

  sensors-23-02152




sensors-23-02152







Sensors 2023, 23(4), 2152; doi:10.3390/s23042152




Article



Heart Rate Variability Analysis on Electrocardiograms, Seismocardiograms and Gyrocardiograms of Healthy Volunteers and Patients with Valvular Heart Diseases



Szymon Sieciński *[image: Orcid], Ewaryst Janusz Tkacz[image: Orcid] and Paweł Stanisław Kostka[image: Orcid]





Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, F. D. Roosevelta 40, 41-800 Zabrze, Poland









*



Correspondence: szymon.siecinski@polsl.pl; Tel.: +48-32-277-74-63







Academic Editor: Jinseok Lee



Received: 26 December 2022 / Revised: 3 February 2023 / Accepted: 13 February 2023 / Published: 14 February 2023



Abstract

:

Heart rate variability (HRV) is the physiological variation in the intervals between consecutive heartbeats that reflects the activity of the autonomic nervous system. This parameter is traditionally evaluated based on electrocardiograms (ECG signals). Seismocardiography (SCG) and/or gyrocardiography (GCG) are used to monitor cardiac mechanical activity; therefore, they may be used in HRV analysis and the evaluation of valvular heart diseases (VHDs) simultaneously. The purpose of this study was to compare the time domain, frequency domain and nonlinear HRV indices obtained from electrocardiograms, seismocardiograms (SCG signals) and gyrocardiograms (GCG signals) in healthy volunteers and patients with valvular heart diseases. An analysis of the time domain, frequency domain and nonlinear heart rate variability was conducted on electrocardiograms and gyrocardiograms registered from 29 healthy male volunteers and 30 patients with valvular heart diseases admitted to the Columbia University Medical Center (New York City, NY, USA). The results of the HRV analysis show a strong linear correlation with the HRV indices calculated from the ECG, SCG and GCG signals and prove the feasibility and reliability of HRV analysis despite the influence of VHDs on the SCG and GCG waveforms.
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1. Introduction


Cardiovascular diseases remain the most common cause of death in the world and constitute a significant concern for public health due to the economic burden (expected to reach 47 trillion USD by 2030) and the overload on medical personnel (17.9 million deaths worldwide in 2016) despite progress in prevention, diagnosis and therapy [1,2,3,4,5]. Due to its growing prevalence and significant impact on quality of life [6], we consider valvular heart disease (VHD) in this study.



Valvular heart disease is any cardiovascular disease that affects any heart valve (the aortic valve, mitral valve, pulmonic valve and tricupsid valve) [7,8]. The main causes of VHDs are rheumatic heart disease and ageing [6,8,9,10]. The most prevalent VHD is aortic stenosis (AS), which is the third most common cardiovascular disease after hypertension and coronary artery disease, and is usually caused either by degenerative calcification of the aortic valve or progressive stenosis of a congenital bicuspid valve [8].



VHDs are usually diagnosed by echocardiography, computed tomography or magnetic resonance imaging [9], which are not feasible in outpatient monitoring [11]. This problem has been addressed by applying various methods [12,13], including exercise electrocardiography (ECG) [14], seismocardiography (SCG) or gyrocardiography (GCG), which register the current mechanical function of the heart with an inertial measurement unit (IMU) placed on the chest wall [11,15,16].



Seismocardiography (SCG) and gyrocardiography (GCG) are two complementary techniques [15,17,18]; seismocardiography is a technique for registering low-frequency precordial acceleration, invented by Bozhenko in 1961 [19,20], whereas gyrocardiography registers the rotational component of cardiac vibrations and was invented by Meriheinä et al. in 2015 [15,16,18,21,22].



Seismocardiographic (SCG) and gyrocardiographic (GCG) signals are non-stationary signals with distinct quasiperiodic features known as waves, e.g., the mitral valve opening wave (MO), the mitral valve closure wave (MC), the isovolumetric contraction wave, the rapid ejection wave, the aortic valve opening wave (AO), the aortic valve closure (AC) wave and the cardiac filling wave [18,22,23,24,25,26,27,28]. Figure 1 presents an annotation of concurrent ECG, SCG and GCG signals in a healthy subject.



SCG and GCG have found applications in the diagnosis of several cardiovascular diseases, such as aortic stenosis [30,31,32], aortic valve disease (AVD) [33], coronary artery disease [34], myocardial infarction [35,36], atrial fibrillation [37,38,39,40], the effects of cardiac resynchronization therapy [41] and heart failure [35,42]. This has usually involved the use of computational intelligence techniques, such as artificial neural networks (including deep and convolutional neural networks), random forests, extreme gradient boosting and support vector machines [28,30,32,35,36,37,38,39,40].



One of the most prominent applications of seismocardiography and gyrocardiography is heart rate variability (HRV) analysis [16,18,22,31,43,44,45,46,47,48,49,50,51,52,53,54,55]. Heart rate variability is defined as the physiological variation in the intervals between consecutive heartbeats (inter-beat interval) and reflects the activity of the autonomic nervous system [56,57,58].



