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Abstract: There exists a growing interest from the clinical practice research communities in the devel-
opment of methods to automate HEp-2 stained cells classification procedure from histopathological
images. Challenges faced by these methods include variations in cell densities and cell patterns,
overfitting of features, large-scale data volume and stained cells. In this paper, a multi-class multilayer
perceptron technique is adapted by adding a new hidden layer to calculate the variation in the mean,
scale, kurtosis and skewness of higher order spectra features of the cell shape information. The adapted
technique is then jointly trained and the probability of classification calculated using a Softmax activa-
tion function. This method is proposed to address overfitting, stained and large-scale data volume
problems, and classify HEp-2 staining cells into six classes. An extensive experimental analysis is
studied to verify the results of the proposed method. The technique has been trained and tested on the
dataset from ICPR-2014 and ICPR-2016 competitions using the Task-1. The experimental results have
shown that the proposed model achieved higher accuracy of 90.3% (with data augmentation) than of
87.5% (with no data augmentation). In addition, the proposed framework is compared with existing
methods, as well as, the results of methods using in ICPR2014 and ICPR2016 competitions.The results
demonstrate that our proposed method effectively outperforms recent methods.

Keywords: classification; HEp-2 staining pattern image; cell shape; multilayer perceptron neural
network; intra-class variation

1. Introduction

The analysis and classification of HEp-2 cell staining patterns of histopathological
images are important processes in diagnosing autoimmune diseases [1]. Computer-Aided
Diagnosis (CAD) techniques have been introduced to reduce the issues of manual anno-
tation and classification [2]. This can help to reduce the error rate of decisions during the
stage of diagnosis disease [3]. A CAD system can also be used as an aid in the training and
education of specialised medical personnel. Recently, DL techniques have been widely
used in biomedical, biological and medical image analysis applications for CAD system
development to support physician and pathologists in making an effective and accurate
decision of diagnosing disease [4]. Since several international contests have been conducted
in the last few years, many research studies have been proposed in relation to automatic
pattern recognition and classification of HEp-2 staining microscopic images at cell and
specimen levels [5,6]. The HEp-2 tests produces variety of staining patterns; therefore, the
structure of a cell includes the cytoplasm, nucleus, chromosomes, and nucleoli. These types
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are different in terms of their number, shape, location, and size of the cell. This can help an
expert to distinguish among staining patterns to differentiate autoimmune diseases [7,8].

In contrast, existing CAD systems involve five fundamental aspects [9]: (i) image
acquisition; (ii) enhancement; (iii) segmentation (iv) extraction and selection features; and
(v) design of classification models. The CAD procedure and its performance depend on
these fundamental aspects while the classification performance is influenced by the seg-
mentation and feature extraction processes. Recently, automatic HEp-2 cell classification
based on the extraction different features has become an active area of histopathological
imaging research. Features that have been used to classify HEp-2 cells, consist of: (i) geo-
metrical features, including shape index histogram with donut-shaped spatial pooling [10];
(ii) texture features, including analysis of morphological and textural feature [11]; and
(iii) colour feature, including grayscale representation of HEp-2 cell [12]. The classification
methods of histopathological images face certain challenges due to the variations in cell
patterns, using different stains, variations in shape due to transformation operations, and
time-consuming. In addition, a single specimen often contains cells with different patterns.
There are also other issues, such as large numbers of cells per image, poor-quality of images,
and clustering of cells. In-homogeneous illumination of images can cause huge intra-class
variations, which negatively impact HEp-2 cell recognition and classification. Another issue
is the overfitting of features used for classification, due to the very high dimensionality of
features compared with the relatively small number of images for model training. HEp-2
cell classification is therefore a crucial processing step.

