition models use only a single piece of information, such as lip pictures, to achieve
this, ignoring the fact that the same lip may contain multiple meanings and lip morphology
and phonemes are in a one-to-many relationship. For example, the “mat” and “bat” lip
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shapes are the same, but pronounced differently. If there is no tongue position information,
it is difficult to distinguish them by using visual features alone, which causes information
recognition errors. In 2022, Qiya Song et al. [5] proposed adding optical flow to assist in
lip reading, which improved lip reading and audiovisual speech recognition performance.
Therefore, it is possible to improve lip reading and thus the accuracy of audiovisual
speech recognition without introducing a new input and using only the audio part in the
audiovisual combination.

Multimodal fusion is also an important part of the audiovisual speech recognition field.
For the current case with inputs of both visual and audio modalities considered, it reduces to
a two-modal fusion problem. Most previous studies have used simple concatenation [6–8],
and a few others have used attention mechanisms to achieve fusion [5]. However, intra- and
inter-modal relationships are ignored in fusion, such as multimodal emotion recognition,
video retrieval, and video segmentation. Many different methods for multimodal fusion
have been proposed; notably, Praveen et al. [9] proposed a cross-joint attention fusion
model to achieve emotion recognition in 2022. Experiments verified the effectiveness of the
fusion module and improved the performance of the emotion recognition model.

Although the performance of lip reading is particularly important, the performance of
existing lip reading models for audiovisual speech recognition is poor due to the fact that
they only focus on the mapping relationship from lips to words, even though lips to words
are not one-to-one mapping. Multimodal fusion is also a still-unsolved problem.

This study aims to improve the accuracy of speech recognition in noisy environments
with the assistance of lip reading, which could effectively reduce the speech recognition
error rate, since lip information is not affected by noise and thus is most suitable for
recognizing speeches in acoustic noisy environments.

The main contributions of this work can be summarized as follows: (1) a lip-to-audio
one-to-many mapping model has been designed for extracting accurate visual features
as the encoding part of the lip recognition model; (2) a joint cross-fusion model has been
designed for the fusion of cross-modal features, with multiple attention weights computed
on the basis of the attention mechanism that can effectively obtain the correlations between
different modalities and within the membrane state; (3) with four different types of back-
ground noise added, our simulational experiments show that our method can reduce the
WER of speech recognition compared to the baseline method.

2. Related Work
2.1. Lip Reading

Lip reading is used to infer what the speaker is saying through analyses of a series of
information on lip movement . Assael et al. [10] developed the first end-to-end sentence-
level visual speech recognition system, which achieved the best performance on the GRID
dataset, extracting video features through a 3D spatiotemporal convolutional network and
completing sequence modeling using a gated recurrent unit. In 2017, Chuang et al. [11]
also developed an end-to-end sentence-level visual speech recognition system on the
basis of an attention-based sequence-to-sequence model in wilderness scenes. In 2020,
Martinez et al. [12] improved temporal encoding by proposing a multiscale temporal
convolutional network (MS-TCN), and boosted word-level lip reading performance. In 2022,
Koumparoulis et al. [13] presented a resource-efficient end-to-end structure and introduced
efficient nets to lip reading. The best performance to date was obtained on the LRW dataset
without additional training data, with an accuracy of 89.52%; with the help of additional
training data, the current record high is 94.1% [14]. Without using additional training
data and language models, the best model so far has been the one (based on the LRS2
dataset) proposed by Pingchuan Ma in 2022 [15] with a WER of only 32.9%. Some studies
have focused on bringing audio modal information into visual modality. They successfully
complemented the insufficient speech information of lip videos with rich audio information.
For example, the authors in [16] proposed a visual–audio memory algorithm, which could
recall audio features from the input video and achieve better performance on the LRW
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dataset, with an accuracy of 88.5%. The algorithm can help to solve the problem that lip
syntheses may contain multiple meanings.