HRV analysis has traditionally been performed on interbeat intervals obtained from electrocardiograms (ECG signals) [22,43,45,50,51,55,56,59]. The first attempt of HRV analysis based on cardiac mechanical signals (mechanocardiograms) was performed by Friedrich et al. in 2010 [60] on ballistocardiograms. In 2012, Ramos-Castro et al. performed the first HRV analysis on seismocardiograms [43], and the first HRV analysis on gyrocardiograms was performed by Lahdenoja et al. [61] in 2016. The validity of HRV indices obtained from the SCG signal was first demonstrated by Laurin et al. [62] in 2013 and then in later studies [22,45,46,51,52,53,54,55].



The advantages of using seismocardiography and/or gyrocardiography over electrocardiography for cardiac diagnosis are the simpler measurement setup (using only one sensor) and the availability of information on cardiac intervals, contractility and the state of heart valves at the same time [11,16,22,27,43,44,45,51,53,56,59,63]. However, the limitations of SCG and GCG include the inter-subject variability of signal morphology that can be significantly affected by cardiac diseases or sensor placement and susceptibility to motion artifacts [11,16,23,27,55,64].



The purpose of this study is to evaluate the differences between the time domain, frequency domain and nonlinear HRV indices derived from electrocardiograms, seismocardiograms and gyrocardiograms in healthy volunteers and patients with valvular heart diseases. This study is an extended version of [54] and is based on two publicly available datasets obtained from healthy people and patients with VHDs.




2. Materials and Methods


2.1. Datasets


This study was carried out on two publicly available datasets with concurrent electrocardiograms, seismocardiograms and gyrocardiograms. The first dataset if “Mechanocardiograms with ECG reference” published by M. Kaisti et al. [65,66] containing signals acquired from twenty-nine healthy volunteers and the second contains thirty signals derived from “An Open-access Database for the Evaluation of Cardio-mechanical Signals from Patients with Valvular Heart Diseases” published by C. Yang et al. in [11,67].



The first dataset consists of 29 recordings of concurrent ECG, SCG and GCG signals acquired from 29 healthy male volunteers that were registered with sensors attached to the chest wall over the sternum with a double-sided tape and with a sampling frequency of 800 Hz. The subjects were lying either in the supine position or on their left or right side [61,65,66].



Electrocardiograms were acquired with an ADS1293 (Texas Instruments, Dallas, TX, USA), seismocardiograms were recorded with a triaxial capacitive digital accelerometer (MMA8451Q from Freescale Semiconductor, Austin, TX, USA) and gyrocardiograms were acquired using a 3-axial MAX21000 gyroscope (Maxim Integrated, San Jose, CA, USA) [15,65].



The rotation and translation axes in seismocardiography and gyrocardiography were defined for both datasets as follows: the x axis was oriented laterally from left to right, the y axis was oriented from head to foot and the z axis was oriented from back to chest [65].



The second dataset consists of 100 simultaneous recordings of raw ECG, SCG and GCG signals with annotated heartbeats acquired from 100 patients with valvular diseases admitted to two different clinical sites: 30 patients were admitted to Columbia University Medical Center (New York City, NY, USA) and 70 patients were admitted to the First Affiliated Hospital of Nanjing Medical University (Nanjing, Jiangsu Province, People’s Republic of China). ECG, SCG and GCG signals were recorded before any treatment in both populations of patients [11].



To balance the number of healthy volunteers and patients with valvular heart disease in this comparison study, we took only 30 patients (14 female and 16 male subjects) who were admitted to the Columbia University Medical Center (New York City, NY, USA). A total of thirty patients had aortic stenosis, nine patients had tricupsid valve regurgitation (TR), five had mitral valve stenosis (MS), four had mitral valve regurgitation (MR) and no patients had aortic valve regurgitation. During registration, each subject was asked to be awake and stay in the supine position, breathing normally.



The ECG, SCG and GCG signals were recorded with Shimmer 3 ECG module (Shimmer Sensing, Dublin, Ireland) with a sampling frequency of 256 Hz (recordings UP-01 to UP-21) and 512 Hz (recordings UP-22 to UP-30) [11,67]. The shimmer 3 device contains a 3-axial inertial measurement unit that contains an accelerometer, a gyroscope and a magnetometer (ICM-20948 from TDK InvenSense, San Jose, CA, USA) and a separate low-noise 3-axial Kionix KXTC9-2050 accelerometer (Kionix, Inc., Ithaca, NY, USA) [68]. Before the measurements, each subject gave informed consent by signing a consent form. All metadata were deidentified before publication [11,67].



The basic characteristics of both datasets are shown in Table 1. Figure 2 and Figure 3 present a 15-second and 16-second fragment of raw ECG, SCG and GCG signals in subject 10 from the first dataset and UP-13 of the second dataset, respectively. More details are revealed in Appendix A.




