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Abstract: Environmental factors such as drought significantly influence vegetation growth, coverage,
and ecosystem functions. Hence, monitoring the spatiotemporal vegetation responses to drought
in a high temporal and adequate spatial resolution is essential, mainly at the local scale. This study
was conducted to investigate the aspatial and spatial relationships between vegetation growth status
and drought in the southeastern South Dakota, USA. For this purpose, Landsat 8 OLI images from
the months of April through September for the years 2016–2021, with cloud cover of less than 10%,
were acquired. After that, radiometric calibration and atmospheric correction were performed on
all of the images. Some spectral indices were calculated using the Band Math toolbox in ENVI 5.3
(Environment for Visualizing Images v. 5.3). In the present study, the extracted spectral indices from
Landsat 8 OLI images were the Normalized Difference Vegetation Index (NDVI) and the Normalized
Multiband Drought Index (NMDI). The results showed that the NDVI values for the month of July
in different years were at maximum value at mostly pixels. Based on the statistical criteria, the best
regression models for explaining the relationship between NDVI and NMDISoil were polynomial
order 2 for 2016 to 2019 and linear for 2021. The developed regression models accounted for 96.7,
95.7, 96.2, 88.4, and 32.2% of vegetation changes for 2016, 2017, 2018, 2019, and 2021, respectively.
However, there was no defined trend between NDVI and NMDISoil observed in 2020. In addition,
pixel-by-pixel analyses showed that drought significantly impacted vegetation coverage, and 69.6%
of the pixels were negatively correlated with the NDVI. It was concluded that the Landsat satellite
images have potential information for studying the relationships between vegetation growth status
and drought, which is the primary step in site-specific management.

Keywords: precision agriculture; aspatial; spatial; Normalized Difference Vegetation Index; Normalized
Multiband Drought Index; spectral indices

1. Introduction

The limitations of land resources for agricultural production in the world have created
a deep concern for decision-makers. Environmental challenges, especially land-cover and
climate changes, are the main resource limitations caused by the gradual degradation
via human activity [1–3]. For the best management of agricultural land resources, it is
important to consider the environmental factors and understand some limitations of the
productivity of agricultural lands.

Vegetation coverage and drought play important roles in making conditions favorable
or unfavorable for agriculture production. Remote sensing is a widely applied information-
gathering tool with a minimal cost for studying scientific evidence of changes in environ-
mental factors, especially in agriculture [4,5]. Different extracted spectral indices from
satellite images have been employed to monitor and detect the effect of environmental chal-
lenges, including climate change effects [6,7], land degradation [2], forest fire detection [8],
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and so on. The Normalized Difference Vegetation Index (NDVI) [9] is by far the most
commonly used type of spectral index for remote sensing, which applies the information
of NIR and Red bands from a satellite image to detect vegetation coverage in the field.
This could be related to the close relationship between the physiological characteristics of
plants and NDVI [10]. NDVI not only shows the changing characteristics and distribution
of vegetation coverage, but it also can provide valuable environmental information, such
as that regarding the effects of climate change [11]. In this way, in several studies, NDVI
was applied to explain moisture, nitrogen, growth stage [10], soil properties [12–14], and
climate change [7,15–17].

Drought is a serious environmental problem with the greatest economic and social
impact in the world [18]. The Normalized Multiband Drought Index (NMDI) is applied
to detect vegetation and soil-water content using satellite images [8,19,20]. Wang and Qu
reported that using the combination of reflectance in the 0.86, 1.64, and 2.13 µm bands
could estimate soil moisture and offer more accurate assessments of drought severity [19].
Most studies have focused on employing NMDI to predict and evaluate water status in
forest conditions [8,20].

Understanding the spatiotemporal vegetation response to drought at a high temporal
and adequate spatial resolution is necessary to ensure the safety of lives and property [21,22].
However, only a few similar studies have focused on studying distribution patterns be-
tween spectral vegetation and drought indices on a local spatial scale using remote sensing
data. Studying a local spatial scale is important to reduce the impact of geomorphology
and topography. The main objectives of the present study were to: (i) monitor and detect
vegetation coverage and drought by using spectral indices extracted from remote sensing
data (i.e., Landsat 8 OLI images), (ii) model the vegetation response to drought by using
spectral indices, and (iii) investigate the spatial variability of vegetation in conjunction
with drought.