2.2. Audiovisual Speech Recognition

In 2018, Afouras [6] developed a transformer-based sequence-to-sequence audiovisual
speech recognition model using precomputed visual features and audio Log-Mel filter
features as inputs, achieving a state-of-the-art performance at that time. The field of au-
diovisual speech recognition has been rapidly developing since then. In 2020, George
Sterpu et al. [17,18] proposed an AV-Align network with an attention mechanism to make
the network focus more on audio modality in audiovisual speech recognition, gaining
significant improvements. Later, further developments were made in application scenarios
to study audiovisual speech recognition for multiple and sometimes overlapping speeches.
For example, Otavio Braga et al. [19] considered the case of multi-speakers and used an
attention mechanism to calculate the similarity, find the speaker’s facial changes corre-
sponding to the audio and realize audiovisual speech recognition with multiple faces
appearing on the screen. Jianwei Yu et al. [20] also investigated the use of audiovisual
technologies for overlapped speech recognition. In 2021, Pingchuan Ma et al. [7] made end-
to-end learning on LRS2 a possibility by using a conformer acoustic model and a hybrid
CTC/attention decoder, achieving even better recognition results. Xichen Pan et al. [21]
used two single-modal self-supervised modules of wav2vec and MoCo for cross-modal
self-supervised audiovisual speech recognition, which achieved the best performance so
far on the LRS2 [11] dataset without using language models, with a WER of only 2.7% for
speech recognition and 2.6% for audiovisual speech recognition.

3. Architecture and Methods

The overall architecture of our audiovisual model, as shown in Figure 1, has the
following modules.

Figure 1. Overall architecture of our AVSR model. The orange lines in the figure all represent visual
input, the blue lines all represent audio input, and some of the blue dashed lines represent use
during training only. The circle boxed out represents the switch symbol, representing the addition of
lip-synthesis to a noisy speech recognition model to improve performance.

3.1. Automatic Speech Recognition

The model boxed with black dashed lines in Figure 1 is an automatic speech recog-
nition model, it used the transformer network with noisy speeches as inputs and the
corresponding texts as outputs.
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3.1.1. Audio Frontend

The wav2vec 2.0 [22], pre-trained on Libri-Light [23], was adopted to transfer both
the 1D convolutional layers and the stacked transformer encoder layers into our audio
frontend, following the usual ASR procedures. In this study, raw audio waves of 16 kHz
with multiple audio data frames (each containing 20 ms of audio data) were used as inputs
for the audio frontend. More details can be found in Table 1.

Table 1. This feature dimension of audio stream.

Stage Modules Audio Waveform (Ta × 1)

Audio Frontend wav2vec 2.0 Tv × 1024

Audio Backend
1D convolution Tv

2 × 512

Transformer Encoder Tv
2 ×512

3.1.2. Audio Backend

To unify the feature dimensions of the two modalities, we used 1D convolution
to transform the feature dimensions to 512, and the resulting feature is denoted as fa.
The transformer network was used as the main model for speech recognition to achieve
speech-to-text conversion.

3.2. Visual Speech Recognition

As one of the most important modules of audiovisual speech recognition, visual
speech recognition plays a key role in its performance. We have chosen to add clean audio
to help training lip reading to improve the accuracy of visual speech recognition. At the
inference stage, where only lip video input is available, we can extract the saved audio
features from the memory by examining the learned inter-relationships using the input
visual features.

3.2.1. Visual Frontend

Visual frontend serves as a component to capture the lip motion and reflect the lip posi-
tion differences in its output representations. Here, we have followed the same procedures
as Xichen Pan [21]. We have truncated the first convolutional layer in MoCo v2, which
was pre-trained on ImageNet, and replaced it with a 3D convolutional layer. Intentionally,
the output of the 3D convolutional layer is the same as the input of the first ResBlock
in MoCo v2, so that deeper features can be extracted. On the other hand, we have also
adopted the common practice of converting RGB input images to grayscale, as it prevents
the model from learning chromatic information. The visual feature dimensions are shown
in Table 2.

Table 2. This feature dimension of visual stream.

Stage Modules Image Sequence
(Tv × 1122 × 1)

Visual Frontend
3D convolution Tv × 282 × 64

MoCo v2 Tv×2048

Visual Backend
1D convolution Tv × 512

Multi-head K-V Memory Tv × 512

3.2.2. Visual Backend

Again, we have used 1D convolution to transform the feature dimensions to 512,
and the resulting feature is denoted as fv. Since one mouth shape may correspond to
multiple articulations, a one-to-many mapping relationship between lip movements and
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audio must be determined beforehand. In this study, we have adopted Kim’s [16] multi-
head K-V memory network model to describe the one-to-many mapping relationship.