This work is inspired by recent advances in research into feature representation schemes
and multi-class classification. It is also motivated by the development of machine learning
and DL techniques addressing the problems of HEp-2 cell classification in CAD system,
especially overfitting of features, stained images, intra-class variation and large-scale data
volume problems. In this paper, a Multilayer Perceptron (MLP) neural network is adapted
by using two hidden layers to classify the Higher Order Spectra (HOS) features into six
classes based on the shapes of the HEp-2 staining patterns at cell level. The first new hidden
layer includes the L-moments functions, which calculate the variation in the mean, scale,
skewness and kurtosis of features vector. The second layer is calculated based on a Softmax
activation function, which returns the probabilities of each class, where the target class has
the highest probability. The proposed method is compared with current techniques and the
results of classification competitions hosted at ICPR2014 and ICPR2016. The contribution of
the work is that: (i) provides a robust technique for addressing the challenges of HEp-2 cell
classification; (ii) unpublished method for analysis and classification of histopathological
HEp-2 cell images using DL technique; (iii) produces an accurate recognition and classifi-
cation processes of HEp-2 staining pattern at cell level for increasing the accuracy of CAD
system at early diagnosing stages; (iv) provides a method that can recognize six classes
of Hep-2 cell “(homogeneous, speckled, nucleolar, centromere, nuclear membrane, and
golgi)”; and (v) provides high performance and benchmarking for classification of Hep-2
cell comparing with state-of-the-art methods.

This organisation of paper is as: Section 2 includes the explanation of the related work;
Section 3 explains the proposed method; experiments and data description is detailed
in Section 4; result evaluation is discussed in Section 5; and Section 6 summarizes the
conclusion of this paper.

2. Related Work

Different machine learning and Deep Learning (DL) techniques have been proposed
widely in different fields, including biomedical and medical images, remote sensing, bio-
metric recognition, health informatics applications and so more. For instance, diagnosis of
breast cancer from histopathological images [13], determination of Autoantibodies against
HEp-2 cells (BCA) [14], medical image analysis [15] , detection of COVID-19 from chest x-
ray images [16], detection of biomedical imaging [17] white blood cell segmentation [18,19],
classification of white blood cells [20,21], and HEp-2 cell segmentation from histopathologi-
cal images [22]. Problems related to the classification of HEp-2 cell staining patterns from
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histopathological images have attracted the attention of many researchers in terms of bench-
marking and comparison, and particularly the contests held at international conferences,
such as pattern recognition ICPR2012, ICPR2014 and ICPR2016 as well as International
Conference Image Processing (ICIP) [23].

Machine learning methods have been previously proposed to classify HEp-2 cells. The
research of [24] used vector of hierarchically method for HEp-2 classification. A K-NN
classifier had been been used [25] to classify HEp-cells. A linear Support Vector Machine
(SVM) learning strategy and majority was proposed in [26] for specimen-HEp-2 level
classification based on three types of features SID, SIFT and SURF [27]. A Gaussian mixture
model has proposed in [28] for HEp-2 cell-level classification using different groups of
features, including texture, statistical, spectral, binary, and intensity features. In [29], they
used “region-level classification and majority voting for classification method”. They extract
several sets of features for classification, including the adjacent local binary patterns, the
covariance of the intensity,the local projection coefficients, and the morphological features.
Recently, DL techniques have been proposed and merged with different techniques to
classify HEp-2 cells. In [30], QRFIRMLP technique was used for the recognition of HEp-2
cells using a class of temporal processing neural networks based on finite impulse response
filters. In [31], a DCAE technique has been proposed to perform feature extraction via
an encoding–decoding scheme. They are automatically discriminated, during the feature
learning process, and representations produce by the DCAE. CNNs, pattern histograms
and linear SVMs were proposed in [32] for the classification of HEp-2 specimen patterns.
In [33], deep CNNs were used to extract features directly from the pixel values of the cell
image in a hierarchical way, without requirement to resort to hand-crafted features in order
to classify HEp-2 cells [33]. The results showed that DL methods were successed against
various large-scale benchmarks for the classification of HEp-2 specimen pattern images.
However, all above methods still have challenges affecting the classification process and
computation processing time, for example: (i) these methods lose discriminated information
when using a fixed input image size, specifically with deformed edge in the segmented
images; (ii) building a visual dictionary is complicated process such using the method in [32],
especially when using a large number of training images in the model due to using data
augmentation; and (iii) the segmentation process may affect negatively the performance of
the classification process.