2.2. Signal Processing


Signal processing started with importing the data into MATLAB R2022b (MathWorks, Inc., Natick, MA, USA); data from [67] were directly loaded into the MATLAB workspace, while data from [66] required importing each line of the text files containing signal samples for subjects 1–8 and discarding the first sample (an artifact) for subjects 9–29. In both datasets, each file represented one subject [66,67].



Heartbeat detection in SCG signals and GCG signals for both datasets was based on the approach presented in [11,22,45,53,54,69], which consists of the following steps: The first step was to apply the Pan–Tompkins algorithm (introduced in [70]) to ECG signals. The next step was to find local maxima in the SCG and GCG signals within 100 ms of the closest R waves in the ECG signals based on the observations published in [45,71], and the final step was to calculate the intervals between each consecutive heartbeat in the ECG, SCG and GCG signals [11,69]. An example of a tachogram for a healthy subject is shown in Figure 4, and Figure 5 presents a tachogram of a patient with VHD.



Local maxima that occur within 100 ms of the R wave in concurrent ECG signals are associated with the aortic valve opening waves that are single sharp peaks on the z-axis of the SCG signal and the y-axis of the GCG signal [15,18,20,45,71]. Taking into account only the z-axis of the SCG signal and the y-axis of the GCG signal for analyses was based on the higher signal-to-noise ratio compared to the other axes [15,22,23,65].




2.3. HRV Analysis


HRV analysis was carried out according to the recommendations published in [56,59] and consisted of the following time and frequency domain indices: mean interbeat interval (AVNN); standard deviation of the interbeat interval (SDNN); root mean square of the differences of successive interbeat intervals (RMSSD); the ratio of successive differences greater than 50 ms in all interbeat intervals (RMSSD); the power of the HRV signal in the very low-frequency band (VLF), in the low-frequency band (LF) and in the high-frequency band (HF); and the LF/HF ratio (LF/HF).



The frequency bands of the HRV spectrum were defined as follows: the very low-frequency band was defined as 0.0033–0.04 Hz, the low frequency band was defined as 0.04–0.15 Hz and the high-frequency band was defined as 0.15–0.4 Hz [56,72]. The analyses were performed with the CardioNet Cardiovascular Signal Toolbox and MATLAB R2022b. HRV indices in the frequency domain were based on spectral power estimates calculated as 1024-sample Lomb periodograms [72,73]. The Lomb periodogram for frequency  ω  is expressed as:


   P x   ( ω )  =  1 2       ∑ j   X j  cos ω  (  t j  − τ )   2    ∑ j   cos 2  ω  (  t j  − τ )    +     ∑ j   X j  sin ω  (  t j  − τ )   2    ∑ j   sin 2  ω  (  t j  − τ )      



(1)




where  τ  is the time delay defined in Equation (2),   X j   is the value of the j-th sample and   t j   is the time of the j-th sample [74,75].


  tan  2 ω τ  =    ∑ j  sin 2 ω  t j     ∑ j  cos 2 ω  t j    .  



(2)







The non-linear analysis of heart rate variability was based on three indices derived from the geometrical features of Poincaré maps: SD1, SD2 and SD1/SD2.



SD1 is a measure of the short-term heart rate variability that is defined as the width of an ellipse fitted to scatter points of a Poincaré map and may be expressed as the standard deviation of the distances from the identity line (  y = x   axis) of the Poincaré plot [76,77]:


   SD 1  = s t d d e v    N  N  i + 1   − N  N i    2     



(3)




where   N  N i    is the i-th inter-beat interval series for   i = 1 , 2 , … N − 1  ,   N  N  i + 1     is the next inter-beat interval and   s t d d e v ( )   denotes the standard deviation (SD) [78,79,80,81].



SD2 is the length of an ellipse fitted to the scatter points of a Poincaré map that reflects the long-term heart rate variability and is calculated as the standard deviation of the distance of points from the   y = − x + 2   N N  ¯    axis:


   SD 2  = s t d d e v     N  N  i + 1   − N  N i    2   − 2   N N  ¯    .  



(4)







SD1/SD2 is calculated as the ratio between SD1 and SD2 and reflects the unpredictability of the heart rate [82].





3. Results


The results of HRV analyses on electrocardiograms, seismocardiograms and gyrocardiograms obtained from healthy volunteers and patients with VHDs were expressed as the mean and standard deviation (SD) values and are shown in Table 2, Table 3 and Table 4, respectively. The HRV indices calculated for patients with VHD were derived from [53], except for SD1, SD2 and SD1/SD2.



The mean and standard deviation values of most HRV indices for patients with VHD are significantly different from those of healthy volunteers, except for AVNN and VLF. These differences were further evaluated by applying the Student’s t-test for the significance level of 0.05. The results of the t-test are shown in Table 5.