The multi-head K-V memory network consists of two parts, which are multi-head
key memory K = Kv1, ..., Kvh, where K ∈ RN× D

h , and value memory, V ∈ RN×D, where
N is the number of memory slots and D is the model dimension. The obtained visual
features, fv, are fed into the key memory network which is used to store the visual features.
The obtained audio features, fa, are fed into the value memory network, which is used
to store the audio features. Similar to the multi-head attention [24], we have set the
Key Memory as the network of multiple heads to preserve multiple possible lip features.
Since the key memory and value memory are trained to save and to read the features of
paired audiovisual data, it is possible to obtain the saved audio features by using visual
inputs only. The corresponding addressing scores are then obtained by a similarity-based
addressing [25,26] calculation:

Ai,j
vh =

exp(α·d(Ki
vh, WT

qh f j
v))

∑N
n=1 exp(α·d(Kn

vh, WT
qh f j

v))
(1)

where d(·) is a cosine similarity metric, Wqh ∈ RN× D
h represents the projection weight for

h-th head, and α is a scaling factor. Extraction of h possible different audio features from
the value memory is executed by the obtained addressing score.

aj
h =

N

∑
i=1

Ai,j
vh·M

i
a

aj = Concat(aj
1, . . ., aj

h)

f j
a
′
= WT

o aj

f̃v = fv + fa
′

(2)

where aj
h represents extracted audio features from the value memory using the h-th head

key memory and Wo ∈ RDh×D is the embedding weight that aggregates the h different

extracted audio features. The obtained features, f j
a
′
, are then summed with the input visual

features, fv, and layer normalized to obtain the final visual features, f̃v.

3.3. Joint Cross-Modal Fusion Module

Visual modality and audio modality belong to two different types of modal features.
How to use visual modality to assist audio modality features to improve the accuracy of
speech recognition in noisy environments is a key issue. We need to learn information from
visual modality features related to audio modality features to build a fusion module to
achieve focus on inter- and intra-modal interactions between different modalities.

Let f̃v ∈ RB×D and f̃a ∈ RB×D represent two sets of deep feature vectors extracted
for visual and audio modalities, where B denotes the size of the batchsize. Here, both f̃v
and f̃a are one-dimensional. Since the length of each video sequence is inconsistent, we fix
the feature dimension to 512 and compute it l times, where l represents the feature length.
A joint representation of audiovisual features, ˜fav, is obtained by concatenating the visual
and audio feature vectors ˜fav ∈ RB×2D, as shown in Figure 1:

˜fav = [ f̃v; f̃a] (3)
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The joint correlation matrix across the visual features, f̃v, and the combined audiovi-
sual features, ˜fav is given by:

Hv = tanh(
f̃v

TWjv ˜fav√
D

) (4)

where Wjv ∈ RB×B represents the learnable weight matrix across visual and joint au-
diovisual features. Similarly, the joint correlation matrix for audio features is given by:

Ha = tanh(
f̃a

TWja ˜fav√
D

) (5)

where Wja ∈ RB×B represents the learnable weight matrix across visual and joint audiovi-
sual features.

The joint correlation matrix of the computational visual and audio modalities provides
semantic correlation within the same modality, and higher correlation coefficients indi-
cated that the corresponding data samples are strongly correlated with other modalities.
Therefore, the method can effectively exploit the inter-relationship between visual and
audio modalities, and thus improve the performance of the system. After computing the
joint correlation matrices, the attention weights of A and V modalities were estimated. We
rely on different learnable weight matrices corresponding to features of the individual
modalities to compute the attention weights of the modalities.