2. Material and Methods
2.1. Study Area

The general landscape of the study area (43◦18′20′′ to 43◦18′46′′ N and 96◦54′56′′ to
96◦54′20′′ E) is located in the southeastern part of the State of South Dakota, USA (Figure 1).
The studied region covers a 56.4 ha area of Lincoln County. According to Figure 1, the
elevation from sea level at Lincoln County varies from 357 and 478 m. This area is plowed
by a moldboard at a depth of 20–30 cm for the rain-fed agriculture production of such
crops as soybeans, corn, and wheat in rotation. Generally, drought is the main challenge in
this region.
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Figure 1. Location of study area in the United States.

2.2. Climate Factors

The precipitation and temperature data from 2016 to 2021 for the studied region were
obtained from the Meteorological Data Service Center (https://prism.oregonstate.edu/
explorer/ (accessed on 9 November 2022)). The monthly temperature and precipitation are
presented for the studied area for the period from 2016 to 2021 in Figure 2. More than 80%
of precipitation occurs in the period from March to October (Figure 2a). The cumulative
precipitation varied from 455.2 to 1104.9 mm during the period of 2016–2021 (Figure 2a).
The distribution of precipitation in this area is uneven. In addition, based on Figure 2b, the
annual mean temperature ranged from 7.05 to 9.58 ◦C during the period of 2016–2021 for
the studied region. This area is classified as having a very humid climate.

https://prism.oregonstate.edu/explorer/
https://prism.oregonstate.edu/explorer/
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2.3. Satellite Image Processing

The Landsat 8 Level-1 images for the months of April–September were acquired for
the years 2016–2021 from the National Aeronautics and Space Administration Agency
(NASA) server. The path/row was 29/30. The cloud cover in the applied images was less
than 10%. The OLI sensor onboard Landsat 8 captures data in several spectral bands, with
a resolution of 30 m, as presented in Table 1.

Table 1. Wavelengths and spatial resolutions for Landsat 8 OLI data.

Band Abbreviation Spectral Range (µm) Spatial Resolution (m)

Coastal/Aerosol B1 0.43–0.45 30
Blue B2 0.45–0.51 30

Green B3 0.53–0.59 30
Red B4 0.64–0.67 30
NIR B5 0.85–0.88 30

SWIR1 B6 1.57–1.65 30
SWIR2 B7 2.11–2.29 30

Abbreviations: NIR: near-infrared reflectance, SWIR: short-wave infrared reflectance.



Sensors 2023, 23, 2134 5 of 15

2.3.1. Image Preprocessing

First, radiometric calibration was performed by using the radiance calibrating method
in the Radiometric Calibration toolbox, and the atmospheric correction was achieved
by using a quick method in the QUAC toolbox in ENVI 5.3 (Environment for Visual-
izing Images 5.3). Then, the reflectance was calculated by the digital numbers of the
bands ×0.0001 in the Band Math toolbox in ENVI 5.3. The spectral indices, such as the
Normalized Difference Vegetation Index (NDVI) and the Normalized Multiband Drought
Index (NMDI) were calculated using the Band Math toolbox in ENVI 5.3.

2.3.2. Vegetation Coverage Index

NDVI, an important spectral vegetation index, was employed to remote-sense vegeta-
tion coverage based on Equation (1) [9,23]:

NDVI =
B5− B4
B5 + B4

(1)

For calculating this spectral index, B4 and B5, i.e., red and near-infrared reflectance
(defined in Table 1), respectively, were used. The negative values of this spectral index
(from −1 to zero) indicate water resources; a zero-value represents no green leaves, 0.2 to
0.3 values show the bare soil, and higher values (close to +1) represent the highest possible
density of vegetation coverage.

2.3.3. Drought Index

NMDI (Normalized Multiband Drought Index), introduced by Wang and Qu [19], uses
the reflectance information of the near-infrared and short-wave infrared bands to monitor
vegetation water contents. Wang et al. [8] modified the NMDI to monitor soil moisture
conditions with Equation (2):

NMDISoil = 0.9−
R0.86 µm −

(
R1.64 µm − R2.13 µm

)
R0.86 µm +

(
R1.64 µm − R2.13 µm

) (2)

Landsat OLI reflectance bands 5, 6, and 7 (i.e., Near-infrared, Short-wave infrared
reflectance 1 and Short-wave infrared reflectance 1, defined in Table 1, respectively) were
employed for R0.86 µm, R1.64 µm, and R2.13 µm to calculate NMDISoil (Equation (2)). The
NMDISoil values range from 0 to 0.9, with the higher values representing increasing soil
drought. Values less than 0.3 show extremely wet soil, 0.3–0.5 indicate intermediate soil
moisture contents, 0.5–0.7 show dry soil, and 0.7–0.9 show very dry, bare soil [8]. ArcGIS
10.3 was applied to create the thematic maps.