The differences between the HRV indices in healthy volunteers and in patients with VHD shown in Table 5 are statistically significant for all analyzed HRV indices except for AVNN, SDNN, pNN50 (ECG), VLF (GCG), LF and SD2. This proves a significant influence of ventricular heart diseases on the results of heart rate variability in time domain, frequency domain and nonlinear analyses. These results confirm the findings related to Table 3.



The findings reported in [17,22,45,51] for HRV indices obtained from ECG, SCG and GCG signals in healthy volunteers and patients with VHDs were verified with the Pearson’s linear correlation that were expressed as Pearson’s linear correlation coefficient ( ρ ) for healthy volunteers and VHD patients. A linear correlation coefficient larger than 0.7 was considered as a strong linear correlation between two given datasets [83].



The results presented in Table 6 indicate a strong linear correlation for the p-value under 0.001, except for SD1/SD2 between ECG and SCG signals from VHD patients. The correlation between the analyzed HRV indices obtained from ECG and GCG signals (as shown in Table 7) is weaker than between the ECG and SCG signals, but remains strong for all HRV indices except for VLF, SD2 and SD1/SD2. The strongest correlation is observed for HF, pNN50, RMSSD and SD1, and the weakest correlation is observed for VLF (−0.0663).




4. Discussion


We have performed HRV analysis on electrocardiograms, seismocardiograms and gyrocardiograms from healthy volunteers and patients with VHD based on publicly available datasets.



The mean and standard deviation values of HRV indices obtained from healthy subjects are similar to those reported by Siecinski et al. in [22,50,52,53], except for the LF/HF and frequency domain indices in [22,52], and also similar to the results reported by Ramos-Castro et al. in [43] and Tadi et al. in [45]. The discrepancies in the mean HRV indices are within the standard deviation for each signal (ECG, SCG and GCG) and may be related to inter-subject variations.



The mean and standard deviation values of most HRV indices for patients with VHD are significantly different from those of healthy volunteers, except for AVNN, LF and SD2. This observation was confirmed by a Student’s t-test. Despite the fact that RMSSD and SD1 should be identical [76], there were significant differences between these indices in each case.



We have shown the significant influence of valvular heart disease on HRV indices, except for AVNN, SDNN (ECG and SCG), pNN50 (ECG), VLF (GCG), LF, HF (ECG) and SD2, which was in line with [84,85]. The similarities between the results of the HRV analysis in patients with VHD in our study and those reported in [84] prove that the HRV indices obtained from seismocardiograms are valid both for healthy subjects, patients with aortic stenosis and also for other VHD patients as long as heartbeats were reliably detected [45,53,54,62].



Despite the significant influence of VHDs on HRV indices, the correlation between the HRV indices obtained from ECG and SCG signals is strong, except for SD2. Obtained values of  ρ  are similar to those reported by Siecinski et al. in [50] and Charlier et al. in [86]. However, the correlations of analyzed pairs of signals are weaker for VHD patients than for healthy volunteers, especially the correlations of HRV indices from ECG and GCG signals [22,43,45,52].



Such results are influenced by age (the population of healthy volunteers is significantly younger than those of patients with VHD), comorbidities, signal quality and the use of different accelerometers and gyroscopes operating with different sampling frequency and accuracy, according to the available datasheets [68,87,88].



The differences between RMSSD and SD1 values did not result in significantly different  ρ  values. This indicates the lower accuracy of automatic heartbeat detection in SCG and GCG signals of patients with VHDs that was affected by morphological changes caused by VHDs and/or ageing [53,54].



The limitations of the study include the use of only one type of heartbeat detector for seismocardiograms and gyrocardiograms that depends on a concurrent electrocardiogram, the influence of specific cardiovascular conditions or medication on the calculated HRV indices was not considered and the morphological changes in SCG and GCG signals due to valvular heart disease was not evaluated.



In future studies, we will consider evaluating the influence of various cardiovascular conditions on HRV indices derived from ECG, SCG and GCG signals; indices derived from larger and more diverse groups, including the analysis of SCG and GCG signal morphology; and indices derived from other detectors of SCG and GCG signals. In this study, we proved that a heart rate variability analysis based on cardiac mechanical signals [30,31,89] may be useful for a more cost-effective and convenient diagnosis and monitoring of patients with cardiovascular disease.




5. Conclusions


The results of the heart rate variability analysis based on mechanocardiograms (SCG and GCG signals) in both a healthy population and patients with VHD remain valid as long as heartbeats are correctly detected. Valvular heart disease significantly affects RMSSD, pNN50 (only SCG and GCG signals), VLF (only ECG and SCG signals), HF (only SCG and GCG signals), LF/HF, SD1 and SD1/SD2. The linear correlation between the HRV indices obtained from the ECG and the mechanocardiograms is strong both in healthy volunteers and in patients with VHD, except for SD2.