3. Proposed Method

The proposed method consists of various processes for classifying HEp-2 cell level
patterns, as shown in Figure 1.

Figure 1. Proposed method processes to classify HEp-2 cell level patterns, including segmentation,
feature extraction and multi-classes classification using adapted MLP neural network with two layers.

3.1. Segmentation of HEp-2 Cell Staining Images

HEp-2 cells were segmented by [22,34]. The segmentation method was proposed the
level set method via Geometric Active Contours (GACs) to detect the HEp-2 cells shape
information from poor quality microscope images.
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3.2. Feature Extraction

Feature extraction is an important process in the automatic classification of the HEp-2
cells. To achieve the final feature extraction task, three steps are carried out from [20]. The
steps are:

(1) Radon projection: We use a Radon projection to convert a two dimension image into
one dimension vector. In this paper, R[θ] is calculated using the procedure from
research of [20].

(2) Bispectrum: is the product of the Fourier coefficients at component frequencies [35].
The bispectrum S in the frequency domain is then written: :

S(k1, k2) = F(k1)F(k2)∗F(k1 + k2) (1)

“where the Fourier transform is represented by F(k) of R at each θ in the range [0, 180]
degrees. k1 and k2 are the normalised frequencies divided by one and half of the
sampling frequency, and are in the range [0,1] ” [35].

(3) Bispectral invariants: “is a complex value that contains the information of the inte-
grated bispectrum along a straight line a which gives a slope. a means the bispectral
invariant feature of each θ, and is known as the phase.” A more detailed explanation
of this method can be found in [20,35].

3.3. MultiLayer Perceptron

A MLP is one of a supervised DL technique that can learn f (·) : Rm → Ro function.
It is trained on a dataset, where the number of dimensions of the input is represented
by m and the number of dimensions of the output is represented by o. Suppose a set of
features X = x1, x2, . . . , xm is given where the output is y, it can learn a non-linear function
approximation for either classification or regression. In this paper, the hidden layers are
based on two functions: (a) L-Moment measuring and (b) Softmax Activation Function, as
described below:

3.3.1. L-Moment Measuring

The L-moment measures location, while the L-moment ratio measures the scale, skew-
ness and kurtosis. A hidden layer in the MLP classifier is L-moments that calculation is used
from [21]. Where the data H(a)θ are in ascending order, and a is the size of the individual
projections (the length of the vector used to collect the results of each line integral). L-
moment is used H(a) which indicated bispectral invariant feature vector, “L-Mean, L-Scale,
L-Skewness and L-Kurtosis” are written as follows:

- L-Mean which considers location features of cell, where LM = L1, and L1 = β0,
- L-Scale which measures variation in scaling of the cell, where LS = L2/L1, and

L2 = 2β1 − β0,
- L-Skewness which measures variation in concavity of cell, where LSK = L3/L2, and

L3 = 6β2 − 6β1 + β0,
- L-Kurtosis which measures variation in sharpness of cell, where LK = L4/L2, and

L4 = 20β3 − 30β2 + 12β1 − β0.

β0, β1, β2 and β3 are written in Equations (4)–(7), where n is θ from 0 to 90 to measure
the variation of cell shape

β0 =
1
n

n

∑
j=1

Hj (2)

β1 =
1
n

n

∑
j=2

Hj[(j− 1)/(n− 1)] (3)

β2 =
1
n

n

∑
j=3

Hj[(j− 1)(j− 2)/(n− 1)(n− 2)] (4)

β3 =
1
n

n

∑
j=4

Hj[(j− 1)(j− 2)(j− 3)/(n− 1)(n− 2)(n− 3)] (5)
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The first hidden layer applies L-moments function, which calculates “ L-mean, L-scale,
L-skewness and L-kurtosis”. The hidden layers can perform nonlinear transformations of
the inputs entered into the network. Each hidden layer function is specialized to produce
good features by calculating L-moments.