2.4. Statistical Analysis

Regression models, such as simple linear and polynomial, were used to link the
vegetation and drought data. The regression models are described as:

(1) Simple linear regression:

yi = β0 + β1xi + εi (3)

(2) Polynomial regression:

yi = β0 + β1xi + β2xi
2 + · · ·+ βpxi

p + εi (4)

where yi is a dependent variable; xi is an independent variable; εi is the error; and β0,
β1, . . . , βp are regression coefficients. In the present research, the cross-validation approach
was applied to compare the accuracy of different, developed regression models by using
ME (mean error, Equation (5)), RMSE (root-mean-square error, Equation (6)), R2 (coefficient
of determination, Equation (7)) and r (Pearson correlation, Equation (8)):
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ME =
1
N

N

∑
i=1

(Pi −Mi) (5)

RMSE =

[
∑N

i=1(Pi −Mi)
2

N

]0.5

(6)

R2 = 1− ∑N
i=1(Mi − Pi)

2

∑N
i=1
(
Mi −M1

)2 (7)

r =
∑N

i=1(Pi − P̂)
(
Mi −M

)√
∑N

i=1
(
Pi − P1

)2
∑N

i=1
(
Mi −M1

)2
(8)

where N is the number of data, Pi shows the estimated data, P1 is the mean of the predicted
data, Mi represents the measured data, and M1 indicates the mean of the measured data.
The F-test was applied to check the significance of the correlation coefficient between
different environmental factors. Nonsignificant was applied to values where p > 0.1, weakly
significant was applied to values where p < 0.1, moderately significant was applied to
values where p < 0.05, and highly significant was applied to values where p < 0.01.

3. Results and Discussion
3.1. Spectral Characteristics

Some spectral curves for randomly selected pixels from the month of July, from 2016
to 2021, are presented in Figure 3. Overall, the reflectance values varied a lot for each year
(Figure 3). According to the reflectance values in Figure 3, the higher reflectance variation
was for the B5 (NIR band) wavelength range (Figure 3).
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different years (* the selected pixels).

3.2. Results of Vegetation Monitoring by Using NDVI

In the present study, vegetation coverage variations were detected using NDVI calcu-
lated from Landsat 8 OLI from 2016 to 2021. The NDVI values from April to August in the
study period against time and cumulative precipitation are presented in Figure 4. As can
be seen from Figure 4a, NDVI values for all pixels increased with increasing cumulative
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precipitation. Precipitation, as the main climate factor, and NDVI were applied to investi-
gate the effect of climate change on the vegetation coverage [1,7]. Our results (Figure 4a)
showed a general trend in increasing NDVI with increasing precipitation. However, our
results differed widely for some years (Figure 4a). This could be related to the complex
relationships between precipitation and vegetation characteristics [17], human activity [24],
and the research scale [25].
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Figure 4. NDVI data (from soybean, corn, and wheat in rotation) vs. time (a) and precipitation (b)
from April to August in different years at all pixels.

The analysis of NDVI distributions over time is presented in Figure 4b. As can be
seen from Figure 4b, the NDVI values for the month of July for different years, by soybean,
corn, and wheat in rotation, at most pixels were at the maximum. For this reason, the
NDVI values for the month of July were analyzed in the present study. The descriptive
statistics for NDVI values for the month of July in different years are presented in Table 2
and Figure 5 for all pixels. The lowest and highest mean NDVI values were 0.757 and 0.862
for the month of July in 2017 and 2018, respectively (Table 2). The minimum and maximum
NDVI values ranged from 0.276 to 0.531, and from 0.887 to 0.956, respectively (Table 2,
Figure 5). The minimum (7.20%) and maximum (18.73%) CV values were found for 2021
and 2020, respectively (Table 2, Figure 5).

Table 2. Descriptive statistics of NDVI data for the month of July (2016–2021).