Future studies should include an evaluation of other cardiovascular conditions, larger and more diverse groups and other heartbeat detection methods for mechanocardiograms, and an analysis of the morphology of cardiac mechanical signals. We showed that mechanocardiogram-based heart rate variability analyses can be used in the diagnosis and monitoring of cardiovascular disease, which could be more cost-effective and convenient for patients.
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Abbreviations


The following abbreviations are used in this manuscript:





	VHD
	Valvular heart disease



	HRV
	Heart rate variability



	ECG
	Electrocardiography, electrocardiogram



	SCG
	Seismocardiography



	GCG
	Gyrocardiography



	MEMS
	Microelectromechanical systems



	MRI
	Magnetic resonance imaging



	EMD
	Empirical mode decomposition



	CABG
	Coronary artery bypass graft surgery



	F
	Female



	MR
	Mitral valve regurgitation



	MS
	Mitral valve stenosis



	M
	Male



	MI
	Myocardial infarction



	NN
	The interval between consecutive normal heartbeats



	FIR
	Fininte impulse response (filter)



	AO
	Aortic valve opening (wave)



	RSA
	Respiratory sinus arrhythmia



	SNR
	Signal-to-noise (ratio)



	AVNN
	Mean inter-beat interval



	SDNN
	Standard deviation of all interbeat intervals



	RMSSD
	Root mean square of differences (RMSSD) of successive inter-beat intervals



	pNN50
	The proportion of the number of pairs of successive differences

greater than 50 ms divided by total number of normal inter-beat intervals



	VLF
	The power of very low frequency band (0.0033–0.04 Hz) of HRV spectrum



	LF
	The power of low frequency band (0.04–0.15 Hz) of HRV spectrum



	HF
	The power of high frequency band (0.15–0.4 Hz) of HRV spectrum



	LF/HF
	LF/HF ratio



	   SD 1   
	The width of the ellipse which containes the scatter points of Poincaré map



	   SD 2   
	The length of the ellipse which containes the scatter points of Poincaré map



	    SD 1  /  SD 2    
	  SD 1   to   SD 2   ratio



	AVD
	Aortic valve disease



	AC
	Aortic valve closure



	AO
	Aortic valve opening



	MC
	Mitral valve closure



	MO
	Mitral valve opening



	PCI
	Percutaneous coronary intervention



	AS
	Aortic valve stenosis



	AR
	Aortic valve regurgitation



	TR
	Tricupsid valve regurgitation



	  ρ  
	Pearson’s linear correlation coefficient








Appendix A. Recording Descriptions in Datasets


This appendix presents a complete description of the recordings in both analyzed datasets based on available metadata [66,67]; the recordings from the healthy volunteers dataset (Mechanocardiograms with ECG reference) are shown in Table A1, while the full description of the recordings in the VHD patients dataset is presented in Table A2.
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Table A1. Recording description in the “Mechanocardiograms with ECG reference” dataset.






Table A1. Recording description in the “Mechanocardiograms with ECG reference” dataset.












	Subject
	Length of Recording
	Position
	Breathing
	Remarks





	1
	3 min
	Left or right side
	2 min normal,
	



	
	
	
	30 s holding a breath,
	



	
	
	
	30 s normal
	



	2
	3 min
	Left or right side
	2 min normal,
	



	
	
	
	30 s holding a breath,
	



	
	
	
	30 s normal
	



	3
	3 min
	Left or right side
	2 min normal,
	



	
	
	
	30 s holding a breath,
	



	
	
	
	30 s normal
	



	4
	3 min
	Left or right side
	2 min normal,
	



	
	
	
	30 s holding a breath,
	



	
	
	
	30 s normal
	



	5
	3 min
	Left or right side
	2 min normal,
	



	
	
	
	30 s holding a breath,
	



	
	
	
	30 s normal
	



	6
	3 min
	Left or right side
	2 min normal,
	Sensor not strictly secured



	
	
	
	30 s holding a breath,
	on chest because of body hair.



	
	
	
	30 s normal
	



	7
	3 min
	Left or right side
	2 min normal,
	



	
	
	
	30 s holding a breath,
	



	
	
	
	30 s normal
	



	8
	3 min
	Supine
	Normal
	



	9
	10 min
	Supine
	Normal
	



	10
	10 min
	Supine
	Normal
	



	11
	30 min
	Supine
	Normal
	



	12
	10 min
	Supine
	Normal
	



	13
	10 min
	Supine
	Normal
	



	14
	10 min
	Supine
	Normal
	



	15
	10 min
	Supine
	Normal
	



	16
	10 min
	Supine
	Normal
	



	17
	10 min
	Supine
	Normal
	



	18
	10 min
	Supine
	Normal
	



	19
	10 min
	Supine
	Normal
	



	20
	10 min
	Supine
	Normal
	



	21
	10 min
	Supine
	Normal
	



	22
	10 min
	Supine
	Normal
	Sensor loose in the end.