3.3.2. Softmax Activation Function

For multiple-classes, x is a hidden vector of features of LM, LS, LKS, LK containing K
classes. It can pass through the function instead of passing through the logistic function. The
node that has the highest value can be the input member of its class. The Softmax Activation
Function corresponds to the neural network output representing the probability value that
the input belongs to the certain class. This is written as:

P(y = j|zi) = softmax(z)i =
exp(zi)

∑k
l=1 exp(zl)

(6)

where z is defined in follow equation:

z = w1x1 + . . . + wmxm + b =
m

∑
l=1

wl xl + b = wTx + b (7)

where w is a weight vector, x is a feature vector of one training sample, and b is a bias unit.
The role of Softmax function “ is computing the probability that this training sample xi can
belong to class j by giving the weight and net input zi. The probability “p(y = j | x(i); wj)
for each class label in j = 1, . . . , k can be computed. ”

3.3.3. Cross-Entropy Function

The mean squared error cost function can be used here to optimise the cost when a
Softmax activation function is used at the output layer. The cross-entropy (C) in multi-
class classification problems, is known to outperform the gradient descent function and
is computed as follows: First, we need to define a cost function J(·) that represents the
average of all cross-entropies over the n training samples that requires to minimise:

J(W; b) =
1
n

n

∑
i=1

C(Yi, Oi), (8)

C(Yi, Oi) = −∑
m

Yi · log(Oi) (9)

Y is the “target”, i.e., the true class labels, and the O is the probability computed via Softmax
(output), but it is not the predicted class label. The derivative cost is computed as below
equation in order to train our Softmax model and determine the weight coefficients via a
gradient descent method:

∇wj J(W; b) =
1
n

n

∑
i=0

[
x(i)

(
Oi −Yi

)]
(10)

Then,the cost derivative is used to update the weights w in opposite direction of the
cost gradient with learning rate η for each class j ∈ {0, 1, . . . , k} [36]:

wj := wj − η∇wj J(W; b) (11)

where wj is the weight vector of the class y = j. Then, the bias units are updated as
Equation (12):

bj := bj − η

[
1
n

n

∑
i=0

(
Oi − Ti

)]
. (12)
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We add an additional bias and a regularisation term “to reduce the variance of the
model and decrease the degree of overfitting”, such as the L2 term with the regularisation
parameter λ: L2 : λ

2 ||w||22 in Equation (13) where

||w||22 =
m

∑
l=0

k

∑
j=0

wi,j (13)

The cost function becomes:

J(W; b) =
1
n

n

∑
i=1

C(Ti, Oi) +
λ

2
||w||22 (14)

The “regularised” weight update is defined as:

wj := wj − η
[
∇wj J(W) + λwj

]
. (15)

The regularization parameter λ considers an input to our model, which reduces
overfitting, by reducing the variance of our estimated regression parameters. Increasing
λ results with less overfitting, but also has highest bias. One approach is randomly sub-
sampled data number of times and looked at the variation in our estimate. Then, repeating
the process for a slightly higher value of λ may affect the variability of our estimate model.
We used a small value that can help achieving comparable regularization on the whole data
set. In Figure 2, the leftmost layer, which is known as the input layer, consists of a set of
neurons representing the input features x = x1, x2, . . . , xm which represent the HOS features
H(a). The hidden layer consists of two layers which transform each neuron in the values
from the previous layer, using a weighted linear summation w1x1 + w2x2 + . . . + wmxm:
The first hidden layer applies L-moments function, which calculates L-mean, L-scale, L-
skewness and L-kurtosis. This is followed by a Softmax activation function R→ Y6. The
softmax function calculates the probabilities variation of mean, scale, skewness and kurtosis
of each target class over all possible target classes. The range value of Softmax will be from
0 to 1, and the sum of all the probabilities value should be equal to 1. For multi-classification
model, the softmax function returns the value of probabilities of each class, and the target
class will have the highest value probability. The output layer receives the values from the
last hidden layer and transforms them into output values [37].