Year Min. Max. Mean Median Std. Dev CV

2016 0.448 0.900 0.804 0.831 0.079 9.87
2017 0.382 0.896 0.757 0.793 0.112 14.82
2018 0.492 0.956 0.862 0.902 0.093 10.80
2019 0.488 0.922 0.843 0.885 0.088 10.45
2020 0.276 0.937 0.791 0.840 0.148 18.73
2021 0.531 0.887 0.817 0.839 0.059 7.20
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The spatial pattern of NDVI values for the month of July from 2016 to 2021, by soybean,
corn, and wheat in rotation, is presented in Figure 6. As seen from Figure 6a,f, the NDVI
values were almost constant for many pixels in 2016 and 2021. By contrast, the NDVI
values were nonuniform for 2017 and 2020. The lowest NDVI values in 2017 and 2020 were
observed in the southwest and the northwest of the studied area, respectively, for many
pixels (Figure 6b,e).
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In the present study, the spatial patterns of NDVI changes in the months of July for
2016–2017, 2017–2018, 2018–2019, 2019–2020, and 2020–2021 are shown in Figure 7. The
area percentages of each class of NDVI changes are presented in Table 3. From 2016 to 2017,
the NDVI values decreased and increased to 73.86 and 26.14% of the total area, respectively
(Table 3). As can be seen from Figure 7a, the biggest reduction in NDVI values occurred
in the southern part in comparison with the eastern part of the studied area. By contrast,
from 2017 to 2018, the NDVI values decreased and increased in 1.89 and 98.1% of the
studied area, respectively (Table 3). Figure 7b shows that the NDVI values from 2017 to
2018 mostly increased in all parts of the studied area, especially in the southern part. The
NDVI values from 2018 to 2019 decreased and increased by 78.11 and 21.89% of the total
area, respectively (Table 3). The NDVI values mostly changed in the southern part of the
studied area (Figure 7c). Figure 7d,e shows that the biggest changes from 2019 to 2020 and
from 2020 to 2021 mostly occurred in the northwestern part of the studied area. In addition,
small changes can be observed in other parts of the studied area from 2019 to 2020 and
from 2020 to 2021 (Figure 7d,e).

Sensors 2023, 23, x FOR PEER REVIEW 11 of 17 
 

 

   

  

 

Figure 7. Change detection of NDVI maps for the months of July for 2016–2017 (a), 2017–2018 (b), 
2018–2019 (c), 2019–2020 (d), and 2020–2021 (e). 

Table 3. The results of change detection NDVI for the month of July, 2016–2021. 

Change Type of 
NDVI 

Amount of 
NDVI Change 

2016–2017 2017–2018 2018–2019 2019–2020 2020–2021 
Pixel 
No. 

Area 
(%) 

Pixel 
No. Area (%) Pixel 

No. 
Area 
(%) 

Pixel 
No. Area (%) Pixel 

No. Area (%) 

Increasing 

0.9–1.0 - - - - - - - - - - 
0.8–0.9 - - - - - - - - - - 
0.7–0.8 - - - - - - - - - - 
0.6–0.7 - - - - - - - - - - 
0.5–0.6 - - - - - - - - 5 0.79 
0.4–0.5 - - - - - - - - 9 1.42 
0.3–0.4 - - 4 0.63 - - 2 0.31 18 2.83 
0.2–0.3 - - 41 6.46 - - 4 0.63 34 5.35 
0.1–0.2 1 0.16 244 38.43 19 2.99 16 2.52 73 11.50 
0.0–0.1 165 25.98 334 52.60 120 18.90 259 40.79 141 22.20 

Change of NDVI

0.9
 - 1

.0

0.8
 - 0

.9

0.7
 - 0

.8

0.6
 - 0

.7

0.5
 - 0

.6

0.4
 - 0

.5

0.3
 - 0

.4

0.2
 - 0

.3

0.1
 - 0

.2

0 -
 0.

1

No c
ha

ng
e

0 -
 -0

.1

-0.
1 -

 -0
.2

-0.
2 -

 -0
.3

-0.
3 -

 -0
.4

-0.
4 -

 -0
.5

-0.
5 -

 -0
.6

-0.
6 -

 -0
.7

-0.
7 -

 -0
.8

-0.
8 -

 -0
.9

-0.
9 -

 -1
.0
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Table 3. The results of change detection NDVI for the month of July, 2016–2021.

Change
Type of
NDVI

Amount of
NDVI

Change

2016–2017 2017–2018 2018–2019 2019–2020 2020–2021

Pixel
No.

Area
(%)

Pixel
No.

Area
(%)

Pixel
No. Area (%) Pixel

No.
Area
(%)

Pixel
No.