	23
	10 min
	Left or right side
	Normal
	



	24
	10 min
	Supine
	Normal
	



	25
	9 min
	Supine
	Normal
	



	26
	10 min
	Supine
	Normal
	



	27
	10 min
	Left or right side
	Normal
	



	28
	10 min
	Supine
	Normal
	



	29
	10 min
	Supine
	Normal
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Table A2. Recording description in “An Open-access Database for the Evaluation of Cardio-mechanical Signals from Patients with Valvular Heart Diseases” dataset.






Table A2. Recording description in “An Open-access Database for the Evaluation of Cardio-mechanical Signals from Patients with Valvular Heart Diseases” dataset.





	
Subject

Number

	
Length of

Recording

	
Age

(Years)

	
Gender

	
Height

(cm)

	
Weight

(kg)

	
History of

	
MS

	
MR

	
AR

	
AS

	
TR




	

	
MI

	
CABG

	
PCI

	

	

	

	

	






	
UP-01

	
6 min 8 s

	
89

	
M

	
154.9

	
49.0

	
0

	
1

	
1

	
0

	
0

	
0

	
1

	
1




	
UP-02

	
6 min 10 s

	
89

	
M

	
170.2

	
82.0

	
1

	
1

	
1

	
0

	
0

	
0

	
1

	
0




	
UP-03

	
6 min 1 s

	
96

	
M

	
162.5

	
66.0

	
0

	
1

	
1

	
0

	
0

	
0

	
1

	
1




	
UP-04

	
5 min 36 s

	
84

	
M

	
152.4

	
65.0

	
0

	
1

	
1

	
0

	
0

	
0

	
1

	
0




	
UP-05

	
6 min 35 s

	
70

	
F

	
162.5

	
79.0

	
0

	
1

	
1

	
0

	
0

	
0

	
1

	
1




	
UP-06

	
5 min 39 s

	
90

	
F

	
160

	
48.0

	
1

	
1

	
1

	
0

	
0

	
0

	
1

	
1




	
UP-07

	
6 min 3 s

	
84

	
M

	
162.5

	
79.0

	
0

	
1

	
1

	
0

	
0

	
0

	
1

	
0




	
UP-08

	
5 min 11 s

	
95

	
F

	
152.4

	
44.0

	
0

	
1

	
1

	
1

	
0

	
0

	
1

	
1




	
UP-09

	
5 min 15 s

	
89

	
M

	
182.8

	
90.7

	
0

	
1

	
1

	
0

	
0

	
0

	
1

	
0




	
UP-10

	
5 min 2 s

	
80

	
F

	
157.4

	
74.0

	
0

	
1

	
1

	
1

	
0

	
0

	
1

	
0




	
UP-11

	
5 min 6 s

	
68

	
M

	
177.8

	
79.0

	
0

	
1

	
1

	
0

	
0

	
0

	
1

	
0




	
UP-12

	
5 min 10 s

	
79

	
F

	
154.9

	
78.0

	
0

	
1

	
1

	
1

	
0

	
0

	
1

	
0




	
UP-13

	
5 min 18 s

	
95

	
F

	
160

	
73.0

	
0

	
1

	
1

	
0

	
1

	
0

	
1

	
0




	
UP-14

	
5 min 38 s

	
85

	
F

	
152

	
82.0

	
0

	
1

	
1

	
1

	
0

	
0

	
1

	
0




	
UP-15

	
5 min 34 s

	
84

	
F

	
175

	
76.0

	
0

	
1

	
1

	
0

	
0

	
0

	
1

	
0




	
UP-16

	
5 min 44 s

	
97

	
M

	
157

	
77.0

	
0

	
1

	
1

	
0

	
0

	
0

	
1

	
0




	
UP-17

	
5 min 54 s

	
80

	
M

	
182.8

	
86.0

	
0

	
1

	
1

	
0

	
0

	
0

	
1

	
1




	
UP-18

	
5 min 9 s

	
90

	
F

	
152.4

	
92.0

	
0

	
1

	
1

	
0

	
0

	
0

	
1

	
0




	
UP-19

	
5 min 17 s

	
78

	
M

	
170.1

	
78.0

	
0

	
1

	
1

	
0

	
0

	
0

	
1

	
0




	
UP-20

	
7 min 49 s

	
92

	
F

	
139.7

	
53.0

	
0

	
1

	
1

	
0

	
1

	
0

	
1

	
0




	
UP-21

	
5 min 10 s

	
72

	
M

	
172.7

	
68.0

	
0

	
1

	
1

	
1

	
1

	
0

	
1

	
1




	
UP-22

	
10 min 3 s

	
77

	
F

	
165.1

	
51.3

	
0

	
0

	
0

	
0

	
0

	
0

	
1

	
1




	
UP-23

	
9 min 59 s

	
84

	
F

	
139.7

	
70.3

	
0

	
0

	
0

	
0

	
0

	
0

	
1

	
0




	
UP-24

	
5 min

	
80

	
F

	
155

	
67.6

	
0

	
0

	
0

	
0

	
0

	
0

	
1

	
1




	
UP-25

	
9 min 5 s

	
87

	
F

	
155.0

	
54.0

	
0

	
0

	
0

	
0

	
1

	
0

	
1

	
0




	
UP-26

	
5 min 8 s

	
80

	
M

	
175.3

	
85.7

	
0

	
0

	
1

	
0

	
0

	
0

	
1

	
0




	
UP-27

	
5 min 5 s

	
82

	
M

	
180.0

	
118.0

	
0

	
0

	
0

	
0

	
0

	
0

	
1

	
0




	
UP-28

	
5 min 2 s

	
71

	
M

	
175.0

	
117.0

	
0

	
0

	
0

	
0

	
0

	
0

	
1

	
0




	
UP-29

	
4 min 58 s

	