Figure 2. A MLP network architecture shows input layer, hidden layer and output layer.
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4. Experimental Analysis

Our experimental results are analyzed as follows:

4.1. Description of Dataset

The data set for Task-1 collected at the Sullivan Nicolaides pathology (SNP) labora-
tory from evaluations of positive serum samples for 419 patients. The dataset includes
two classes: positive cells and intermediate cells, as shown Figure 3.

Figure 3. Two under-classes can be defined: (Row 1) positive cells (high intensity) and (Row 2)
intermediate cells (low intensity).

“The six patterns of cell staining in the dataset are: homogeneous (Hm), speckled (Sp),
nucleolar (Nu), centromere (Cn), nuclear membrane (Nm), and Golgi (Gl), as shown in
Figure 4. In the cell level classification of staining patterns, there are a total of 13,596 cate-
gorised cell images which each class has: homogeneous (2494) ), speckled (2831),nucleolar
(2598), centromere (2741), Golgi (724) and nuclear membrane (2208).” The training set is
augmented by rotation with an angle step of (90) and (30) to increase the number of images
in the dataset, and to take the overfitting issue into consideration. The trained images are
cropped to a size of 50× 50 in order to standardise the size of the images before the rotation
process is applied.

(a) (b) (c) (d) (e) (f)

Figure 4. Cell staining included six pattern in the dataset: (a) homogeneous (Hm), (b) speckled (Sp),
(c) nucleolar (Nu), (d) centromere (Cn), (e) nuclear membrane (Nm), and (f) Golgi (Gl).

4.2. Implementation of Proposed Method

In this paper, classifying HEp-2 cell is implemented using MATLAB 2022b, and the
process is illustrated in Figure 1. The proposed technique is used 80% of the dataset for the
training set (10,833 images) and the remaining 20% for the testing set (2717 images). The
steps of the proposed method are:

1 Pre-processing and segmentation:
Pre-processing is done by adjusting the intensity of image for increasing the contrast
of the image. A level set method via edge-based GACs is then applied to detect the
HEp-2 cell shape information from original microscope images used by [22].

2 Feature extraction using HOS:
The HOS technique is applied to the results of segmentation to extract features. The
segmented HEp-2 cell image has been then converted to a set of 1D vectors using the
“MATLAB Radon projection function”. This function can produce a Radon vector R
for each angel from 0 to 180 degrees. A total of 256 features have been extracted, and
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the length of FFT used for each Radon projection is 1024. Finally, we obtained a set of
23,040 features for each image.

3 MLP using Softmax regression via gradient descent:
For the work presented in this paper, the neural network is implemented using Python
3.5.8. The MLP classifier model has four layers. Firstly, we encode the class labels
into a certain format. One-hot encoding is applied,in which a sample belonging to
Class-1 has the 1 value in the first cell of its row; a sample belonging to Class-2 has the
1 value in the second cell of its row, and so on. The input layer is a vector of (23,040)
features multiplying by training images size of 10,833 × 23,040. Then, we initialise
the parameter of weight matrix size of 10,833 × 23,040 × 6 (one column for each class
and one row feature), where k represents four weights for each node. For example,
the first row the matrix of dimensional weights is [0.1 0.2 0.3 0.4 0.5 0.6]. We construct
a neural network with two hidden layers. The first hidden layer is calculated by
summing the L-moments function, which includes the “ L-mean, L-scale, L-skewness
and L-kurtosis”. We multiply this sum by the weight matrix w, and add the bias unit,
which is [0.01 0.1 0.1 0.1 0.1 0.1], the result will be a 10,833 × 1024 matrix. The second
hidden layer is calculated using a Softmax activation function. Following this, we
find the average of all cross-entropies for 10, 833 training images in order to learn
our Softmax model, determining the weight coefficients (“regularised” weight) using
gradient descent method. The learning rate (eta) is between [0.0, 1.0], and has a default
value 0.01. Using parameters Iteration = 500 and Cost = 0.06, the prediction label
is then created. The output layer is a vector of six class. Figure 5 shows an adapted
MLP classifier using Softmax based gradient descent classification features using data
augmentation and no data augmentation. Figure 6 shows an adapted MLP classifier
using Softmax based gradient descent calculation cost and iteration and the best result
is on iteration = 500.