Area
(%)

Increasing

0.9–1.0 - - - - - - - - - -
0.8–0.9 - - - - - - - - - -
0.7–0.8 - - - - - - - - - -
0.6–0.7 - - - - - - - - - -
0.5–0.6 - - - - - - - - 5 0.79
0.4–0.5 - - - - - - - - 9 1.42
0.3–0.4 - - 4 0.63 - - 2 0.31 18 2.83
0.2–0.3 - - 41 6.46 - - 4 0.63 34 5.35
0.1–0.2 1 0.16 244 38.43 19 2.99 16 2.52 73 11.50
0.0–0.1 165 25.98 334 52.60 120 18.90 259 40.79 141 22.20

No change 0.0 - - - - - - - - - -

Decreasing

0.0–−0.1 271 42.68 12 1.89 293 46.14 211 33.23 334 52.60
−0.1–−0.2 80 12.6 - - 43 6.77 73 11.50 21 3.31
−0.2–−0.3 33 5.20 - - 33 5.20 31 4.88 - -
−0.3–−0.4 13 2.05 - - 33 5.20 19 2.99 - -
−0.4–−0.5 60 9.45 - - 47 7.40 12 1.89 - -
−0.5–−0.6 12 1.89 - - 41 6.46 8 1.26 - -
−0.6–−0.7 - - - - 6 0.94 - - - -
−0.7–−0.8 - - - - - - - - - -
−0.8–−0.9 - - - - - - - - - -

Total
increasing - 166 26.14 623 98.11 139 21.89 281 44.25 280 44.09

Total
decreasing - 469 73.86 12 1.89 496 78.11 354 55.75 355 55.91

3.3. Results of Drought Monitoring by Using NMDISoil

Figure 8 presents the NMDISoil values against the times for the months of April through
August for the years 2016–2021 for all pixels in the studied area. Based on Figure 8a, the
values of NMDISoil at the beginning of the growing season were higher (>0.5) for 2016,
2017, and 2018, and then they decreased with time (i.e., increasing soil moisture content).
By contrast, this pattern was the opposite for 2020 and 2021 (i.e., decreasing soil moisture
with time) (Figure 8a). The soil moisture content decreases with the increasing NMDISoil
value [19]. On the basis of the results in Table 4, the CV values for the month of July ranged
from 8.11% (2021) to 19.38% (2019) (Table 4).
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Table 4. Descriptive statistics for NMDISoil data for the month of July (2016–2021).

Year Min. Max. Mean Median Std. Dev CV

2016 0.436 0.689 0.513 0.502 0.054 10.55
2017 0.356 0.710 0.497 0.490 0.081 16.34
2018 0.384 0.685 0.474 0.454 0.071 14.95
2019 0.318 0.706 0.429 0.411 0.083 19.38
2020 0.087 0.424 0.289 0.291 0.043 14.82
2021 0.252 0.477 0.299 0.295 0.024 8.11
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Figure 9 shows the spatial pattern of drought trends for the month of July, from 2016 to
2021. In general, the NDMISoil values increased by many pixels from 2016 to 2021 (Figure 9).
Increasing NMDISoil values show the soil moisture content decreased from 2016 to 2021 in
many pixels (Figure 9).
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Figure 9. NMDISoil maps for the month of July for 2016 (a), 2017 (b), 2018 (c), 2019 (d), 2020 (e), and
2021 (f).

3.4. Monitoring Spatiotemporal Vegetation Response to Drought
3.4.1. The Aspatial Relationships

For the present study, Figure 10 gives the scatter plot of NDVI and NMDISoil in the
study period for the month of July in each year. The Pearson correlation coefficient between
NDVI and NMDISoil varied from 0.174 to 0.977 in the studied period (Figure 10). The
results show that the best regression model for explaining the relationship between NDVI
and NMDISoil is polynomial order 2, based on the ME, R2, and RMSE criteria from 2016
to 2019 (Table 5). In addition, the results in Table 5 indicate that the R2 value ranged from
0.322 (2021) to 0.967 (2016). The analysis of the ME criterion showed that the developed
regression models underestimated the NDVI values (−0.0001 to −0.0004), except in 2021
(Table 5). According to the presented results in Table 5, the RMSE values varied from
0.014 to 0.048. The smallest RMSE was achieved in 2016 (Table 5). However, there was no
defined trend between NDVI and NMDISoil in 2020 (Figure 10). This could be an effect
of the amount of cumulative precipitation (455.2 mm) in 2020 in comparison with 2016
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(849.2 mm), 2017 (809.2 mm), 2018 (1015.6 mm), 2019 (1104.9 mm), and 2021 (823.6 mm)
(Figure 2a).
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Table 5. Regression model between NDVI and NMDISoil for the month of July (2016–2021).