80

	
M

	
168.9

	
65.8

	
0

	
0

	
0

	
1

	
0

	
0

	
1

	
0




	
UP-30

	
4 min 59 s

	
71

	
M

	
177.8

	
81.6

	
0

	
0

	
1

	
1

	
0

	
0

	
1

	
0








M: male; F: female; MI: myocardial infarction; CABG: coronary artery bypass graft surgery; PCI: percutaneous coronary intervention; MS: mitral valve stenosis; MR: mitral valve regurgitation; AS: aortic valve stenosis; AR: aortic valve regurgitation; TR: tricupsid valve regurgitation; The presence of the cardiac condition: 1—yes; 0—no.
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Figure 1. The annotation of ECG, SCG and GCG waveforms in healthy subjects. Based on the diagrams published in [15,18,26,29] under the CC-BY 4.0 license. 






Figure 1. The annotation of ECG, SCG and GCG waveforms in healthy subjects. Based on the diagrams published in [15,18,26,29] under the CC-BY 4.0 license.



[image: Sensors 23 02152 g001]







[image: Sensors 23 02152 g002 550] 





Figure 2. ECG, SCG and GCG signals from subject 10 in the first dataset (25-s fragment). 
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Figure 3. ECG, SCG and GCG signals from subject UP-13 in the second dataset (16-s fragment). 
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Figure 4. Tachogram derived from ECG, SCG and GCG signals taken from subject 9 in the first dataset (15-second fragment). 
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Figure 5. Tachogram ECG, SCG and GCG signals taken from subject UP-09 in the second dataset. 
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Table 1. Basic characteristics of the datasets. Aggregated values are expressed as the range (min–max) and mean ± SD.
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Dataset

	
Number of

	
Age

	
Height

	
Weight

	
BMI

	
Recording




	
Subjects

	
(years)

	
(cm)

	
(kg)

	
(kg/m2)

	
Time (min)






	
Healthy

	
29 male

	
23–41

	
170–190

	
60–98

	
18–30

	
253




	
population

	

	
29 ± 5

	
179 ± 5

	
76 ± 11

	
24 ± 3

	




	
VHD

	
14 female

	
68–97

	
140–183

	
44–118

	
19–40

	
174.8




	
patients

	
16 male

	
83 ± 8

	
163 ± 12

	
74 ± 17

	
28 ± 6

	




	

	
(30 in total)
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Table 2. HRV indices derived from ECG signals from both datasets.
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HRV Index

	
Healthy

	
VHDs




	
Mean

	
SD

	
Mean

	
SD






	
AVNN (ms)

	
952.2551

	
112.1082

	
881.7178

	
155.9992




	
SDNN (ms)

	
93.7994

	
32.0249

	
94.7063

	
47.4722




	
RMSSD (ms)

	
84.7391

	
36.1640

	
121.6602

	
74.7506




	
pNN50

	
0.3092

	
0.1924

	
0.3152

	
0.3178




	
VLF (ms2)

	
2108.3429

	
1555.0081

	
960.4883

	
828.3130




	
LF (ms2)

	
2947.2316

	
2468.9979

	
2190.3676

	
2270.7844




	
HF (ms2)

	
3493.6581

	
2550.7361

	
5687.0552

	
5676.3914




	
LF/HF

	
0.9345

	
0.5333

	
0.4307

	
0.1792




	
SD1 (ms)

	
59.9739

	
26.1703

	
86.1176

	
52.9350




	
SD2 (ms)

	
117.6626

	
39.0786

	
101.2172

	
44.6326




	
SD1/SD2

	
0.5026

	
0.1258

	
0.8095

	
0.2275
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Table 3. HRV indices derived from SCG signals from both datasets.
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HRV Index

	
Healthy

	
VHDs




	
Mean

	
SD

	
Mean

	
SD






	
AVNN (ms)

	
952.2583

	
112.1185

	
881.5849

	
156.4511




	
SDNN (ms)

	
96.7361

	
31.9037

	
113.0716

	
40.8948




	
RMSSD (ms)