Figure 5. An adapted MLP classifier using Softmax based gradient descent classification features
using no data augmentation (first row) and data augmentation (second row), where x−axis is training
vectors, containing the number of samples and the number of features, and y−axis is the number of
samples to plot decision borders.



Sensors 2023, 23, 2195 9 of 15

Figure 6. A adapted MLP classifier using Softmax based gradient descent calculation cost and iteration.

5. Discussion
5.1. Evaluation Results

The Mean Class Accuracy (MCA) is used for measuring the performance of classifica-
tion classes and is adopted to score and compare the methods based on Correct Classifi-
cation Rate CCR for each class. The prediction CCRn is calculated using two parameters
from a confusion matrix, as illustrated in below equation:

CCRn =
1

Mn
(TPn + TNn) (16)

where TNn and TPn are the total number of True Negatives and True Positives for class n,
respectively. Mn represents the number of images belonging to the specfic nth class. The
average value of CCRn therefore considers the MCA value:

MCA =
1
n

n

∑
k=1

CCRn (17)

Two experiments have done: In the first experiment, the testing and training datasets
are randomly selected, with 2717 images used for testing and 10,833 for training. Average
MCA values are 87.5% with no data augmentation, and 90.03% with data augmentation.
These results show that the proposed method with data augmentation reduces the overfit-
ting of features and results in better accuracy than the model with no data augmentation.
In the second experiment, training sets have been created separately for the positive and
intermediate cells. We train the same model configurations and parameters initialisation
‘of the both categories to classify cells into positive or intermediate. we have submitted the
method based on the networks error function “cross-entropy loss”. Then, the prediction
label is then compared with the actual label, and the results are shown in Table 1. The
results show that 3982 cell images are classified as positive and 4762 as intermediate cells.
However, the difference between the values of validation and testing accuracy shows that
this model may not be able to better generalise, as it sometimes suffers from overfitting to
the training data, even when using the parameters chosen with the validation data. The
244,530 input features, 10,868 hidden with maximum iterations of 500 have been selected
using Softmax activation to get 6 output class. “MLP performance is shown after the re-
moval of the these features (one-by-one) at the train and test phases. If the removal of
features had a negative impact on the performance of the classifier, it would be considered
as highly important features for the separation of the 6 classes of HEp-2 cell”.
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Table 1. Accuracy of positive/intermediate cells for each class and the number of images which is
classified correctly from test images.

Actual Class Positive Cell Intermediate Cell

Images Rate% Images Rate%

Homogeneous 722/815 88.59% 902/1055 85.50%
Speckled 900/1092 82.42% 900/1030 87.38%
Nucleola 450/500 90.00% 1000/1248 80.13%

Centromere 955/1033 92.45% 950/1022 92.96%
Nuclear Membrane 655/707 92.65% 810/948 85.44%

Golgi 300/366 81.97% 200/280 71.43%
Overall 3982/4513 88.23% 4762/5583 85.30%

5.2. Benchmarking and Comparison with Other Techniques

Table 2 shows a comparison of the MCA values for our proposed method and other
recent methods and the benchmarked dataset methods based on the Task-1 training dataset,
which considered the average classification results for staining pattern images at cell level.
We use the same training set of the competitions, and the results indicate that our proposed
classification method outperforms all of the other methods (the first 16 rows) except the
method that had done by [38] for which the result slightly higher than our proposed
method. Our model achieves accuracy of 87.5% with no augmentation, and 90.03% with
augmentation, and these result are higher than the best nine methods in Table 2. In addition,
we implement plain MLP with the same HOS features and obtain MCA value of (84.32%.
The result shows that adapted MLP is better than plain MLP.