For the visual modality, we have used the obtained correlation weight matrix, Hv,
with the learnable weight matrix to calculate the corresponding attention weights Zv:

Zv = relu(Wv f̃v + Whv HT
v ) (6)

where Whv ∈ R2D×B, Wv ∈ RB×B, and Zv represent the attention weight of the visual
modality. Similarly, the attention maps of the audio modality are obtained as:

Za = relu(Wa f̃a + WhaHT
a ) (7)

where Wha ∈ R2D×B, Wa ∈ RB×B, and Za represent the attention maps of the audio modality.
Finally, the attention maps are used to compute the attended features of audio and

visual modalities. These features are obtained as:

f̄v = WzvZv + f̃v

f̄a = WzaZa + f̃a
(8)

where Wzv ∈ RB×B and Wza ∈ RB×B denote the learnable weight matrices, respectively.
The obtained f̄v and f̄a are concatenate together, which is given by:

¯fav = [ f̄v; f̄a] (9)

Finally, we have obtained the fused features through the designed cross-fusion module,
¯fav, and at this time, the feature dimensions were not consistent with the model dimensions

that are required to feed into the network. Therefore, we added a linear layer for converting
the dimensions, converting the 1024-dimensional feature dimensions to 512-dimensional,
and then performing encoding and decoding operations through the underlying trans-
former network to achieve speech recognition. The fusion feature dimensions are shown
in Table 3.
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Table 3. This feature dimension of fusion feature.

Stage Modules Fusion Features

Fusion Module

Joint Cross-Modal Fusion Tv
2 × 1024

Linear Tv
2 × 512

Transformer Encoder Tv
2 × 512

3.4. Decoders

Following the settings of Petridis et al. [27], there are two decoders trianed simultaneously.
The first was the transformer seq2seq decoder, which used a 6-layer transformer

decoder. We used ground-truth characters as inputs during training and performed teacher
forcing at the character level.

The second was arguably a decoder, because it produced a character probability for
each time step and was dependent on the CTC loss [28] in training. Four additional one-
dimensional convolutional layers with ReLU activation were used above the output of the
last transformer encoder layer. We also included layer specification between each layer.

3.5. Loss Function

In this work, we have used four loss functions for training. The first was used for the
training of the lip reading model. In order to preserve a representative audio representation
in the value memory network, reconstruction-based and contrast-based learning were used
to train the value memory. Reconstruction-based contrast loss was also used in order to
ensure that the correct form of audio information is preserved in the value memory. It is
defined as a reconstruction loss on the basis of the cosine similarity:

Lrec = ||1− d( f̂a, fa)||1

f̂a =
N

∑
i=1

Ai,j
a ·Vi (10)

where f̂a represents the reconstructed audio features from the value memory by using the
addressing score. Note that Ai,j

a is obtained similar to Equation (1) by substituting key
memory and visual features with value memory and audio features. Figure 2 shows the
training process of the value memory.

Figure 2. Learning to save audio representations into value memory with reconstruction and con-
trastive losses.
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The contrast loss, used to preserve different representative audio features, is defined
as follows:

Lcont = ∑
i 6=j
||1− d(Vi, V j)||1 (11)

Contrast loss leads to different memory slots that have less similar audio characteristics,
which leads the value memory possibly containing discriminative audio representations.

Then, for the training of the three models, we used a so-called hybrid CTC/attention
loss [29]. Let x = [x1, . . ., xT ] be the input frame sequence and y = [y1, . . ., yL] be the targets,
where T and L denote the input and target lengths, respectively.

Assuming that the outputs of each time series are independent of each other, the pos-
terior probability of the path is the accumulation of the probabilities of each time series.

PCTC(y|x)≈
T

∏
t=1

P(yt|x) (12)

On the other hand, an auto-regressive decoder removes this assumption by directly
estimating the posterior on the basis of the chain rule. It uses cross entropy loss.

PCE(y|x) =
T

∏
t=1

P(yl |y<l , x) (13)

The overall objective function is computed as follows:

L = Lrec + Lcont + λlogPCTC(y|x) + (1− λ)logPCE(y|x) (14)

where λ controls the relative weight between CTC loss and seq2seq loss in the hybrid
CTC/attention mechanisms.

3.6. Training Pipeline

Our overall training pipeline is shown in Figure 3.

Figure 3. Training pipeline of the model. Blue blocks represent new parameters that are randomly
initialized, while yellow blocks represent parameters that are inherited from last training stage.

The goal of this study is to improve the performance of speech recognition in noisy
environments, where the input is noisy speech and the output is a speech model of text,
as shown in the black dashed box in Figure 3. The frontend of the audio is trained using
the already trained wav2vec 2.0 model, and then the backend of the audio and the decoder
part is trained by the audio-only (AO) setup.