	
92.8507

	
37.1027

	
160.9644

	
63.2959




	
pNN50

	
0.3590

	
0.1794

	
0.5499

	
0.2345




	
VLF (ms2)

	
2108.0188

	
1559.9375

	
1009.8038

	
849.8141




	
LF (ms2)

	
2967.0571

	
2477.1760

	
2413.8259

	
2320.6393




	
HF (ms2)

	
3898.4718

	
2926.5900

	
7275.5874

	
5670.2440




	
LF/HF

	
0.8986

	
0.5179

	
0.3177

	
0.1617




	
SD1 (ms)

	
65.7216

	
28.4287

	
113.9518

	
44.8231




	
SD2 (ms)

	
119.3105

	
39.8927

	
110.7745

	
40.7536




	
SD1/SD2

	
0.5437

	
0.1265

	
1.0515

	
0.3080
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Table 4. HRV indices derived from GCG signals from both datasets.
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HRV Index

	
Healthy

	
VHDs




	
Mean

	
SD

	
Mean

	
SD






	
AVNN (ms)

	
952.2358

	
113.3623

	
929.9744

	
222.8833




	
SDNN (ms)

	
86.6979

	
31.6025

	
133.0636

	
66.8667




	
RMSSD (ms)

	
83.6785

	
36.3714

	
183.8181

	
79.3316




	
pNN50

	
0.3712

	
0.1717

	
0.5551

	
0.2799




	
VLF (ms2)

	
2119.8767

	
1568.1258

	
3880.6816

	
13,313.9379




	
LF (ms2)

	
2978.3266

	
2484.0123

	
3251.1583

	
3594.0590




	
HF (ms2)

	
3663.0536

	
2657.3141

	
9481.6615

	
7681.8666




	
LF/HF

	
0.8997

	
0.5328

	
0.3217

	
0.1611




	
SD1 (ms)

	
63.7232

	
26.2834

	
130.1497

	
56.1906




	
SD2 (ms)

	
118.6764

	
39.0182

	
130.1935

	
80.8863




	
SD1/SD2

	
0.5347

	
0.1369

	
1.0302

	
0.2766
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Table 5. Results of Student’s t-tests between healthy subjects and VHD subjects.
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HRV Index

	
ECG

	
SCG

	
GCG




	
h *

	
p-Value

	
h *

	
p-Value

	
h *

	
p-Value






	
AVNN

	
0

	
0.0516

	
0

	
0.0516

	
0

	
0.6316




	
SDNN

	
0

	
0.9320

	
0

	
0.0748

	
1

	
0.0085




	
RMSSD

	
1

	
0.0201

	
1

	
<0.0001

	
1

	
<0.0001




	
pNN50

	
0

	
0.8544

	
1

	
<0.0001

	
1

	
<0.0001




	
VLF

	
1

	
<0.0001

	
1

	
0.0012

	
0

	
0.4823




	
LF

	
0

	
0.5215

	
0

	
0.3742

	
0

	
0.7365




	
HF

	
0

	
0.0621

	
1

	
0.0028

	
1

	
<0.0001




	
LF/HF

	
1

	
<0.0001

	
1

	
<0.0001

	
1

	
<0.0001




	
SD1

	
1

	
0.0201

	
1

	
<0.0001

	
1

	
<0.0001




	
SD2

	
0

	
0.4502

	
0

	
0.6924

	
0

	
0.3863




	
SD1/SD2

	
1

	
<0.0001

	
1

	
<0.0001

	
1

	
<0.0001








* h = 0 means no significant difference.
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Table 6. Pearson’s linear correlation coefficient of HRV indices obtained from ECG and SCG signals.
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	HRV Index
	  ρ   (Healthy Subjects)
	  ρ   (VHD Subjects)





	AVNN
	1.0000
	0.9999



	SDNN
	0.9942
	0.8767



	RMSSD
	0.9754
	0.8164



	pNN50
	0.6402
	0.7026



	VLF
	0.9999
	0.8867



	LF
	0.9996
	0.9390



	HF
	0.9868
	0.9493



	LF/HF
	0.9916
	0.7296



	SD1
	0.9754
	0.8164



	SD2
	0.9980
	0.9364



	SD1/SD2
	0.9375
	0.4116
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Table 7. Pearson’s linear correlation coefficient of HRV indices obtained from ECG and GCG signals.
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	HRV Index
	  ρ   (Healthy Subjects)
	  ρ   (VHD Subjects)





	AVNN
	1.0000
	0.5602



	SDNN
	0.9942
	0.4830



	RMSSD
	0.9754
	0.6134



	pNN50
	0.6402
	0.6497



	VLF
	0.9999
	−0.0663



	LF
	0.9996
	0.5105



	HF
	0.9842
	0.6818



	LF/HF
	0.9906
	0.6531



	SD1
	0.9976
	0.6132



	SD2
	0.9998
	0.3829



	SD1/SD2
	0.9841
	0.3684
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