Year Regression Models ME RMSE R2

2016 NDVI = −2.643(NMDISoil)
2 + 1.377(NMDISoil) + 0.801 −0.0004 0.014 0.967

2017 NDVI = −3.564(NMDISoil)
2 + 2.327(NMDISoil) + 0.504 −0.0002 0.023 0.957

2018 NDVI = −2.185(NMDISoil)
2 + 0.916(NMDISoil) + 0.930 −0.0001 0.018 0.962

2019 NDVI = −1.713(NMDISoil)
2 + 0.595(NMDISoil) + 0.915 −0.0004 0.029 0.884

2020 NDVI = 0.603(NMDISoil) + 0.616 −0.0004 0.145 0.031
2021 NDVI = −1.379(NMDISoil) + 1.229 0.0002 0.048 0.322

3.4.2. The Spatiotemporal Analysis

The vegetation response to drought could be illustrated quantitatively through an
analysis of the correlation between spectral vegetation and drought indices. Figure 11a
shows the results of pixel-by-pixel correlation analysis between NMDISoil and NDVI from
2016 to 2021. The results indicated that the pixel-by-pixel correlation ranged from −0.91 to
0.89 in the studied region (Figure 11a). There was either a negative or a positive correlation
between NDVI and NMDISoil, which indicated an increasing or decreasing trend of vegeta-
tion response to drought. From the correlation values, the percentage of pixels negatively
correlated between NMDISoil and NDVI was 69.4% of the total pixels for all of the studied
years (Figure 11b), of which 0.22, 2.94, and 7.21% correlated as extremely (p < 0.01), moder-
ately (p < 0.05), or weakly (p < 0.1) significant, respectively. According to Figure 11a, the
high vegetation response to drought occurred in the southern and northern parts of the
studied area. The low correlation of vegetation coverage to drought was mainly distributed
in the eastern parts of the studied area (Figure 11a). However, in the northwestern parts
of the studied area, vegetation increased with increasing drought (Figure 11a). This could
be due to the complicated nature of the field, for instance, the effects of soil texture and
organic matter.

Further analyses were performed on the spatial variation between NMDISoil and
NDVI for the highly correlated years (i.e., 2016, 2017, 2018, and 2019), as presented in
Figure 10. As can be seen from Figure 11c, NDVI was affected by drought, which indicated
that the lower the vegetation coverage, the higher the drought. According to the results in
Figure 11d, the response of the vegetation to drought was negatively correlated (about 97.0%
of total pixels), of which negative correlation, about 3.25, 6.17, and 16.56% correlated as
extremely (p < 0.01), moderately (p < 0.05), or weakly (p < 0.1) significant, respectively. Some
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studies have demonstrated the performance of NMDISoil for monitoring and predicting
environmental risk conditions. The studies of Wang and Qu [19] indicated that integrating
reflectance information from the near-infrared and short-wave infrared explained the
drought severity. In addition, Wang et al. [8] reported that NMDI has a strong capability
for detecting fires, and it pinpoints the active hotspots, as compared to other indices.
Santos et al. [20] suggested the use of NMDI as the main drought index in future modeling.
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4. Conclusions

The main goal of this study was to detect and monitor the spatiotemporal vegetation
response to drought using Landsat 8 OLI images in the southeastern part of South Dakota,
USA. The mean values of NDVI (from soybean, corn, and wheat in rotation) for 2016, 2017,
2018, 2019, 2020, and 2021 are 0.804, 0.757, 0.862, 0.843, 0.791, and 0.817, respectively, with a
range of 0.276 to 0.956. However, in addition to environmental conditions, NDVI values
also depend on the type of crop (in this study, soybean, corn, and wheat in rotation). The
mean values of NMDISoil for the month of July in 2016, 2017, 2018, 2019, 2020, and 2021
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are 0.513, 0.497, 0.474, 0.429, 0.289, and 0.299, with a range of 0.087 to 0.710. The results
indicated that the relationships between vegetation and drought differed during the studied
period (i.e., from 2016 to 2021). Based on the statistical criteria, vegetation coverage was
negatively correlated to the drought in 69.4% of the total area for all of the studied years.
It was about 97.0% of the total pixels when the highly correlated years (i.e., 2016, 2017,
2018, and 2019) were considered in this region. These results show that remote sensing
data could be a powerful tool to monitor and detect vegetation coverage and response to
drought, which could be helpful for regional vegetation protection.
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