Next is the use of lips to help the audio for speech recognition, and then the lip reading
model needs to be trained. The frontend of visual needs to be pre-trained with the LRW
dataset and then the backend and decoder part of visual is trained by the video-only
(VO) setup.

The final AVSR model, the frontend and backend of both visual and audio are trained,
and the trained features are extracted from the AO and VO training models. Only the
parameters of the fusion module and decoder need to be learned in the final stage.
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3.7. Decoding

Decoding is performed using joint CTC/attention [24] one-pass decoding with beam search.

ŷ = arg max
y∈ŷ

αlogPCTC(y|x) + (1− α)logPCE(y|x) (15)

where ŷ denotes the predicted set of target symbols, while α is the relative weight that is
tuned on the validation set.

4. Experiments
4.1. Dataset and Evaluation Metric

We used a large-scale public AVSR dataset, namely Lip Reading Sentences (LRS2),
as our main training and testing dataset. During training, we also used Lip Reading in the
Wild (LRW) as a word-level video classification task to pre-train our visual frontend.

LRW [30] is a word-level dataset which includes up to 1000 discourses, each consisting
of 500 different words spoken by hundreds of different speakers. It contains 157 h of aligned
audio and video, for a total of 489K BBC video clips. All videos are 29 frames (1.16 s) in
length, with the words appearing in the middle of the video. Word durations are given in
the metadata, from which the start and end frames are determined. In our experiment, we
only used the visual modality from this dataset to train our visual frontend.

LRS2 [11] is a sentence-level dataset, it contains thousands of spoken sentences from
BBC television, including 224 h of aligned audio and video with a total of 144K BBC
video clips. The training set, validation set, and test set are divided according to the
broadcast date. The utterances in the pre-training set correspond to partial sentences
and multiple sentences, while the training set contains only single complete sentences or
phrases. There are some overlaps between the pre-training and training sets. The dataset
is very challenging due to the large variation in head poses, lighting conditions, genres,
and the number of speakers.

With the word error rate (WER), a common evaluation criteria for AVSR, we can evaluate
the effectiveness of our method. The WER can be expressed as WER = (S + D + I)/Num,
where Num is the number of words in the reference and S, D, and I are the numbers of
substitution, deletion, and insertion operations to re-edit the hypothesis sentence to be
exactly the same as the reference one.

4.2. Experimental Settings

We used character-level predictions with an output size of 40, including 26 characters,
10-digit numbers, apostrophes, and special tags for [spaces], [blanks], and [EOS/SOS] in
the alphabet. Since the transcription of the dataset did not contain other punctuation marks,
we did not include them in the vocabulary.

We implemented it on the basis of the pytorch framework [31]. The network is trained
using the Adam optimizer [32], with β1 = 0.9, β2 = 0.999, and ε = 10−7 and an initial
learning rate of 10−4. We used a threshold with weight set to 0.001, learning rate warm up,
and reduce on plateau scheduler. The relative weight in CTC loss and CE loss λ was set to
0.2. When decoding, we set α to 0.1.

During preprocessing of the data, we detected and tracked 68 facial landmarks for
each video using dlib [33]. To eliminate the differences associated with face rotation and
scale, we have used interpolation with a window width of 12 frames and frame smoothing
to handle frames that could not be detected by dlib. Then, a 120 × 120 bounding box was
used to crop the oral roi. The cropped frames were further converted to grayscale and
normalized on the basis of the overall mean and variance of the training set. The samples
of the pretraining set were clipped by randomly selecting 1/3 words of the entire discourse
in a continuous range to match the fragment length in the training set. Overly long samples
were further truncated at 160 frames to reduce the memory footprint. Each original audio
waveform was normalized to zero mean and unit variance [34].
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For the processing part of the data enhancement, a random crop size of 112 × 112 and
a horizontal flip of probability 0.5 were performed consistently across all frames of a given
image sequence [7]. For each audio waveform, additional noise was performed in the time
domain after Afouras et al. [6], by adding Babble noise to the audio stream with a 5 dB SNR
and a probability of pn = 0.25. The Babble noise was synthesized by mixing 20 different
audio samples from LRS2.

4.3. Experimental Results
4.3.1. Comparison Experiments

Our first experiment compared the respective WERs of the three models, VO, AO,
and AV, for a comparison of the different methods in the presence of clean speech, and all
the experimental results are shown in Table 4.