Table 2. Results were achieved by the participants compared in terms of MCA to the recent methods,
ICPR2014 and ICPR2016 contests (the first sixteenth rows of the table) and our adapted (MLP)
classifier (the remaining rows of the table in bold text) over Task-1 training dataset.

References Feature Extraction and Selection Classifier Data Augmentation Train Set Test Set

[30] Trainable features QR-FIRMLP Mirroring and rotation 98 .94 74.68
[29] CoALBP, STR, LPC Multiclass boosting Rotation 100.00 81.50
[26] SIFT and SURF with BoW Linear SVMs & Majority voting – 98 .07 80.84
[27] SID with soft BoW Linear SVM (one-vs-all) – 95.47 83.85
[33] Trainable features Deep CNNs Rotation 89.02 76.26
[39] LOAD with IFV Linear SVM (one-vs-all) – 99.91 84.26
[2] Multi-resolution LP & Root-SIFT SVMs with Platte re-scaling Rotation 95 87.42

[40] RICWLTP Linear SVM (one-vs-all) – 94.68 68.37
[41] LCP, RIC-LBP, ELBP, PLBP, STR SVM with Kernel RBF Resizing & Rotation 100.00 79.91
[42] Geometry, morphology & entropy SVM (one-vs-one) cell level – 90.25 80.45
[43] Morphological & textural features Linear SVM (one-vs-all) – 93.82 83.06
[28] Statistical, spectral & LDA Gaussian mixture model – 88.59 73.78
[24] SIFT descriptors Vector of hierarchically residuals – – 82.80
[38] – CNN-based Softmax rotation, cropping & flipping 95.32 91.33
[44] – CNNs – 94.01 89.52
[45] feature concatenation & ensemble CNNs – 96.56 89.00
[46] – Very deep CNNs Rotation 89.36

MLP method Higher order spectra Plain MLP No augmentation 90.22 84.32
Our proposed method Higher order spectra AMLP based L-moment No augmentation 95.82 87.55
Our proposed method Higher order spectra AMLP based L-moment Rotation 97.11 90.83

The confusion matrix values are presented in Table 3. The confusion matrix has shown
that the accuracy results of the proposed method with multi-class MLP for classification
the cell into six classes are improved in comparison with values of plain MLP and another
work in [7]. Furthermore, the confusion matrix values of the proposed method are different
from those in [47]. For example, the speckled cell yields high accuracy of 90.00% when
using the proposed method as shown in Figure 7, in contrast to the other methods, in
which the features are more likely to be overlapped with the features of the centromere
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and homogeneous cells [47]. This difference is due to a failure to capture the cell shape
information and an insufficient number of cells used to train and test resulting in the over-
lapped features being incorporated as true features by the proposed scenario. However, the
method of research [38] results in slightly better than our proposed method by 91.02% due
to discriminating between texturally similar patterns, such as Homogeneous and Speckled.

Figure 7. Correct classification rates (CCR) for each cell class and mean value of methods comparing
with our proposed method to show the variation in classification of each class.

Table 3. Confusion matrix parameters Classification results of comparable methods of ICPR2014,
ICPR2016 and recent techniques using the Task-1 data set for each class.

References Hm Sp Cn Nu Go Nm

[30] 69.16 72.59 68.68 67.08 94.21 76.15
[29] 75.84 82.93 76.4 75.56 94.51 83.78
[26] 75.53 81.43 76.61 73.7 94.18 83.57
[27] 83.02 82.26 85.37 78.4 95.37 78.68
[33] 80.79 64.65 73.51 67.62 85.52 73.3
[39] 89.91 80.67 86.84 81.53 85.5 80.11
[2] 87.47 80.51 83.04 91.01 89.84 92.09