Table 4. Audio-only, visual-only and audio-visual results of word error rate (WER) tested on LRS2.
Models with an * denote that results are using an external language model, which indicates an
advantage over our model during evaluation. The arrow (↓) indicates that the lower the WER, the
better the model performance.

Methods WER (%)

Visual-only (VO) (↓)

LIBS [35] 65.3
TM-CTC * [6] 54.7

Conv-seq2seq [36] 51.7
TM-seq2seq * [6] 50.0

LF-MMI TDNN * [20] 48.9
MVM [16] 44.5

LU-SSL Transformer [21] 43.2
E2E Conformer * [7] 42.4

Ours 40.1

Audio-only (AO) (↓)

TM-CTC * [6] 10.1
TM-seq2seq * [6] 9.7

CTC/attention * [27] 8.2
LF-MMI TDNN * [20] 6.7
E2E Conformer * [7] 4.3

LU-SSL Transformer [21] 2.7

Ours 2.7

Audio-Visual(AV)(↓)

TM-seq2seq * [6] 8.5
TM-CTC * [6] 8.2

LF-MMI TDNN * [20] 5.9
E2E Conformer * [7] 4.2

LU-SSL Transformer [21] 2.8

Ours 2.8

For visual-only methods, we used the LRS2 dataset as our primary training and
testing dataset. First we compared models in the field of lip reading, such as LIRS [35]
and MVM [16], and we can see that the WER of our method is only 40.1%, which is a
4.4% improvement compared to our reference MVM, and a more than 25% improvement
compared to LIBS proposed in 2020. Second, we compared the lip reading models in the
field of audiovisual speech recognition in recent years, also exhibiting a 2.3% improvement
compared to the best E2E conformer [7] model.
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For audio-only methods, we used the same LU-SSL transformer method proposed by
Xichen Pan et al. [21] in 2022, so the WER is consistent with that method, with an error rate
of only 2.7%, which is currently the best achieved on the LRS2 dataset.

For audio-visual methods, we compared the four methods before 2021, and found that
all such results were improved by 1.4% with respect to the best E2E conformer [7] method.
Then, we can conclude that our method has the same performance as the baseline method.

4.3.2. Noise Environment Comparison Experiments

In the second experiment, we tested the WERs of the AV and AO models in different
SNR environments, as shown in Table 5.

Table 5. WER under different SNR levels. The noises are synthesized babble noises.

Modality Model 15 dB −10 dB −5 dB 0 dB 5 dB Clean

AO
Afouras
et al. [6] - - - 58.5% - 10.5%

Ours 97% 97.4% 91.4% 32.5% 7.2% 2.7%

AV

Afouras
et al. [6] - - - 33.5% - 9.4%

Xichen
Pan et al.

[21]
88.9% 88.2% 77.1% 24.5% 6.3% 2.8%

Ours 84.9% 84.4% 75.1% 22.4% 5.9% 2.8%

This experiment uses babble noises, which include not only noisy speech but also
background noises of multiple speakers, and are made available from our LRS2 dataset.

Firstly, we can see that for the speech recognition AO model, as the signal-to-noise
ratio decreases, the WER increasingly rises and reaches 32.5% when the SNR is 0 dB,
which also shows that in the face of a noisy environment, the performance of speech
recognition decreases substantially, and the word error rate rises by 29.8% compared
to a clean environment. Secondly, for the audiovisual speech recognition model, it can
be seen that there is a significant improvement, with an SNR of 0 dB, and the WER
is reduced to 22.4%. Furthermore, compared with the baseline model, our method has
different degrees of improvement in different signal-to-noise ratios, and the higher the noise,
the more obvious the improvement in speech recognition performance. The experiments
show that our method can effectively improve the performance of speech recognition in
noisy environments.

In addition to the improvement over the comparison method in babble noise envi-
ronments, we have further investigated the performance of the model in human noise
environments. Human noise is the sound made by multiple speakers speaking at the
same time, and the noise in which the meaning of the utterance can be clearly heard. We
synthesized human noise by randomly cropping many one-second signals from different
audio samples in the LRS2 dataset. Human noise is extremely challenging because the
noise itself contains a number of words, and the model can not easily distinguish which
audio signals are to be recognized, as shown in Table 6.