[40] 68.58 53.51 63.03 64.74 83.02 77.36
[41] 89.69 76.21 70.31 78.05 84.46 80.05
[42] 89.19 76.3 70.17 77.95 86.28 82.33
[43] 91.11 79.24 75.05 78.06 87.29 87.12
[28] 80.72 63.62 71.11 66.6 84.83 75.15
[24] 88.93 77.7 79.25 83.00 90.40 77.05
[38] 93.28 90.01 88.08 91.36 91.56 93.57
[44] 92.12 87.80 86.51 88.05 91.62 91.01
[45] 84.52 90.01 91.33 80.04 91.97 96.31
[46] - - - - - -

plain MLP 82.13 82.14 90.12 88.13 90.08 82.10
Proposed method-1 84.53 85.34 91.32 80.13 91.80 91.15
Proposed method-2 91.91 89.81 89.51 85.97 91.67 96.16

6. Conclusions and Future Work

In this paper, we present an effective and practical method for the classification
histopathlogical images of HEp-2 staining patterns at cell level. A multi-class MLP is
adapted by adding two hidden layers to automatically calculate the variation in the mean,
scale, kurtosis and skewness of the input vector features based on HOS, and the Softmax
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regression algorithm is used to calculate the probability distribution of the variation in
the mean, scale, kurtosis and skewness for each class. The neural network is trained and
a predicted output vector is generated using a test dataset. The proposed algorithm is
shown to perform well in practice, compared to existing methods in the literature and
the state-of-the-art methods arising from benchmarked dataset. The proposed method
achieved mean class accuracy of 87.50% with no augmentation and 90.03% with rotation
augmentation. The performance of the proposed classification algorithm is also effective,
both with and without data augmentation, and it is shown that the proposed bispectral
invariant features and adapted multi-class MLP with data augmentation result in a higher
classification accuracy (90.03%) than the 15 other methods reported in the two contests.

6.1. Proposed Methodology Advances

The results demonstrate that the proposed method is relatively invariant to the shape,
rotation, scaling and shifting of cells, and is therefore robust against intra-class variation,
overfitting and large-scale data volume phenomena. It has also been shown that the features
are robust to variation in the mean, scale, kurtosis and skewness, and to discrimination
between the different classes. The neural network is also trained to recognise the data set as
positive or intermediate cells. The results demonstrate that proposed method can recognise
3982 cell images as positive from 4513, with an approximate accuracy of 88.23%, and 4762 as
intermediate cell images from 5583, with an approximate accuracy of 85.30%. These results
are satisfactory in comparison with the other methods investigated. The results show that
the proposed method has an excellent adaptability across variations in scale, mean, skewness
and kurtosis of the higher order spectra features, which is highly desirable for classification
under different lab conditions.

6.2. Proposed Methodology Limitation

At present we have not calculated time performance, as our approach is implemented
on different CPU processors and in different programming environments to other methods.
Another limitation identified in the introduction is that the proposed method lose discrim-
inative information when using fixed size images. Finally, the impact of this work is to
enhance the decision of pathologists and the efficiency of CAD system, and particularly to
discriminate between classes which is challenging in clinical practice. We believe that our
proposed method has the potential to benefit patients for faster and more accurate diagnosis
of diseases. In the future, our proposed method can be useful for designing computation-
ally efficient HEp-2 classification method by reducing the number of network parameters
ad running more data augmentation, and also designing the networks to be trained with
smaller datasets. The work will study Scalability, Runtime, Memory, and Sensitivity analysis
of proposed method as well as statistical analysis using T-test, as done in [48,49]. In addition,
future work will study the combined Recurrent Neural Networks (RNNs) with One-vs-One
classification and investigate their suitability for HEp-2 cells classification.
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Abbreviations

The following abbreviations are used in this manuscript:

HEp-2 Human Epithelial Type-2
CAD Computer Aided Diagnoses
MLP Multilayer Perceptron
GACs Geometric Active Contours
SNP Sullivan Nicolaides pathology
MCA Mean Class Accuracy
SVMs Support Vector Machines
CNNs Convolutional Neural Networks
DCAE Deep Convolutional AutoEncoder
FFT Fast Fourier Transform
RNNs Recurrent Neural Networks
CCR Correct Classification Rate
TP True Positive
TN True Negative
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