Table 6. WER under different SNR levels. The noises are synthesized human noises.

Modality Model −5 dB 0 dB 5 dB 10 dB 15 dB

AO Ours 95.4% 69.3% 26.2% 7.8% 3.9%

AV
Xichen

Pan et al. [21] 87.4% 58.9% 20.9% 6.6% 3.6%

Ours 85.1% 57.2% 20.7% 6.0% 3.5%
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Here, we have chosen five different human noise levels, with an SNR of −5 dB to
15 dB, and it can be seen that our models have all improved significantly compared to
speech recognition, and the WER has been reduced by more than 10% below the SNR
of 0 dB, indicating that our proposed method can effectively reduce the word error rate
of speech recognition in a strong noise environment. Furthermore, compared with the
baseline method, our methods are all improved, and it can be seen from the table that the
higher the noise, the more significant the improvement of our model.

In the third experiment, we aimed to test the extent to which speech recognition perfor-
mance is affected under different kinds of noise and to verify the auxiliary effect of visual
information on the performance. To standardize the same signal-to-noise ratio, we chose
babble noise, human noise, industrial noise, and white noise for the test, as shown in Figure 4.

(a)

(b)

(c)

Figure 4. Cont.
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(d)

(e)

(f)

Figure 4. WER comparison of speech recognition and audio-visual speech recognition models under
different signal-to-noise ratios and noise types.

Firstly, it can be seen from Figure 4 that the combined audiovisual model proposed
by us outperforms the speech recognition model in different kinds of noise environments
and different SNR environments, indicating that our method can effectively improve the
accuracy of speech recognition in noisy environments. Secondly, the WER of speech recog-
nition of human noise for our method is the highest for all four different SNR environments,
indicating that our method is the most suitable for the case of background noise containing
specific information. In addition, the WER increases significantly when the signal-to-noise
level drops below 0 dB, which is because the model may not be able to distinguish the
two overlapping spoken words at low signal-to-noise levels. Thirdly, we found that the
speech recognition error rate in industrial noise background is higher than that in babble
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noise background when the SNR level is above 5 dB, while the speech recognition error
rate with an industrial noise background is lower than that with a babble noise background
when the SNR level is below 0 dB. This indicates that the disordered nagging human voice
affects the speaker’s speech recognition more in the environment with strong noises. If the
babble noise volume is not high, industrial noise affects speech recognition more. Fourth,
when the SNR is below −10 dB or less, the performance of our proposed model shows
little improvement in the environment of human noise, indicating that human noise has the
greatest effect on speech. Finally, when the noise is very large or small, the improvement is
not significant compared to the speech recognition model in the context of industrial noise.

In general, our experiments were tested, giving the following results: (1) the effec-
tiveness of the proposed lip reading recognition model has been verified, and the WER
is reduced by 2.3% compared with the latest model; (2) the performance of audiovisual
speech recognition in a clean environment has been verified, and the performance is on par
with the baseline model; (3) we have tested the WER in a babble noise environment and
a human noise environment with an SNR of 0 dB, and found that the proposed model’s
WER is 2.1% and 1.7% lower than that of the baseline model, respectively; and (4) we have
compared our model and speech recognition model under four different environmental
noise types (babble noise, human noise, industrial noise, and white noise), showing that
the method proposed in this paper could achieve a significant improvement in different
noise scenarios, and this performance improvement is significant in the environments of
babble noise and white noise.

5. Conclusions

In this paper, we have proposed the multi-head K-V memory model for lip reading and
the joint cross-modal fusion model for fusion. The multi-head K-V memory model includes
a one-to-many mapping relationship from lips to audio, and can extract well-preserved
audio representations from memory through mutual relationships with visual-only input,
compensate for the lack of visual features with audio information, and validate the ef-
fectiveness of the model experimentally on large-scale sentence-level datasets. The joint
cross-modal fusion model can learn the inter- and intra-modal inter-relationships, which
effectively improves the cross-modal fusion effect and improves the performance of au-
diovisual combinations in the final experimental results by decreasing the WER in noisy
environments. Moreover, it is found that the speech recognition performance of our meth-
ods is least affected by babble noise.
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